Skip to main content

Hormone Resistance

  • Chapter
  • First Online:
Hormone Receptors in Breast Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 147))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Early Breast Cancer Trialists' Collaborative Group. Tamoxifen for early breast cancer: an overview of the randomised trials. Lancet. 1998;351:1451–67.

    Google Scholar 

  2. Early Breast Cancer Trialists' Collaborative Group. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365:1687–717.

    Google Scholar 

  3. Ring A, Dowsett M. Mechanisms of tamoxifen resistance. Endocrinol Relat Cancer. 2004;11:643–58.

    CAS  Google Scholar 

  4. Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98:10869–74.

    Google Scholar 

  5. Shibata H, Spencer TE, Onate SA, et al. Role of co-activators and co-repressors in the mechanism of steroid/thyroid receptor action. Recent Prog Horm Res. 1997;52:141–64.

    PubMed  CAS  Google Scholar 

  6. Ali S, Coombes RC. Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer. 2002;2:101–12.

    PubMed  Google Scholar 

  7. Kumar V, Green S, Stack G, Berry M, Jin JR, Chambon P. Functional domains of the human estrogen receptor. Cell. 1987;51:941–51.

    PubMed  CAS  Google Scholar 

  8. Glaros S, Atanaskova N, Zhao C, Skafar DF, Reddy KB. Activation function-1 domain of estrogen receptor regulates the agonistic and antagonistic actions of tamoxifen. Mol Endocrinol. 2006;20:996–1008.

    PubMed  CAS  Google Scholar 

  9. Reid G, Hubner MR, Metivier R, et al. Cyclic, proteasome-mediated turnover of unliganded and liganded ERalpha on responsive promoters is an integral feature of estrogen signaling. Mol Cell. 2003;11:695–707.

    PubMed  CAS  Google Scholar 

  10. Osborne CK, Schiff R. Estrogen-receptor biology: continuing progress and therapeutic implications. J Clin Oncol. 2005;23:1616–22.

    PubMed  CAS  Google Scholar 

  11. Kushner PJ, Agard DA, Greene GL, et al. Estrogen receptor pathways to AP-1. J Steroid Biochem Mol Biol. 2000;74:311–7.

    PubMed  CAS  Google Scholar 

  12. Fan P, Wang J, Santen RJ, Yue W. Long-term treatment with tamoxifen facilitates translocation of estrogen receptor alpha out of the nucleus and enhances its interaction with EGFR in MCF-7 breast cancer cells. Cancer Res. 2007;67:1352–60.

    PubMed  CAS  Google Scholar 

  13. Kahlert S, Nuedling S, van Eickels M, Vetter H, Meyer R, Grohe C. Estrogen receptor alpha rapidly activates the IGF-1 receptor pathway. J Biol Chem. 2000;275:18447–53.

    PubMed  CAS  Google Scholar 

  14. Simoncini T, Hafezi-Moghadam A, Brazil DP, Ley K, Chin WW, Liao JK. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature. 2000;407:538–41.

    PubMed  CAS  Google Scholar 

  15. Metzger D, Losson R, Bornert JM, Lemoine Y, Chambon P. Promoter specificity of the two transcriptional activation functions of the human oestrogen receptor in yeast. Nucleic Acids Res. 1992;20:2813–7.

    PubMed  CAS  Google Scholar 

  16. Tzukerman MT, Esty A, Santiso-Mere D, et al. Human estrogen receptor transactivational capacity is determined by both cellular and promoter context and mediated by two functionally distinct intramolecular regions. Mol Endocrinol. 1994;8:21–30.

    PubMed  CAS  Google Scholar 

  17. Masamura S, Santner SJ, Heitjan DF, Santen RJ. Estrogen deprivation causes estradiol hypersensitivity in human breast cancer cells. J Clin Endocrinol Metab. 1995;80:2918–25.

    PubMed  CAS  Google Scholar 

  18. Osborne CK, Hobbs K, Clark GM. Effect of estrogens and antiestrogens on growth of human breast cancer cells in athymic nude mice. Cancer Res. 1985;45:584–90.

    PubMed  CAS  Google Scholar 

  19. Johnston SR, Boeddinghaus IM, Riddler S, et al. Idoxifene antagonizes estradiol-dependent MCF-7 breast cancer xenograft growth through sustained induction of apoptosis. Cancer Res. 1999;59:3646–51.

    PubMed  CAS  Google Scholar 

  20. Brodie A, Jelovac D, Long BJ. Predictions from a preclinical model: studies of aromatase inhibitors and antiestrogens. Clin Cancer Res. 2003;9:455S–9S.

    PubMed  CAS  Google Scholar 

  21. Baum M, Budzar AU, Cuzick J, et al. Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early breast cancer: first results of the ATAC randomised trial. Lancet. 2002;359:2131–9.

    PubMed  CAS  Google Scholar 

  22. Johnston SR, Saccani-Jotti G, Smith IE, et al. Changes in estrogen receptor, progesterone receptor, and pS2 expression in tamoxifen-resistant human breast cancer. Cancer Res. 1995;55:3331–8.

    PubMed  CAS  Google Scholar 

  23. Johnston SR, Lu B, Dowsett M, et al. Comparison of estrogen receptor DNA binding in untreated and acquired antiestrogen-resistant human breast tumors. Cancer Res. 1997;57:3723–7.

    PubMed  CAS  Google Scholar 

  24. Gradishar WJ, Chia S, Piccart M, on behalf of the EFECT writing committee. Fulvestrant versus exemestane following prior non-steroidal aromatase inhibitor therapy: first results from EFECT, a randomized, phase III trial in postmenopausal women with advanced breast cancer. Breast Cancer Res Treat. 2006; 100 Suppl 1: Abstract 12.

    Google Scholar 

  25. Encarnacion CA, Ciocca DR, McGuire WL, Clark GM, Fuqua SA, Osborne CK. Measurement of steroid hormone receptors in breast cancer patients on tamoxifen. Breast Cancer Res Treat. 1993;26:237–46.

    PubMed  CAS  Google Scholar 

  26. Kuukasjarvi T, Kononen J, Helin H, Holli K, Isola J. Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy. J Clin Oncol. 1996;14:2584–9.

    PubMed  CAS  Google Scholar 

  27. Gross GE, Clark GM, Chamness GC, McGuire WL. Multiple progesterone receptor assays in human breast cancer. Cancer Res. 1984;44:836–40.

    PubMed  CAS  Google Scholar 

  28. Petz LN, Ziegler YS, Schultz JR, Nardulli AM. Fos and Jun inhibit estrogen-induced transcription of the human progesterone receptor gene through an activator protein-1 site. Mol Endocrinol. 2004;18:521–32.

    PubMed  CAS  Google Scholar 

  29. Giacinti L, Claudio PP, Lopez M, Giordano A. Epigenetic information and estrogen receptor alpha expression in breast cancer. Oncologist. 2006;11:1–8.

    PubMed  CAS  Google Scholar 

  30. Yang X, Phillips DL, Ferguson AT, Nelson WG, Herman JG, Davidson NE. Synergistic activation of functional estrogen receptor (ER)-alpha by DNA methyltransferase and histone deacetylase inhibition in human ER-alpha-negative breast cancer cells. Cancer Res. 2001;61:7025–9.

    PubMed  CAS  Google Scholar 

  31. Ferguson AT, Lapidus RG, Baylin SB, Davidson NE. Demethylation of the estrogen receptor gene in estrogen receptor-negative breast cancer cells can reactivate estrogen receptor gene expression. Cancer Res. 1995;55:2279–83.

    PubMed  CAS  Google Scholar 

  32. Creighton CJ, Hilger AM, Murthy S, Rae JM, Chinnaiyan AM, El-Ashry D. Activation of mitogen-activated protein kinase in estrogen receptor alpha-positive breast cancer cells in vitro induces an in vivo molecular phenotype of estrogen receptor alpha-negative human breast tumors. Cancer Res. 2006;66:3903–11.

    PubMed  CAS  Google Scholar 

  33. Konecny G, Pauletti G, Pegram M, et al. Quantitative association between HER-2/neu and steroid hormone receptors in hormone receptor-positive primary breast cancer. J Natl Cancer Inst. 2003;95:142–53.

    PubMed  CAS  Google Scholar 

  34. Oh AS, Lorant LA, Holloway JN, Miller DL, Kern FG, El-Ashry D. Hyperactivation of MAPK induces loss of ERalpha expression in breast cancer cells. Mol Endocrinol. 2001;15:1344–59.

    PubMed  CAS  Google Scholar 

  35. Massarweh S, Osborne CK, Jiang S, et al. Mechanisms of tumor regression and resistance to estrogen deprivation and fulvestrant in a model of estrogen receptor-positive, HER-2/neu-positive breast cancer. Cancer Res. 2006;66:8266–73.

    PubMed  CAS  Google Scholar 

  36. Munzone E, Curigliano G, Rocca A, et al. Reverting estrogen-receptor-negative phenotype in HER-2-overexpressing advanced breast cancer patients exposed to trastuzumab plus chemotherapy. Breast Cancer Res. 2006;8(1):R4 Epub 2005 Dec 7.

    PubMed  Google Scholar 

  37. Xia W, Bacus S, Hegde P, et al. A model of acquired autoresistance to a potent ErbB2 tyrosine kinase inhibitor and a therapeutic strategy to prevent its onset in breast cancer. Proc Natl Acad Sci U S A. 2006;103:7795–800.

    Google Scholar 

  38. Iorns E, Turner NC, Elliott R, et al. Identification of CDK10 as an Important Determinant of Resistance to Endocrine Therapy for Breast Cancer. Cancer Cell. 2008;13:91–104.

    PubMed  CAS  Google Scholar 

  39. Bautista S, Valles H, Walker RL, et al. In breast cancer, amplification of the steroid receptor coactivator gene AIB1 is correlated with estrogen and progesterone receptor positivity. Clin Cancer Res. 1998;4:2925–9.

    PubMed  CAS  Google Scholar 

  40. Osborne CK, Bardou V, Hopp TA, et al. Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst. 2003;95:353–61.

    PubMed  CAS  Google Scholar 

  41. Kirkegaard T, McGlynn LM, Campbell FM, et al. Amplified in breast cancer 1 in human epidermal growth factor receptor – positive tumors of tamoxifen-treated breast cancer patients. Clin Cancer Res. 2007;13:1405–11.

    PubMed  CAS  Google Scholar 

  42. Lavinsky RM, Jepsen K, Heinzel T, et al. Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc Natl Acad Sci U S A. 1998;95:2920–5.

    Google Scholar 

  43. Zwijsen RM, Buckle RS, Hijmans EM, Loomans CJ, Bernards R. Ligand-independent recruitment of steroid receptor coactivators to estrogen receptor by cyclin D1. Genes Dev. 1998;12:3488–98.

    PubMed  CAS  Google Scholar 

  44. Kenny FS, Hui R, Musgrove EA, et al. Overexpression of cyclin D1 messenger RNA predicts for poor prognosis in estrogen receptor-positive breast cancer. Clin Cancer Res. 1999;5:2069–76.

    PubMed  CAS  Google Scholar 

  45. Han S, Park K, Bae BN, et al. Cyclin D1 expression and patient outcome after tamoxifen therapy in estrogen receptor positive metastatic breast cancer. Oncol Rep. 2003;10:141–4.

    PubMed  CAS  Google Scholar 

  46. Gutierrez MC, Detre S, Johnston SR, et al. Molecular changes in tamoxifen-resistant breast cancer: relationship between estrogen receptor, HER-2, and p38 mitogen-activated protein kinase. J Clin Oncol. 2005;23:2469–76.

    PubMed  CAS  Google Scholar 

  47. Martin LA, Farmer I, Johnston SR, Ali S, Marshall C, Dowsett M. Enhanced estrogen receptor (ER) alpha, ERBB2, and MAPK signal transduction pathways operate during the adaptation of MCF-7 cells to long term estrogen deprivation. J Biol Chem. 2003;278:30458–68.

    PubMed  CAS  Google Scholar 

  48. Santen R, Jeng MH, Wang JP, et al. Adaptive hypersensitivity to estradiol: potential mechanism for secondary hormonal responses in breast cancer patients. J Steroid Biochem Mol Biol. 2001;79:115–25.

    PubMed  CAS  Google Scholar 

  49. Jeng MH, Yue W, Eischeid A, Wang JP, Santen RJ. Role of MAP kinase in the enhanced cell proliferation of long term estrogen deprived human breast cancer cells. Breast Cancer Res Treat. 2000;62:167–75.

    PubMed  CAS  Google Scholar 

  50. Karnik PS, Kulkarni S, Liu XP, Budd GT, Bukowski RM. Estrogen receptor mutations in tamoxifen-resistant breast cancer. Cancer Res. 1994;54:349–53.

    PubMed  CAS  Google Scholar 

  51. Anderson TI, Wooster R, Laake K, et al. Screening for ESR mutations in breast and ovarian cancer patients. Hum Mutat. 1997;9:531–6.

    PubMed  CAS  Google Scholar 

  52. Dowsett M, Daffada A, Chan CM, Johnston SR. Oestrogen receptor mutants and variants in breast cancer. Eur J Cancer. 1997;33:1177–83.

    PubMed  CAS  Google Scholar 

  53. Wolf DM, Jordan VC. The estrogen receptor from a tamoxifen stimulated MCF-7 tumor variant contains a point mutation in the ligand binding domain. Breast Cancer Res Treat. 1994;31:129–38.

    PubMed  CAS  Google Scholar 

  54. Fuqua SA, Wiltschke C, Zhang QX, et al. A hypersensitive estrogen receptor-alpha mutation in premalignant breast lesions. Cancer Res. 2000;60:4026–9.

    PubMed  CAS  Google Scholar 

  55. Johnston SR, Haynes BP, Smith IE, et al. Acquired tamoxifen resistance in human breast cancer and reduced intra-tumoral drug concentration. Lancet. 1993;342:1521–2.

    PubMed  CAS  Google Scholar 

  56. Dowsett M, Haynes BP. Hormonal effects of aromatase inhibitors: focus on premenopausal effects and interaction with tamoxifen. J Steroid Biochem Mol Biol. 2003;86:255–63.

    PubMed  CAS  Google Scholar 

  57. Goetz MP, Rae JM, Suman VJ, et al. Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J Clin Oncol. 2005;23:9312–8.

    PubMed  CAS  Google Scholar 

  58. Goetz MP, Knox SK, Suman VJ, et al. The impact of cytochrome P450 2D6 metabolism in women receiving adjuvant tamoxifen. Breast Cancer Res Treat. 2007;101:113–21.

    PubMed  CAS  Google Scholar 

  59. Chetrite GS, Cortes-Prieto J, Philippe JC, Wright F, Pasqualini JR. Comparison of estrogen concentrations, estrone sulfatase and aromatase activities in normal, and in cancerous, human breast tissues. J Steroid Biochem Mol Biol. 2000;72:23–7.

    PubMed  CAS  Google Scholar 

  60. Miller WR, Anderson TJ, Jack WJ. Relationship between tumour aromatase activity, tumour characteristics and response to therapy. J Steroid Biochem Mol Biol. 1990;37:1055–9.

    PubMed  CAS  Google Scholar 

  61. Lin Z RS, Cotterill H, Rademaker A, Khan S, Haynes B, Dowsett M, Bulun SE, Innes J, Hern RA, Smith I. Messenger RNA levels of estrogen-related genes in malignant breast tumor tissue predict responsiveness to aromatase inhibitors. Breast Cancer Res Treat. 2006; 100 (1): Abstract 14.

    Google Scholar 

  62. Dunning AM, Dowsett M, Healey CS, et al. Polymorphisms associated with circulating sex hormone levels in postmenopausal women. J Natl Cancer Inst. 2004;96:936–45.

    PubMed  CAS  Google Scholar 

  63. Ma CX, Adjei AA, Salavaggione OE, et al. Human aromatase: gene resequencing and functional genomics. Cancer Res. 2005;65:11071–82.

    PubMed  CAS  Google Scholar 

  64. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–82.

    PubMed  CAS  Google Scholar 

  65. Ellis MJ, Coop A, Singh B, et al. Letrozole is more effective neoadjuvant endocrine therapy than tamoxifen for ErbB-1- and/or ErbB-2-positive, estrogen receptor-positive primary breast cancer: evidence from a phase III randomized trial. J Clin Oncol. 2001;19:3808–16.

    PubMed  CAS  Google Scholar 

  66. Chen D, Washbrook E, Sarwar N, et al. Phosphorylation of human estrogen receptor alpha at serine 118 by two distinct signal transduction pathways revealed by phosphorylation-specific antisera. Oncogene. 2002;21:4921–31.

    PubMed  CAS  Google Scholar 

  67. Kato S, Endoh H, Masuhiro Y, et al. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science. 1995;270:1491–4.

    PubMed  CAS  Google Scholar 

  68. Campbell RA, Bhat-Nakshatri P, Patel NM, Constantinidou D, Ali S, Nakshatri H. Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor alpha: a new model for anti-estrogen resistance. J Biol Chem. 2001;276:9817–24.

    PubMed  CAS  Google Scholar 

  69. Dowsett M, Ebbs SR, Dixon JM, et al. Biomarker changes during neoadjuvant anastrozole, tamoxifen, or the combination: influence of hormonal status and HER-2 in breast cancer – a study from the IMPACT trialists. J Clin Oncol. 2005;23:2477–92.

    PubMed  CAS  Google Scholar 

  70. Smith IE, Dowsett M, Ebbs SR, et al. Neoadjuvant treatment of postmenopausal breast cancer with anastrozole, tamoxifen, or both in combination: the Immediate Preoperative Anastrozole, Tamoxifen, or Combined with Tamoxifen (IMPACT) multicenter double-blind randomized trial. J Clin Oncol. 2005;23:5108–16.

    PubMed  CAS  Google Scholar 

  71. Chung YL, Sheu ML, Yang SC, Lin CH, Yen SH. Resistance to tamoxifen-induced apoptosis is associated with direct interaction between Her2/neu and cell membrane estrogen receptor in breast cancer. Int J Cancer. 2002;97:306–12.

    PubMed  CAS  Google Scholar 

  72. Knowlden JM, Hutcheson IR, Jones HE, et al. Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology. 2003;144:1032–44.

    PubMed  CAS  Google Scholar 

  73. Osborne CK, Shou J, Massarweh S, Schiff R. Crosstalk between estrogen receptor and growth factor receptor pathways as a cause for endocrine therapy resistance in breast cancer. Clin Cancer Res. 2005;11:865 s–70 s.

    Google Scholar 

  74. Pancholi S, Lykkesfeldt A, Banerjee S, Farmer I, Leary A, Johnston S, Dowsett M, Martin LA. ERBB2 influences the subcellular localization of the estrogen receptor in tamoxifen resistant MCFF7 cells leading to the activation of AKT and p90RSK. Endocrinol Relat Cancer. 2008; (in press).

    Google Scholar 

  75. Johnston SR, Dowsett M. Aromatase inhibitors for breast cancer: lessons from the laboratory. Nat Rev Cancer. 2003;3:821–31.

    PubMed  CAS  Google Scholar 

  76. Nicholson RI, McClelland RA, Robertson JF, Gee JM. Involvement of steroid hormone and growth factor cross-talk in endocrine response in breast cancer. Endocrinol Relat Cancer. 1999;6:373–87.

    CAS  Google Scholar 

  77. Chan CM, Martin LA, Johnston SR, Ali S, Dowsett M. Molecular changes associated with the acquisition of oestrogen hypersensitivity in MCF-7 breast cancer cells on long-term oestrogen deprivation. J Steroid Biochem Mol Biol. 2002;81:333–41.

    PubMed  CAS  Google Scholar 

  78. Jeng MH, Shupnik MA, Bender TP, et al. Estrogen receptor expression and function in long-term estrogen-deprived human breast cancer cells. Endocrinology. 1998;139:4164–74.

    PubMed  CAS  Google Scholar 

  79. Shim WS, Conaway M, Masamura S, et al. Estradiol hypersensitivity and mitogen-activated protein kinase expression in long-term estrogen deprived human breast cancer cells in vivo. Endocrinology. 2000;141:396–405.

    PubMed  CAS  Google Scholar 

  80. Dowsett M, Stein RC, Coombes RC. Aromatization inhibition alone or in combination with GnRH agonists for the treatment of premenopausal breast cancer patients. J Steroid Biochem Mol Biol. 1992;43:155–9.

    PubMed  CAS  Google Scholar 

  81. Wakeling AE, Dukes M, Bowler J. A potent specific pure antiestrogen with clinical potential. Cancer Res. 1991;51:3867–73.

    PubMed  CAS  Google Scholar 

  82. Dauvois S Fau, White R, White R Fau, Parker MG, Parker MG. The antiestrogen ICI 182780 disrupts estrogen receptor nucleocytoplasmic shuttling.

    Google Scholar 

  83. Osborne CK, Coronado-Heinsohn EB, Hilsenbeck SG, et al. Comparison of the effects of a pure steroidal antiestrogen with those of tamoxifen in a model of human breast cancer. J Natl Cancer Inst. 1995;87:746–50.

    PubMed  CAS  Google Scholar 

  84. Perey LP, Paridaens R, Hawle H, et al. Clinical benefit of fulvestrant in postmenopausal women with advanced breast cancer and primary or acquired resistance to aromatase inhibitors: final results of phase II Swiss Group for Clinical Cancer Research Trial (SAKK 21/00). Ann Oncol. 2007;18(1):64–9.

    PubMed  CAS  Google Scholar 

  85. Steger GG, Bartsch R, Wenzel C, et al. Fulvestrant in pre-treated patients with advanced breast cancer: a single centre experience. Eur J Cancer. 2005;41(17):2655–61.

    PubMed  CAS  Google Scholar 

  86. Ingle JR, Suman VJ, Rowland KM, et al. Fulvestrant in women with advanced breast cancer after progression on prior aromatase inhibitor therapy: North Central Cancer Treatment Group Trial N0032. J Clin Oncol. 2006;24(7):1052–6.

    PubMed  CAS  Google Scholar 

  87. Osipo C, Gajdos C, Liu H, Chen B, Jordan VC. Paradoxical action of fulvestrant in estradiol-induced regression of tamoxifen-stimulated breast cancer. J Natl Cancer Inst. 2003;95:1597–608.

    PubMed  CAS  Google Scholar 

  88. Martin LA, Pancholi S, Chan CM, et al. The anti-oestrogen ICI 182,780, but not tamoxifen, inhibits the growth of MCF-7 breast cancer cells refractory to long-term oestrogen deprivation through down-regulation of oestrogen receptor and IGF signalling. Endocrinol Relat Cancer. 2005;12:1017–36.

    CAS  Google Scholar 

  89. Lonning PE, Bajetta E, Murray R, et al. Activity of exemestane in metastatic breast cancer after failure of non-steroidal aromatase inhibitors: a phase II trial. J Clin Oncol. 2000;18:2234–44.

    PubMed  CAS  Google Scholar 

  90. Johnston SRD. Fulvestrant and the sequential endocrine cascade for advanced breast cancer. Br J Cancer. 2004;90 Suppl 1:S15–8.

    PubMed  CAS  Google Scholar 

  91. Kurokawa H, Lenferink AE, Simpson JF, et al. Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells. Cancer Res. 2000;60:5887–94.

    PubMed  CAS  Google Scholar 

  92. Shou J, Massarweh S, Osborne CK, et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst. 2004;96:926–35.

    PubMed  CAS  Google Scholar 

  93. Johnston SR, Leary A, Martin LA, Smith IE, Dowsett M. Enhancing endocrine response with novel targeted therapies : why have the clinical trials to date failed to deliver on the preclinical promise? Cancer. 2008;112:710–7.

    PubMed  CAS  Google Scholar 

  94. Mita M, Bono J, Mita A. A phase II and biologic correlative study investigating anastrozole (A) in combination with gefitinib (G) in postmenopausal patients with estrogen receptor positive (ER) metastatic breast carcinoma (MBC) who have previously failed hormonal therapy. Breast Cancer Res Treat. 2005;94 Suppl 1: Abstract 1117.

    Google Scholar 

  95. Mayer I, Ganja N, Shyr Y, Muldowney N, Arteaga C. A phase II trial of letrozole plus erlotinib in post-menopausal women with hormone-sensitive metastatic breast cancer: preliminary results of toxicities and correlative studies. Breast Cancer Res Treat. 2006;100 Suppl 1: Abstract 4052.

    Google Scholar 

  96. Smith IE, Walsh G, Skene A, et al. A phase II placebo-controlled trial of neo-adjuvant anastrozole alone or with gefitinib in early breast cancer. J Clin Oncol. 2007;25:3816–22.

    PubMed  CAS  Google Scholar 

  97. Polychronis A, Sinnet HD, Hadjiminas D, et al. Pre-operative gefitinib versus gefitinib and anastrozole in postmenopausal patients with oestrogen-receptor positive and epidermal growth factor receptor positive primary breast cancer: a double blind placebo-controlled phase II randomised trial. Lancet Oncol. 2005;6:383–91.

    PubMed  CAS  Google Scholar 

  98. Atkins D, Reiffen KA, Tegtmeier CL, Winther H, Bonato MS, Storkel S. Immunohistochemical detection of EGFR in paraffin-embedded tumor tissues: variation in staining intensity due to choice of fixative and storage time of tissue sections. J Histochem Cytochem. 2004;52:893–901.

    PubMed  CAS  Google Scholar 

  99. Osborne K, Neven P, Dirix L, Mackey J, Robert J, Underhill C, Gutierrez C, Magill P, Hargreaves L. Randomized phase II study of gefitinib (IRESSA) or placebo in combination with tamoxifen in patients with hormone receptor positive metastatic breast cancer. Breast Cancer Res Treat. 2007;106 Suppl 1: Abstract 2067.

    Google Scholar 

  100. Marcom PK, Isaacs C, Harris L, et al. The combination of letrozole and trastuzumab as first or second-line biological therapy produces durable responses in a subset of HER2 positive and ER positive advanced breast cancers. Breast Cancer Res Treat. 2007;102:43–9.

    PubMed  CAS  Google Scholar 

  101. Mackey JR, Kaufman B, Clemens M, et al. Trastuzumab prolongs progression-free survival in hormone-dependent and HER2-positive metastatic breast cancer. Breast Cancer Res Treat. 2006;100 Suppl 1: Abstract 3.

    Google Scholar 

  102. Leary AF, Martin LA, Lykkesfeldt AE, Dowsett M, Johnston SRD. Enhancing endocrine responsiveness using the dual EGFR/HER2 tyrosine kinase inhibitor lapatinib in cell models of endocrine resistance. Breast Cancer Res Treat. 2006;100 Suppl 1: Abstract 303.

    Google Scholar 

  103. Chu Q, Cianfrocca ME, Murray N, Oslund M, Nelson LM, Rowinsky E, Schwartz G, Goldstein LJ, Loftiss JI, Paul E, Koch KM, Pandite L. A phase I and pharmacokinetic study of Lapatinib in combination with letrozole in patients with advanced cancer. Clin Cancer Res. 2008 Jul 15;14(14):4484--90.

    Google Scholar 

  104. Chu I, Blackwell K, Chen S, Slingerland J. The dual ErbB1/ErbB2 inhibitor, lapatinib (GW572016), cooperates with tamoxifen to inhibit both cell proliferation- and estrogen-dependent gene expression in antiestrogen-resistant breast cancer. Cancer Res. 2005;65:18–25.

    PubMed  CAS  Google Scholar 

  105. Fehm T, Becker S, Duerr-Stoerzer S, et al. Determination of HER2 status using both serum HER2 levels and circulating tumour cells in patients with recurrent breast cancer whose primary tumour status was HER2 negative or of unknown HER2 status. Breast Cancer Res. 2007;9(5):R74.

    PubMed  Google Scholar 

  106. Lipton A, Ali SM, Leitzel K, et al. Serum HER-2/neu and response to the aromatase inhibitor letrozole versus tamoxifen. J Clin Oncol. 2003;21:1967–72.

    PubMed  CAS  Google Scholar 

  107. Clark GJ, Der CJ. Aberrant function of the Ras signal transduction pathway in human breast cancer. Breast Cancer Res Treat. 1995;35:133–44.

    PubMed  CAS  Google Scholar 

  108. Martin LA, Head JE, Pancholi S, et al. The farnesyltransferase inhibitor R115777 (tipifarnib) in combination with tamoxifen acts synergistically to inhibit MCF-7 breast cancer cell proliferation and cell cycle progression in vitro and in vivo. Mol Cancer Ther. 2007;6:2458–67.

    PubMed  CAS  Google Scholar 

  109. Dalenc F, Lacroix-Tikri M, Mourey L. Tipifarnib with tamoxifen as a rescue for tamoxifen acquired clinical resistance for metastatic ER and/or PgR positive breast cancer after relapse under tamoxifen. Preliminary results. Breast Cancer Res Treat. 2005;94:S241.

    Google Scholar 

  110. Lebowitz PF, Eng-Wong J, Widemann BC, et al. A phase I trial and pharmacokinetic study of tipifarnib, a farnesyltransferase inhibitor, and tamoxifen in metastatic breast cancer. Clin Cancer Res. 2005;11:1247–52.

    PubMed  CAS  Google Scholar 

  111. Johnston SR, Semiglazov VF, Manikhas GM, et al. A phase II, randomized, blinded study of the farnesyltransferase inhibitor tipifarnib combined with letrozole in the treatment of advanced breast cancer after antiestrogen therapy. Breast Cancer Res Treat. 2007; Epub Sept 13.

    Google Scholar 

  112. Appels NM, Beijnen JH, Schellens JH. Development of farnesyl transferase inhibitors: a review. Oncologist. 2005;10:565–78.

    PubMed  Google Scholar 

  113. Wu G, Xing M, Mambo E, et al. Somatic mutation and gain of copy number of PIK3CA in human breast cancer. Breast Cancer Res. 2005;7:R609–16.

    PubMed  CAS  Google Scholar 

  114. Bachman KE, Argani P, Samuels Y, et al. The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol Ther. 2004;3:772–5.

    PubMed  CAS  Google Scholar 

  115. Saal LH, Holm K, Maurer M, et al. PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res. 2005;65:2554–9.

    PubMed  CAS  Google Scholar 

  116. Shoman N, Klassen S, McFadden A, Bickis MG, Torlakovic E, Chibbar R. Reduced PTEN expression predicts relapse in patients with breast carcinoma treated by tamoxifen. Mod Pathol. 2005;18:250–9.

    PubMed  CAS  Google Scholar 

  117. Boulay A, Rudloff J, Ye J, et al. Dual inhibition of mTOR and estrogen receptor signaling in vitro induces cell death in models of breast cancer. Clin Cancer Res. 2005;11:5319–28.

    PubMed  CAS  Google Scholar 

  118. Baselga J, Roche H, Fumoleau P, et al. Treatment of postmenopausal women with locally advanced or metastatic breast cancer with letrozole alone or in combination with temsirolimus: a randomized, 3-arm, phase 2 study. Breast Cancer Res Treat. 2005;94 Suppl 1: Abstract 1068.

    Google Scholar 

  119. Chow LS, Sun Y, Jassem J, Baselga J, Hayes DF, Wolff AC, et al. Phase 3 study of temsirolimus with letrozole or letrozole alone in postmenopausal women with locally advanced or metastatic breast cancer. Breast Cancer Res Treat. 2006;100 Suppl 1: Abstract 6091.

    Google Scholar 

  120. Baselga J, Semiglazov V, van Dam P, Manikhas A, Bellet M, Mayordomo J, Campone M, Kubista E, Greil R, Bianchi G, Steinseifer J, Molloy B, Tokaji E, Dixon JM, Jonat W, Rugo HS. Phase II double-blind randomized trial of daily oral RAD001 (everolimus) plus letrozole (LET) or placebo (P) plus LET as neoadjuvant therapy for ER+ breast cancer. Beast Cancer Res Treat. 2007;106 Suppl 1: Abstract 2066.

    Google Scholar 

  121. Gardner H, Bandaru R, Barret C, et al. Biomarker analysis of a phase II double-blind randomised trial of daily oral RAD001 (Everolimus) plus letrozole or placebo plus letrozole as neoadjuvant therapy for patients with estrogen receptor positive breast cancer. Breast Cancer Res Treat. 2007;106 Suppl 1: Abstract 4006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. D. Johnston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Johnston, S.R.D. (2009). Hormone Resistance. In: Fuqua, S. (eds) Hormone Receptors in Breast Cancer. Cancer Treatment and Research, vol 147. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09463-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09463-2_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09462-5

  • Online ISBN: 978-0-387-09463-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics