Skip to main content

Human Brain-Dead Donors and 31P MRS Studies on Feline Myocardial Energy Metabolism

  • Conference paper
Brain Death and Disorders of Consciousness

Abstract

In clinical heart transplantation, the heart of a brain dead donor is used. The quality of the donor heart is one of the key factors for a succesful transplantation. A hemodynamically unstable brain dead donor is often rejected because survival of the recipient is reduced.1–3 The precise mechanisms of brain death-related hemodynamic instability remain unknown. One of the reported contributing factors is myocardial injury resulting from the acutely increased discharge of endogenous catecholamines during the onset of brain death.4,5 This injury has been supposed to change aerobic to anaerobic energy metabolism, causing depletion of myocardial high-energy phosphates and contractile dysfunction.6–8 Energy depletion appeared to be even more pronounced when high dosages of inotropic agents were used to treat contractile dysfunction of the canine donor heart.9 Notwithstanding these results, the presence of anaerobic metabolism is disputed by others.10-13

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kormos RL, Donato W, Hardesty RL, et al. The influence of donor organ stability and ischemia time on subsequent cardiac recipient survival. Transplant Proc 1988; 20: 980–983.

    PubMed  CAS  Google Scholar 

  2. O’Connell B, Bourge RC, Costanzo-Nordin MR, et al. Cardiac transplantation: recipient selection, donor procurement, and medical follow-up. Circulation 1992; 86: 1061–1079.

    Article  PubMed  Google Scholar 

  3. Baldwin JC, Anderson JL, Boucek MM, et al. Task force 2: donor guidelines. JAm Coll Cardiol 1993; 22: I5–20.

    Article  Google Scholar 

  4. 4. Novitzky D, Wicomb WN, Cooper DKC, Electrocardiographic, hemodynamic and endocrine changes occurring during experimental brain death in the Chacma baboon. Heart Transplant 1984;4:63–69.

    Google Scholar 

  5. Cooper DKC, Novitzky D, Wicomb WN. The pathological effects of brain death on potential donor organs, with particular reference to the heart. Ann R Coll Surg Engl 1989; 71: 261–266.

    PubMed  CAS  Google Scholar 

  6. Novitzky D, Cooper DKC, Morrell D, Isaacs S. Change from aerobic to anaerobic metabolism after brain death, and reversal following triiodothyronine therapy. Transplantation 1988; 45: 32–36.

    Article  PubMed  CAS  Google Scholar 

  7. Szark F, Thicoïpé M, Lassié P, Dabadie P. Modification of mitochondrial energy metabolism in brain dead organ donors. Transplant Proc 1996; 28: 52–55.

    Google Scholar 

  8. Szark F, Emy P. Energy metabolism in brain dead organ donors. Nutrition 1997; 13: 691–692.

    Article  Google Scholar 

  9. Tixier D, Matheis G, Buckberg GD, Young HH. Donor hearts with impaired hemodynamics. J Thorac Cardiovasc Surg 1991; 102: 207–214.

    PubMed  CAS  Google Scholar 

  10. Mertes PM, Burtin P, Carteaux JP, Changes in hemodynamic performance and oxygen consumption during brain death in the pig. Transplant Proc 1994; 26: 229–230.

    PubMed  CAS  Google Scholar 

  11. Bittner HB, Chen EP, Milano CA, Myocardial ß-adrenergic receptor function and high-energy phosphates in brain death-related cardiac dysfunction. Circulation 1995;92[suppl II]:II-472-II-478.

    Google Scholar 

  12. Galinanes M, Hearse DJ. Brain death-induced impairment of cardiac contractile performance can be reversed by explantation and may not preclude the use of hearts for transplantation. Circ Res 1992; 71: 1213–1219.

    Article  PubMed  CAS  Google Scholar 

  13. Szabó G, Sebening C, Hachert T, et al. Effects of brain death on myocardial function and ischemic tolerance of potential donor hearts. JHeart Lung Tranplant 1998; 17: 921–930.

    Google Scholar 

  14. Flameng W, Dyszkiewics W, Minten J. Energy state of the myocardium during long-term cold storage and subsequent reperfusion. Eur J Cardiothorac Surg 1988; 2: 244–255.

    Article  PubMed  CAS  Google Scholar 

  15. Pratschke J, Wilhelm MJ, Kusaka M, et al. Brain death and its influence on donor organ quality and outcome after transplantation. Transplantation 1999; 67: 343–348.

    Article  PubMed  CAS  Google Scholar 

  16. Bittner HB, Kendall SWH, Chen EP, van Trigt P. The combined effects of brain death and cardiac graft preservation on cardiopulmonary hemodynamics and function before and after subsequent heart transplantation. J Heart Lung Transplant 1996; 15: 764–777.

    PubMed  CAS  Google Scholar 

  17. McLean AD, Rosengard BR. Aggressive donor management. Curr Opin Org Transplant 1999; 4: 130–133.

    Article  Google Scholar 

  18. Van Dobbenburgh O, Lahpor JR, Woolley SR, et al. Functional recovery after human heart transplantation is related to the metabolic condition of the hypothermic donor heart. Circulation 1996; 94: 2831–2836.

    Article  PubMed  Google Scholar 

  19. Bloch F. Nuclear induction. Phys Rev 1946; 70: 460–466.

    Article  CAS  Google Scholar 

  20. Purcell EM, Torrey HC, Pound CV. Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 1946; 69: 3746.

    Article  Google Scholar 

  21. Gadian DG, Hoult DI, Radda GK, et al. Phosphorus nuclear magnetic resonance studies on normoxic and ischemic cardiac tissue. Proc Nat! Acad Sci USA 1976; 73: 4446–4448.

    Article  PubMed  CAS  Google Scholar 

  22. Murphy DA, O’Blenes S, Nassar BA, Armour JA. Effects of acutely raising intracranial pressure on cardiac sympathetic efferent neuron function. Cardiovasc Res 1995; 30: 716–722.

    PubMed  CAS  Google Scholar 

  23. Opie LH. The Heart. Physiology and Metabolism. 2nd ed. New York: Raven Press, 1991.

    Google Scholar 

  24. Chance B, Leigh Jr JS, Kent J, et al. Multiple controls of oxidative metabolism in living tissues as studied by phosphorus magnetic resonance. Proc Nall Acad Sci USA 1986; 83: 9458–9463.

    Article  CAS  Google Scholar 

  25. Saeed M, Wendland MF, Wagner S, Derugin N, Higgins CB. Preservation of high-energy phosphate reserves in a cat model of post-ischaemic myocardial dysfunction. Invest Radiol 1992; 27: 145–149.

    Article  PubMed  CAS  Google Scholar 

  26. Wendland MF, Saeed M, Kondo C, Derugin N, Higgins CB. Effect of lidocaine on acute regional myocardial ischemia and reperfusion in the cat. Invest Radiol 1993; 28: 619–623.

    Article  PubMed  CAS  Google Scholar 

  27. Osbakken M, Young M, Huddell J, et al. Acute volume loading studied in cat myocardium with 31P nuclear magnetic resonance. Magn Reson Med 1988; 7: 143–149.

    Article  PubMed  CAS  Google Scholar 

  28. Kitai T, Tanaka A, Tetasaki M, et al. Energy metabolism of the heart and the liver in brain-dead dogs as assessed by 31P NMR spectroscopy. JSurg Res 1993; 55: 599–605.

    Article  CAS  Google Scholar 

  29. Pinelli G, Mertes PM, Carteaux JP, et al. Myocardial effects of experimental acute brain death: evaluation by hemodynamic and biological studies. Ann Thorac Surg 1995; 60: 1729–1734.

    Article  PubMed  CAS  Google Scholar 

  30. Carreaux JP, Mertes PM, Pinelli G. et al. Left ventricular contractility after hypothermic preservation: predictive value of phosphorus 31-nuclear magnetic resonance spectroscopy. JHeart Lung Transplant 1994; 13: 661–668.

    Google Scholar 

  31. Brandon Bravo Bruinsma GJ, Nederhoff, Geeriman 1-U, Acute increase of myocardial workload, hemodynamic instability, and myocardial histological changes induced by brain death in the cat. J Surg Res 1997; 68: 7–15.

    Article  Google Scholar 

  32. Brandon Bravo Bruinsma GJ, Nederhoff MGJ, to Boekhorst BCM, et al. Brain-death induced alterations in myocardial workload and high-energy phosphates: a phosphorus-31 magnetic resonance spectroscopy study in the cat. JHeart Lung Transplant 1998; 17: 894–990.

    Google Scholar 

  33. Brandon Bravo Bruinsma GJ, Nederhoff MGJ, van de Kolk CWA, et al. Myocardial bio-energetic response to dopamine after brain death-induced reduced workload: a phosphorus-31 magnetic resonance spectroscopy study in the cat. JHeart Lung Transplant 1999; 18: 1189–1197.

    Article  Google Scholar 

  34. Brandon Bravo Bruinsma GJ, van de Kolk CWA, Nederhoff MGJ. Brain death-related energetic failure of the donor heart becomes apparent only during storage and reperfusion: an ex vivo phosphorus-31 magnetic resonance spectroscopy study on the feline heart. J Heart Lung Transplant 2001; 20: 996–1004.

    Article  Google Scholar 

  35. Brandon Bravo Bruinsma GJ, Bredée JJ, Ruigrok TJC, et al. No evidence for participation of non-adrenergic noncholinergic substances in brain death-related hemodynamicdeterioration of the feline potential heart donor. Ann Transplant 2001; 4: 43–47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Bruinsma, G.J.B.B., van Echteld, C.J.A. (2004). Human Brain-Dead Donors and 31P MRS Studies on Feline Myocardial Energy Metabolism. In: Machado, C., Shewmon, D.A. (eds) Brain Death and Disorders of Consciousness. Advances in Experimental Medicine and Biology, vol 550. Springer, Boston, MA. https://doi.org/10.1007/978-0-306-48526-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-0-306-48526-8_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0976-6

  • Online ISBN: 978-0-306-48526-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics