Skip to main content

A Model of Electromechanical Coupling in the Small Intestine

  • Chapter
  • First Online:
Multiscale Computer Modeling in Biomechanics and Biomedical Engineering

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 14))

Abstract

The motility of the intestines is partly governed by a bioelectrical activity termed intestinal slow wave activity; however, the dynamics of the electromechanical relationship have remained poorly defined. With the recent advances in continuum-based multi-scale modeling techniques, we present a modeling framework to investigate the electromechanical coupling in a segment of small intestine. The overall modeling framework included three parts: (i) an anatomical model describing the geometry and makeup of the smooth muscle fibers; (ii) an electrical model describing the slow wave propagation; and (iii) a mechanical model describing the active and passive tension laws during contraction. The resultant intraluminal pressure was approximated using Lamé’s thick-walled cylinder equation. This modeling framework demonstrates the potential to be used in investigating the effects of intestinal slow wave dysrhythmias on the motility of the small intestine, and may be extended in the future to incorporate additional regulatory factors and pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ailiani, A.C., Neuberger, T., Brasseur, J.G., Banco, G., Wang, Y., Smith, N.B., Webb, A.G.: Quantitative analysis of peristaltic and segmental motion in vivo in the rat small intestine using dynamic MRI. Magnet. Reson. Med. 62(1), 116–126 (2009)

    Article  Google Scholar 

  2. Aliev, R.R., Richards, W., Wikswo, J.P.: A simple nonlinear model of electrical activity in the intestine. J. Theor. Biol. 204(1), 21–28 (2000)

    Article  Google Scholar 

  3. Alvarez, W.C.: Functional variations in contractions of different parts of the small intestine. Am. J. Physiol. 35, 177–193 (1914)

    Google Scholar 

  4. Alvarez, W.C., Mahoney, L.J.: Action currents in stomach and intestine. Am. J. Physiol. 58, 476–493 (1922)

    Google Scholar 

  5. Arkwright, J.W., Blenman, N.G., Underhill, I.D., Maunder, S.A., Szczesniak, M.M., Dinning, P.G., Cook, I.J.: In-vivo demonstration of a high resolution optical fiber manometry catheter for diagnosis of gastrointestinal motility disorders. Opt. Express. 17, 4500–4508 (2009)

    Article  Google Scholar 

  6. Bellini, C., Glass, P., Sitti, M., Di Martino, E.S.: Biaxial mechanical modeling of the small intestine. J. Mech. Behav. Biomed. Mater. 4(8), 1727–1740 (2011)

    Article  Google Scholar 

  7. Berne, R.M., Levy, M.N., Koeppen, B.M., Stanton, B.A.: Physiology, 4th edn. Mosby, St. Louis (1998)

    Google Scholar 

  8. Beyder, A., Rae, J.L., Bernard, C., Strege, P.R., Sachs, F., Farrugia, G.: Mechanosensitivity of Nav1.5, a voltage-sensitive sodium channel. J. Physiol. 588(24), 4969–4985 (2010)

    Article  Google Scholar 

  9. Bolton, T.B., Prestwich, S.A., Zholos, A.V., Gordienko, D.V.: Excitation contraction coupling in gastrointestinal and other smooth muscles. Annu. Rev. Physiol. 61, 85–115 (1999)

    Article  Google Scholar 

  10. Buist, M.L., Poh, Y.C.: An extended bidomain framework incorporating multiple cell types. Biophys. J. 99(1), 13–18 (2010)

    Article  Google Scholar 

  11. Cajal, S.R.: Histologie du Systeme Nerveux de l’homme et des Vertebretes. Maloine, Paris (1911)

    Google Scholar 

  12. CMISS. http://www.cmiss.org/

  13. Coleski, R., Hasler, W.L.: Directed endoscopic mucosal mapping of normal and dysrhythmic gastric slow waves in healthy humans. Neurogastroenterol. Motil. 16(5), 557–555 (2004)

    Article  Google Scholar 

  14. Corrias, A., Buist, M.L.: A quantitative model of gastric smooth muscle cellular activation. Ann. Biomed. Eng. 35(9), 1595–1607 (2007)

    Article  Google Scholar 

  15. Costa, M., Sanders, K.M., Schemann, M., Smith, T.K., Cook, I.J., De Giorgio, R., Dent, J., Grundy, D., Shea-donohue, T., Tonini, M. et al.: A teaching module on cellular control of small intestinal motility. Neurogastroenterol. Motil. 17, 4–19 (2005)

