Skip to main content

The Co-Release of Glutamate and Acetylcholine in the Vertebrate Nervous System

  • Chapter
  • First Online:
Co-Existence and Co-Release of Classical Neurotransmitters
  • 778 Accesses

Abstract

Co-release of acetylcholine (ACh) and glutamate has been found in a number of cases including Xenopus tadpole spinal cord and hindbrain interneurons, neonatal mouse motoneuron central synapses and rat basal forebrain cholinergic neurons. It is not clear at present whether the co-release is restricted to certain developmental stages. The significance of co-release of both excitatory transmitters may include complex interactions between cholinergic and glutamatergic transmissions during normal functions or development. In Xenopus tadpole spinal cord, co-released ACh from glutamatergic excitatory interneurons (dINs) activate the nicotinic receptors which may help maintain tonic NMDA receptor mediated membrane potential depolarization that is critical for persistent swimming. Nicotinic excitation in early development may also help facilitate the maturation of glutamatergic transmission at dIN synapses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  • Aguayo LG, van Zundert B, Tapia JC, Carrasco MA, Alvarez FJ (2004) Changes on the properties of glycine receptors during neuronal development. Brain Res Brain Res Rev 47:33–45

    Article  PubMed  CAS  Google Scholar 

  • Allen TGJ, Abogadie FC, Brown DA (2006) Simultaneous Release of Glutamate and Acetylcho-line from Single Magnocellular "Cholinergic" Basal Forebrain Neurons. J Neurosci 26:1588–1595

    Article  PubMed  CAS  Google Scholar 

  • Atwood HL (1982) Synapses and neurotransmitters. New York: Academic Press

    Google Scholar 

  • Belousov AB, O’Hara BF, Denisova JV (2001) Acetylcholine becomes the major excitatory neurotransmitter in the hypothalamus in vitro in the absence of glutamate excitation. J Neurosci 21:2015–2027

    PubMed  CAS  Google Scholar 

  • Ben-Ari Y (2002) Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 3:728–739

    Article  PubMed  CAS  Google Scholar 

  • Bixby JL, Spitzer NC (1984) The appearance and development of neurotransmitter sensitivity in Xenopus embryonic spinal neurones in vitro. J Physiol 353:143–155

    PubMed  CAS  Google Scholar 

  • Borodinsky LN, Spitzer NC (2007) Activity-dependent neurotransmitter-receptor matching at the neuromuscular junction. Proc Natl Acad Sci U S A 104:335–340

    Article  PubMed  CAS  Google Scholar 

  • Borodinsky LN, Root CM, Cronin JA, Sann SB, Gu X, Spitzer NC (2004) Activity-dependent homeostatic specification of transmitter expression in embryonic neurons. Nature 429:523–530

    Article  PubMed  CAS  Google Scholar 

  • Boulland JL, Qureshi T, Seal RP, Rafiki A, Gundersen V, Bergersen LH, Fremeau RT, Jr., Ed-wards RH, Storm-Mathisen J, Chaudhry FA (2004) Expression of the vesicular glutamate transporters during development indicates the widespread corelease of multiple neurotransmitters. J Comp Neurol 480:264–280

    Article  PubMed  CAS  Google Scholar 

  • Chapman RJ, Sillar KT (2007) Modulation of a spinal locomotor network by metabotropic glutamate receptors. Eur J Neurosci 26:2257–2268

    Google Scholar 

  • Chery N, De Koninck Y (1999) Junctional versus Extrajunctional Glycine and GABAA Receptor-Mediated IPSCs in Identified Lamina I Neurons of the Adult Rat Spinal Cord. J Neurosci 19:7342–7355

    PubMed  CAS  Google Scholar 

  • Court JA, Perry EK, Johnson M, Piggott MA, Kerwin JA, Perry RH, Ince PG (1993) Regional patterns of cholinergic and glutamate activity in the developing and aging human brain. Brain Res Dev Brain Res 74:73–82

    Article  PubMed  CAS  Google Scholar 

  • Dale N (1985) Reciprocal inhibitory interneurones in the Xenopus embryo spinal cord. J Physiol (London) 363:61–70

    CAS  Google Scholar 

  • Dale N, Roberts A (1985) Dual component amino - acid - mediated synaptic potentials: excitatory drive for swimming in Xenopus embryos. J Physiol (London) 363:35–59

    CAS  Google Scholar 

  • Dan Y, Poo MM (2004) Spike timing-dependent plasticity of neural circuits. Neuron 44:23–30

    Article  PubMed  CAS  Google Scholar 

  • Dani JA (2001) Overview of nicotinic receptors and their roles in the central nervous system. Biol Psychiatry 49:166–174

    Article  PubMed  CAS  Google Scholar 

  • Dani JA, Bertrand D (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 47:699–729

    Article  PubMed  CAS  Google Scholar 

  • Danik M, Cassoly E, Manseau F, Sotty F, Mouginot D, Williams S (2005) Frequent coexpression of the vesicular glutamate transporter 1 and 2 genes, as well as coexpression with genes for choline acetyltransferase or glutamic acid decarboxylase in neurons of rat brain. J Neurosci Res 81:506–521

    Article  PubMed  CAS  Google Scholar 

  • Docherty M, Bradford HF, Wu JY (1987) Co-release of glutamate and aspartate from cholinergic and GABAergic synaptosomes. Nature 330:64

    Article  PubMed  CAS  Google Scholar 

  • Dudar JD, Szerb JC (1969) The effect of topically applied atropine on resting and evoked cortical acetylcholine release. J Physiol 203:741–762

    PubMed  CAS  Google Scholar 

  • Feller MB, Wellis DP, Stellwagen D, Werblin FS, Shatz CJ (1996) Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science 272:1182–1187

    Article  PubMed  CAS  Google Scholar 

  • Forster GL, Blaha CD (2003) Pedunculopontine tegmental stimulation evokes striatal dopamine efflux by activation of acetylcholine and glutamate receptors in the midbrain and pons of the rat. Eur J Neurosci 17:751–762

    Article  PubMed  Google Scholar 

  • Fu WM, Liu JJ (1997) Regulation of acetylcholine release by presynaptic nicotinic receptors at developing neuromuscular synapses. Mol Pharmacol 51:390–398

    PubMed  CAS  Google Scholar 

  • Fu WM, Liou JC, Lee YH, Liou HC (1995) Potentiation of neurotransmitter release by activation of presynaptic glutamate receptors at developing neuromuscular synapses of Xenopus. J Physiol 489 (Pt 3):813–823

    PubMed  CAS  Google Scholar 

  • Fu WM, Liou HC, Chen YH, Wang SM (1998) Coexistence of glutamate and acetylcholine in the developing motoneurons. Chin J Physiol 41:127–132

    PubMed  CAS  Google Scholar 

  • Garaschuk O, Hanse E, Konnerth A (1998) Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus. J Physiol 507 (Pt 1):219–236

    Article  PubMed  CAS  Google Scholar 

  • Ge S, Dani JA (2005) Nicotinic Acetylcholine Receptors at Glutamate Synapses Facilitate Long-Term Depression or Potentiation. J Neurosci 25:6084–6091

    Article  PubMed  CAS  Google Scholar 

  • Gillespie DC, Kim G, Kandler K (2005) Inhibitory synapses in the developing auditory system are glutamatergic. Nat Neurosci 8:332–338

    Article  PubMed  CAS  Google Scholar 

  • Gras C, Herzog E, Bellenchi GC, Bernard V, Ravassard P, Pohl M, Gasnier B, Giros B, El Mestikawy S (2002) A third vesicular glutamate transporter expressed by cholinergic and sero-toninergic neurons. J Neurosci 22:5442–5451

    PubMed  CAS  Google Scholar 

  • Groc L, Gustafsson B, Hanse E (2006) AMPA signalling in nascent glutamatergic synapses: there and not there! Trends Neurosci 29:132–139

    Article  PubMed  CAS  Google Scholar 

  • Gundersen V, Chaudhry FA, Bjaalie JG, Fonnum F, Ottersen OP, Storm-Mathisen J (1998) Synaptic vesicular localization and exocytosis of L-aspartate in excitatory nerve terminals: a quantitative immunogold analysis in rat hippocampus. J Neurosci 18:6059–6070

    PubMed  CAS  Google Scholar 

  • Gutierrez R (2002) Activity-dependent expression of simultaneous glutamatergic and GABAergic neurotransmission from the mossy fibers in vitro. J Neurophysiol 87:2562–2570

    PubMed  CAS  Google Scholar 

  • Hamburger V (1963) Some Aspects Of The Embryology Of Behavior. Q Rev Biol 38:342–365

    Article  PubMed  CAS  Google Scholar 

  • Hanson MG, Landmesser LT (2003) Characterization of the circuits that generate spontaneous episodes of activity in the early embryonic mouse spinal cord. J Neurosci 23:587–600

    PubMed  CAS  Google Scholar 

  • Hanson MG, Landmesser LT (2004) Normal patterns of spontaneous activity are required for correct motor axon guidance and the expression of specific guidance molecules. Neuron 43:687–701

    Article  PubMed  CAS  Google Scholar 

  • Hayes BP, Roberts A (1974) The distribution of synapses along the spinal cord of an amphibian embryo: an electron microscope study of junction development. Cell & Tissue Res 153:227–244

    CAS  Google Scholar 

  • Herzog E, Landry M, Buhler E, Bouali-Benazzouz R, Legay C, Henderson CE, Nagy F, Dreyfus P, Giros B, El Mestikawy S (2004) Expression of vesicular glutamate transporters, VGLUT1 and VGLUT2, in cholinergic spinal motoneurons. Eur J Neurosci 20:1752–1760

    Article  PubMed  CAS  Google Scholar 

  • Israel M, Lesbats B, Bruner J (1993) Glutamate and acetylcholine release from cholinergic nerve terminals, a calcium control of the specificity of the release mechanism. Neurochem Int 22:53

    Article  PubMed  CAS  Google Scholar 

  • Ji D, Lape R, Dani JA (2001) Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron 31:131–141

    Article  PubMed  CAS  Google Scholar 

  • Jo Y-H, Role LW (2002) Coordinate Release of ATP and GABA at In Vitro Synapses of Lateral Hypothalamic Neurons. J Neurosci 22:4794–4804

    PubMed  CAS  Google Scholar 

  • Jonas P, Bischofberger J, Sandkuhler J (1998) Corelease of two fast neurotransmitters at a central synapse. Science 281:419–424

    Article  PubMed  CAS  Google Scholar 

  • Keller AF, Coull JA, Chery N, Poisbeau P, De Koninck Y (2001) Region-specific developmental specialization of GABA-glycine cosynapses in laminas I-II of the rat spinal dorsal horn. J Neurosci 21:7871–7880

    PubMed  CAS  Google Scholar 

  • Kim G, Kandler K (2003) Elimination and strengthening of glycinergic/GABAergic connections during tonotopic map formation. Nat Neurosci 6:282–290

    Article  PubMed  CAS  Google Scholar 

  • Kwong WH, Chan WY, Lee KK, Fan M, Yew DT (2000) Neurotransmitters, neuropeptides and calcium binding proteins in developing human cerebellum: a review. Histochem J 32:521–534

    Article  PubMed  CAS  Google Scholar 

  • Lavoie B, Parent A (1994) Pedunculopontine nucleus in the squirrel monkey: distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons. J Comp Neurol 344:190–209

    Article  PubMed  CAS  Google Scholar 

  • Li WC, Soffe SR, Roberts A (2002) Spinal inhibitory neurons that modulate cutaneous sensory pathways during locomotion in a simple vertebrate. J Neurosci 22:10924–10934

    PubMed  CAS  Google Scholar 

  • Li WC, Soffe SR, Roberts A (2004a) Glutamate and acetylcholine corelease at developing synapses. Proc Natl Acad Sci U S A 101:15488–15493

    Google Scholar 

  • Li WC, Higashijima S, Parry DM, Roberts A, Soffe SR (2004b) Primitive roles for inhibitory interneurons in developing frog spinal cord. J Neurosci 24:5840–5848

    Google Scholar 

  • Li WC, Soffe SR, Wolf E, Roberts A (2006) Persistent Responses to Brief Stimuli: Feedback Excitation among Brainstem Neurons. J Neurosci 26:4026–4035

    Article  PubMed  CAS  Google Scholar 

  • Liou HC, Yang RS, Fu WM (1996) Potentiation of spontaneous acetylcholine release from motor nerve terminals by glutamate in Xenopus tadpoles. Neuroscience 75:325–331

    Article  PubMed  CAS  Google Scholar 

  • Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21

    Article  PubMed  CAS  Google Scholar 

  • Meister B, Arvidsson U, Zhang X, Jacobsson G, Villar MJ, Hokfelt T (1993) Glutamate transporter mRNA and glutamate-like immunoreactivity in spinal motoneurones. Neuroreport 5:337–340

    Article  PubMed  CAS  Google Scholar 

  • Mentis GZ, Alvarez FJ, Bonnot A, Richards DS, Gonzalez-Forero D, Zerda R, O’Donovan MJ (2005) Noncholinergic excitatory actions of motoneurons in the neonatal mammalian spinal cord. Proc Natl Acad Sci U S A 102:7344–7349

    Article  PubMed  CAS  Google Scholar 

  • Milner LD, Landmesser LT (1999) Cholinergic and GABAergic inputs drive patterned spontaneous motoneuron activity before target contact. J Neurosci 19:3007–3022

    PubMed  CAS  Google Scholar 

  • Nabekura J, Katsurabayashi S, Kakazu Y, Shibata S, Matsubara A, Jinno S, Mizoguchi Y, Sasaki A, Ishibashi H (2004) Developmental switch from GABA to glycine release in single central synaptic terminals. Nat Neurosci 7:17–23

    Article  PubMed  CAS  Google Scholar 

  • Nishimaru H, Restrepo CE, Ryge J, Yanagawa Y, Kiehn O (2005) Mammalian motor neurons corelease glutamate and acetylcholine at central synapses. Proc Natl Acad Sci U S A 102:5245–5249

    Article  PubMed  CAS  Google Scholar 

  • Noga BR, Shefchyk SJ, Jamal J, Jordan LM (1987) The role of Renshaw cells in locomotion: antagonism of their excitation from motor axon collaterals with intravenous mecamylamine. Exp Brain Res 66:99–105

    Article  PubMed  CAS  Google Scholar 

  • O’Donovan MJ, Chub N, Wenner P (1998) Mechanisms of spontaneous activity in developing spinal networks. J Neurobiol 37:131–145

    Article  PubMed  Google Scholar 

  • Panchin Yu Y, Perrins RJ, Roberts A (1991) The action of acetylcholine on the locomotor central pattern generator for swimming in Xenopus embryos. J Exp Biol 161:527–531

    PubMed  Google Scholar 

  • Perrins R, Roberts A (1995) Cholinergic and electrical motoneuron-to-motoneuron synapses contribute to on-cycle excitation during swimming in Xenopus embryos. J Neurophysiol 73:1005–1012

    PubMed  CAS  Google Scholar 

  • Plenz D, Kitai ST (1998) Regulation of the nigrostriatal pathway by metabotropic glutamate receptors during development. J Neurosci 18:4133–4144

    PubMed  CAS  Google Scholar 

  • Roberts A (2000) Early functional organization of spinal neurons in developing lower vertebrates. Brain Res Bull 53:585–593

    Article  PubMed  CAS  Google Scholar 

  • Rohrbough J, Spitzer NC (1999) Ca(2+)-permeable AMPA receptors and spontaneous presynaptic transmitter release at developing excitatory spinal synapses. J Neurosci 19:8528–8541

    PubMed  CAS  Google Scholar 

  • Schafer MK, Varoqui H, Defamie N, Weihe E, Erickson JD (2002) Molecular cloning and functional identification of mouse vesicular glutamate transporter 3 and its expression in subsets of novel excitatory neurons. J Biol Chem 277:50734–50748

    Article  PubMed  Google Scholar 

  • Sillar KT, Roberts A (1988) A neuronal mechanism for sensory gating during locomotion in a vertebrate. Nature 331:262–265

    Article  PubMed  CAS  Google Scholar 

  • Spitzer NC, Ribera AB (1998) Development of electrical excitability in embryonic neurons: mechanisms and roles. J Neurobiol 37:190–197

    Article  PubMed  CAS  Google Scholar 

  • Takamori S (2006) VGLUTs: ‘Exciting’ times for glutamatergic research? Neurosci Res 55:343

    Article  PubMed  CAS  Google Scholar 

  • Trudeau LE (2004) Glutamate co-transmission as an emerging concept in monoamine neuron function. J Psychiatry Neurosci 29:296–310

    PubMed  Google Scholar 

  • Uchigashima M, Fukaya M, Watanabe M, Kamiya H (2007) Evidence against GABA release from glutamatergic mossy fiber terminals in the developing hippocampus. J Neurosci 27:8088–8100

    Article  PubMed  CAS  Google Scholar 

  • Vyas S, Bradford HF (1987) Co-release of acetylcholine, glutamate and taurine from synaptosomes of Torpedo electric organ. Neurosci Lett 82:58

    Article  PubMed  CAS  Google Scholar 

  • Waerhaug O, Ottersen OP (1993) Demonstration of glutamate-like immunoreactivity at rat neuromuscular junctions by quantitative electron microscopic immunocytochemistry. Anat Embryol (Berl) 188:501–513

    Article  CAS  Google Scholar 

  • Walker MC, Ruiz A, Kullmann DM (2001) Monosynaptic GABAergic Signaling from Dentate to CA3 with a Pharmacological and Physiological Profile Typical of Mossy Fiber Synapses. Neuron 29:703

    Article  PubMed  CAS  Google Scholar 

  • Wilson JM, Hartley R, Maxwell DJ, Todd AJ, Lieberam I, Kaltschmidt JA, Yoshida Y, Jessell TM, Brownstone RM (2005) Conditional Rhythmicity of Ventral Spinal Interneurons Defined by Expression of the Hb9 Homeodomain Protein. J Neurosci 25:5710–5719

    Article  PubMed  CAS  Google Scholar 

  • Zheng J-j, Lee S, Zhou ZJ (2004) A Developmental Switch in the Excitability and Function of the Starburst Network in the Mammalian Retina. Neuron 44:851

    Article  PubMed  CAS  Google Scholar 

  • Zhou ZJ, Zhao D (2000) Coordinated transitions in neurotransmitter systems for the initiation and propagation of spontaneous retinal waves. J Neurosci 20:6570–6577

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

I thank Drs Steve Soffe and Alan Roberts for their helpful comments, the Wellcome Trust and the Royal Society for their support, and Tim Colborn and Jenny Maxwell for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Chang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Li, WC. (2009). The Co-Release of Glutamate and Acetylcholine in the Vertebrate Nervous System. In: Gutierrez, R. (eds) Co-Existence and Co-Release of Classical Neurotransmitters. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09622-3_12

Download citation

Publish with us

Policies and ethics