Skip to main content

Lithium Ion Materials for Energy Applications: Structural Properties from Neutron Diffraction

  • Chapter
Neutron Applications in Earth, Energy and Environmental Sciences

Part of the book series: Neutron Scattering Applications and Techniques ((NEUSCATT))

  • 1395 Accesses

Abstract

Cathode materials and solid electrolytes to be used in lithium batteries require a high ionic mobility of \({\rm Li}^+\) species in their crystal structures. This in turn depends on the order–disorder state of lithium and on its bonding environment. Neutron diffraction is the choice technique to study the structural features of polycrystalline lithium materials that control their performance in ion transport processes. The basic principles of ionic mobility in solids and of the Rietveld refinement methods for neutron diffraction data are briefly reviewed. Then two important families of lithium conductors are selected from the literature and thoroughly discussed: the LLTO perovskite-type \({\rm Li}_x{\rm La}_{2/3\hbox{--}x/3}{\rm TiO}_3\) system and the \({\rm Li}_{1+x}{\rm Me}_2({\rm PO}_4)_3\) Nasicon phases. Accurate neutron diffraction determinations of the corresponding crystal structures have been shown to provide a considerable insight into the mechanisms of \({\rm Li}^+\) ion transfer in such materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. M. Tarascon and M. Armand, Nature 414, 359 (2001)

    Article  CAS  Google Scholar 

  2. M. Wakihara, Mater. Sci. Engin. R 33, 109 (2001)

    Google Scholar 

  3. V. Thangadurai and W. J. F Weppner, Ionics 12, 81 (2006)

    Article  CAS  Google Scholar 

  4. R. J. D. Tilley, Defect Crystal Chemistry (Blackie, London, 1987)

    Google Scholar 

  5. M. Catti, in Fundamentals of Crystallography, edited by C. Giacovazzo (Oxford University Press, Oxford, 2002), Physical Properties of Crystals, Chapter 9, pp. 599–643

    Google Scholar 

  6. A. Munter, NIST Center for Neutron Research, http://www.ncnr.nist.gov/ resources/n-lengths/, Neutron News 3(3), 29–37 (1992)

    Google Scholar 

  7. R. B. Von Dreele, J. D. Jorgensen, and C. G. Windsor, J. Appl. Crystallogr. 15, 581 (1982)

    Article  Google Scholar 

  8. S. Ikeda and J. M. Carpenter, Nuc. Inst. and Meth. A 239, 536 (1985)

    Article  Google Scholar 

  9. P. Thompson, D. E. Cox, and J. B. Hastings, J. Appl. Crystallogr. 20, 79 (1987)

    Article  CAS  Google Scholar 

  10. L. B. McCusker, R. B. Von Dreele, D. E. Cox, D. Louer, and P. Scardi, J. Appl. Crystallogr. 32, 36 (1999)

    Article  CAS  Google Scholar 

  11. J. Rodríguez-Carvajal, FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis, in Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, p. 127, Toulouse, France (1990)

    Google Scholar 

  12. A. C. Larson and R. B. Von Dreele, GSAS: Generalized Structure Analysis System Manual, Los Alamos National Laboratory Report LA-UR-86-748, Los Alamos, NM (1994)

    Google Scholar 

  13. F. Izumi and T. Ikeda, Mater. Sci. Forum 198, 321–324 (2000)

    Google Scholar 

  14. S. Stramare, V. Thangadurai, and W. Weppner, Chem. Mater. 15, 3974 (2003)

    Article  CAS  Google Scholar 

  15. Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, and M. Wakihara, Solid State Commun. 86, 689 (1993)

    Article  CAS  Google Scholar 

  16. H. Kawai and J. Kuwano, J. Electrochem. Soc. 141, L78 (1994)

    Article  CAS  Google Scholar 

  17. I.-S. Kim, T. Nakamura, Y. Inaguma, and M. Itoh, J. Solid State Chem. 113, 281 (1994)

    Article  CAS  Google Scholar 

  18. A. I. Ruiz, M. L. López, M. L. Veiga, and C. Pico, J. Solid State Chem. 148, 329 (1999)

    Article  CAS  Google Scholar 

  19. J. A. Alonso, J. Sanz, J. Santamaria, C. León, A. Varez, and M. T. Fernández-Diaz, Angew. Chem. Int. Ed. 39, 619 (2000)

    Article  CAS  Google Scholar 

  20. Y. Inaguma, T. Katsumata, M. Itoh, and Y. Morii, J. Solid State Chem. 166, 67 (2002)

    Article  CAS  Google Scholar 

  21. A. Varez, Y. Inaguma, M. T. Fernández-Diaz, J. A. Alonso, and J. Sanz, Chem. Mater. 15, 4637 (2003)

    Article  CAS  Google Scholar 

  22. M. Sommariva and M. Catti, Chem. Mater. 18, 2411 (2006)

    Article  CAS  Google Scholar 

  23. M. Catti, M. Sommariva, and R. M. Ibberson, J. Mater. Chem. 17, 1300 (2007)

    Article  CAS  Google Scholar 

  24. Y. Inaguma, T. Katsumata, M. Itoh, Y. Morii, and T. Tsurui, Solid State Ionics 177, 3037 (2006)

    Article  CAS  Google Scholar 

  25. J. Sanz, J. A. Alonso, A. Varez, and M. T. Fernández-Diaz, J. Chem. Soc., Dalton Trans. 1406 (2002)

    Google Scholar 

  26. J. Sanz, A. Varez, J. A. Alonso, and M. T. Fernández-Diaz, J. Solid State Chem. 177, 1157 (2004)

    Article  CAS  Google Scholar 

  27. A. Varez, M. T. Fernández-Diaz, J. A. Alonso, and J. Sanz, Chem. Mater. 17, 2404 (2005)

    Article  CAS  Google Scholar 

  28. A. Rivera and J. Sanz, Phys. Rev. B 70, 094301 (2004)

    Article  Google Scholar 

  29. O. Bohnke, H. Duroy, J. L. Fourquet, S. Ronchetti, and D. Mazza, Solid State Ionics 149, 217 (2002)

    Article  CAS  Google Scholar 

  30. A. Varez, F. Garcia-Alvarado, E. Morán, and M. A. Alario-Franco, J. Solid State Chem. 118, 78 (1995)

    Article  CAS  Google Scholar 

  31. J. L. Fourquet, H. Duroy, and M. P. Crosnier-Lopez, J. Solid State Chem. 127, 283 (1996)

    Article  CAS  Google Scholar 

  32. S. Garcia-Martin, M. A. Alario-Franco, H. Ehrenberg, J. Rodriguez-Carvajal, and U. Amador, J. Am. Chem. Soc. 126, 3587 (2004)

    Article  CAS  Google Scholar 

  33. A. M. Glazer, Acta Crystallogr. B 28, 3384 (1972)

    Article  CAS  Google Scholar 

  34. M. Yashima, M. Itoh, Y. Inaguma, and Y. Morii, J. Am. Chem. Soc. 127, 3491 (2005)

    Article  CAS  Google Scholar 

  35. D. Mazza, S. Ronchetti, O. Bohnke, H. Duroy, and J. L. Fourquet, Solid State Ionics 149, 81 (2002)

    Article  CAS  Google Scholar 

  36. T. Katsumata, Y. Inaguma, M. Itoh, and K. Kawamura, Chem. Mater. 14, 3930 (2002)

    Article  CAS  Google Scholar 

  37. Y. Maruyama, H. Ogawa, M. Kamimura, and M. Kobayashi, J. Phys. Soc. Japan 75, 064602 (2006)

    Article  Google Scholar 

  38. J. Emery, O. Bohnké, J. L. Fourquet, J. Y. Buzaré, P. Florian, and D. Massiot, J. Phys.: Condens. Matter 14, 523 (2002)

    Article  CAS  Google Scholar 

  39. M. Catti, Chem. Mater. 19, 3963 (2007)

    Article  CAS  Google Scholar 

  40. L. Sebastian and J. Gopalakrishnan, J. Mater. Chem. 13, 433 (2003)

    Article  CAS  Google Scholar 

  41. A. D. Robertson, A. R. West, and A. G. Ritchie, Solid State Ionics 104, 1 (1997)

    Article  CAS  Google Scholar 

  42. M. Catti and S. Stramare, Solid State Ionics 489, 136–137 (2000)

    Google Scholar 

  43. M. Catti, A. Comotti, and S. Di Blas, Chem. Mater. 15, 1628 (2003)

    Article  CAS  Google Scholar 

  44. J. Kuwano, N. Sato, M. Kato, and K. Takano, Solid State Ionics 70/71, 332 (1994)

    Article  Google Scholar 

  45. K. Nomura, S. Ikeda, K. Ito, and H. Einaga, Solid State Ionics 61, 293 (1993)

    Article  CAS  Google Scholar 

  46. A. Aatiq, M. Ménétrier, L. Croguennec, E. Suard, and C. Delmas, J. Mater. Chem. 12, 2971 (2002)

    Article  CAS  Google Scholar 

  47. C. Masquelier, C. Wurm, J. Rodriguez-Carvajal, J. Gaubicher, and L. Nazar, Chem. Mater. 12, 525 (2000)

    Article  CAS  Google Scholar 

  48. Hamdoune, M. Gondrand, and D. Tran Qui, Mat. Res. Bull. 21, 237 (1986)

    Article  CAS  Google Scholar 

  49. D. Tran Qui, S. Hamdoune, J. L. Soubeyroux, and E. Prince, J. Solid State Chem. 72, 309 (1988)

    Article  Google Scholar 

  50. M. Catti, J. Solid State Chem. 156, 305 (2001)

    Article  CAS  Google Scholar 

  51. M. Sugantha and U. V. Varadaraju, Solid State Ionics 95, 201 (1997)

    Article  CAS  Google Scholar 

  52. M. Catti, A. Comotti, S. Di Blas, and R. M. Ibberson, J. Mater. Chem. 14, 835 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Catti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Catti, M. (2007). Lithium Ion Materials for Energy Applications: Structural Properties from Neutron Diffraction. In: Liang, L., Rinaldi, R., Schober, H. (eds) Neutron Applications in Earth, Energy and Environmental Sciences. Neutron Scattering Applications and Techniques. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09416-8_15

Download citation

Publish with us

Policies and ethics