    Google Scholar 

  16. Davidson, J.B., O’Grady, G., Arkwright, J.W., Zarate, N., Scott, S.M., Pullan, A.J., Dinning, P.J.: Anatomical registration and three-dimensional visualization of low and high-resolution pan-colonic manometry recordings. Neurogastroenterol. Motil. 23(4), e171 (2011)

    Article  Google Scholar 

  17. Dinning, P.G., Arkwright, J.W., Costa, M., Wiklendt, L., Hennig, G., Brookes, S.J.H., Spencer, N.J.: Temporal relationships between wall motion, intraluminal pressure, and flow in the isolated rabbit small intestine. Am. J. Physiol. Gastr. L 300(4), G577–G585 (2011)

    Article  Google Scholar 

  18. Dinning, P.G., Zarate, N., Hunt, L.M., Fuentealba, S.E., Mohammed, S.D., Szczesniak, M.M., Lubowski, D.Z., Preston, S.L., Fairclough, P.D., Lunniss, P.J., Scott, S.M., Cook, I.J.: Pancolonic spatiotemporal mapping reveals regional deficiencies in, and disorganization of colonic propagating pressure waves in severe constipation. Neurgastroenterol. Motil. 22, e340–e349 (2010)

    Article  Google Scholar 

  19. Dou, Y., Zhao, J., Gregersen, H.: Morphology and stress–strain properties along the small intestine in the rat. J. Biomed. Eng. 125, 266 (2003)

    Google Scholar 

  20. Fallingborg, J., Pedersen, P., Jacobsen, B.A.: Small intestinal transit time and intraluminal pH in ileocecal resected patients with Crohn’s disease. Dig. Dis. Sci. 43(4), 702–705 (1998)

    Article  Google Scholar 

  21. Farrugia, G.: Ionic conductances in gastrointestinal smooth muscles and interstitial cells of Cajal. Annu. Rev. Physiol. 61, 45–84 (1999)

    Article  Google Scholar 

  22. Farrugia, G.: Interstitial cells of Cajal in health and disease. Neurogastroenterol. Motil. 20(Suppl 1), 54–63 (2008)

    Article  Google Scholar 

  23. Ferrua, M.J., Singh, R.P.: Modeling the fluid dynamics in a human stomach to gain insight of food digestion. J. Food Sci. 75(7), R151–R162 (2010)

    Article  Google Scholar 

  24. Fung, Y.: Biomechanics: mechanical properties of living tissues. vol. 12, Springer, New York (1993)

    Google Scholar 

  25. Gajendiran, V., Buist, M.L.: A quantitative description of active force generation in gastrointestinal smooth muscle. Int. J. Numer. Method Biomed. Eng. 27(3), 450–460 (2011)

    Article  MATH  Google Scholar 

  26. Gregersen, H., Kassab, G.: Biomechanics of the gastrointestinal tract. Neurogastroenterol. Motil. 8(4), 277–297 (1996)

    Article  Google Scholar 

  27. Hai, C., Murphy, R.: Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am. J. Physiol. Cell Physiol. 254(1), C99–C106 (1988)

    Google Scholar 

  28. Hennig, G.W., Costa, M., Chen, B.N., Brookes, S.J.: Quantitative analysis of peristalsis in the guinea-pig small intestine using spatio-temporal maps. J. Physiol. 517(2), 575 (1999)

    Article  Google Scholar 

  29. Herlihy, J., Murphy, R.: Length–tension relationship of smooth muscle of the hog carotid artery. Circ. Res. 33(3), 275–283 (1952)

    Article  Google Scholar 

  30. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500 (1952)

    Google Scholar 

  31. Huizinga, J.D., Lammers, W.J.E.P.: Gut peristalsis is coordinated by a multitude of cooperating mechanisms. Am. J. Physiol. Gastrointest. Liver Physiol. 296(1), 1–8 (2009)

    Article  Google Scholar 

  32. Hunter, P.J., McCulloch, A.D., Ter Keurs, H.: Modelling the mechanical properties of cardiac muscle. Prog. Biophys. Mol. Biol. 69(2–3), 289–331 (1998)

    Article  Google Scholar 

  33. Kamm, K.E., Stull, J.T.: The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. Annu. Rev. Pharmacol. 25(1), 593–620 (1985)

    Article  Google Scholar 

  34. Lammers, W., Stephen, B., Slack, J.R., Dhanasekaran, S.: Anisotropic propagation in the small intestine. Neurogastroenterol. Motil. 14(4), 357–364 (2002)

    Article  Google Scholar 

  35. Lentle, R.G., Janssen, P.W.: Physical characteristics of digesta and their influence on flow and mixing in the mammalian intestine: a review. J. Comp. Physiol. B 178(6), 673–690 (2008)

    Article  Google Scholar 

  36. Lentle, R.G., Janssen, P.W., Goh, K., Chambers, P., Hulls, C.: Quantification of the effects of the volume and viscosity of gastric contents on antral and fundic activity in the rat stomach maintained ex vivo. Dig. Dis. Sci. 55, 3349–3360 (2010)

    Article  Google Scholar 

  37. Lin, A.S., Buist, M.L., Smith, N.P., Pullan, A.J.: Modelling slow wave activity in the small intestine. J. Theor. Biol. 242, 356–362 (2006)

    Article  MathSciNet  Google Scholar 

  38. Lindeburg, M.R.: Mechanical engineering reference manual for the PE exam. Professional Publications, Inc., Belmont (2006)

    Google Scholar 

  39. Meiss, R.A.: Mechanical properties of gastrointestinal smooth muscle. Compr. Physiol. 273–329 (1989)

    Google Scholar 

  40. Muller-Borer, B.J., Erdman, D.J., Buchanan, J.W.: Electrical coupling and impulse propagation in anatomically modeled ventricular tissue. IEEE Trans. Biomed. Eng. 41(5), 445–454 (1994)

    Article  Google Scholar 

  41. Nash, M.: Mechanics and material properties of the heart using an anatomically accurate mathematical mode. Thesis, The University of Auckland (1998)

    Google Scholar 

  42. Negi, L.: Strength of Materials. Tata McGraw-Hill Education, New Delhi (2007)

    Google Scholar 

  43. O’Grady, G., Du, P., Egbuji, J.U., Lammers, W.J.E.P., Wahab, A., Pullan, A.J., Cheng, L.K., Windsor, J.A.: A novel laparoscopic device for measuring gastrointestinal slow-wave activity. Surg. Endosc. 23(12), 2842–2848 (2009)

    Article  Google Scholar 

  44. Ozaki, H., Stevens, R.J., Blondfield, D.P., Publicover, N.G., Sanders, K.M.: Simultaneous measurement of membrane potential, cytosolic \(\text{Ca}^{2+}\), and tension in intact smooth muscles. Am. J. Physiol. Gastr. L 260(5):C917–C925 (1991)

    Google Scholar 

  45. Pullan, A.J., Buist, M.L., Cheng, L.K.: Mathematically modelling the electrical activity of the heart: from cell to body surface and back again. World scientific publishing Co Pte Ltd, Singapore (2005)

    Google Scholar 

  46. Rao, S.S., Singh, S.: Clinical utility of colonic and anorectal manometry in chronic constipation. J. Clin. Gastroenterol. 44(9), 579–609 (2010)

    Article  Google Scholar 

  47. Rembold, C., Murphy, R.: Latch-bridge model in smooth muscle: \([\text{Ca}^{2+}]_i\) can quantitatively predict stress. Am. J. Physiol. Cell Physiol. 259(2):C251–C257 (1990)

    Google Scholar 

  48. Sacks, M.: Biaxial mechanical evaluation of planar biological materials. J. Elasticity 61(1), 199–246 (2000)

    Article  MATH  Google Scholar 

  49. Sanders, K.M.: Regulation of smooth muscle excitation and contraction. Neurogastroenterol. Motil. 20, 39–53 (2008)

    Article  Google Scholar 

  50. Seerden, T.C., Lammers, W., Winter, D., De Man, J.G., Pelckmans, P.A.: Spatiotemporal electrical and motility mapping of distension-induced propagating oscillations in the murine small intestine. Am. J. Physiol. Gastr. L 289(6), G1043–G1051 (2005)

    Article  Google Scholar 

  51. Szurszewski, J.H.: A 100-year perspective on gastrointestinal motility. Am. J. Physiol. 274(3 Pt 1):G447–G453 (1998)

    Google Scholar 

  52. Szurszewski, J.H., Farrugia, G.: Carbon monoxide is an endogenous hyperpolarizing factor in the gastrointestinal tract. Neurogastroenterol. Motil. 16(Suppl 1):81–85 (2004)

    Google Scholar 

  53. VanBuren, P., Palmer, B.M.: Cooperative activation of the cardiac myofilament. Circulation 121(3), 351–353 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Du , P., Lim, J., Cheng, L.K. (2013). A Model of Electromechanical Coupling in the Small Intestine. In: Gefen, A. (eds) Multiscale Computer Modeling in Biomechanics and Biomedical Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2012_153

Download citation

  • DOI: https://doi.org/10.1007/8415_2012_153

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36481-5

  • Online ISBN: 978-3-642-36482-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics