Skip to main content

Niche Construction and Exploitation by Agrobacterium: How to Survive and Face Competition in Soil and Plant Habitats

  • Chapter
  • First Online:
Agrobacterium Biology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 418))

Abstract

Agrobacterium populations live in different habitats (bare soil, rhizosphere, host plants), and hence face different environmental constraints. They have evolved the capacity to exploit diverse resources and to escape plant defense and competition from other microbiota. By modifying the genome of their host, Agrobacterium populations exhibit the remarkable ability to construct and exploit the ecological niche of the plant tumors that they incite. This niche is characterized by the accumulation of specific, low molecular weight compounds termed opines that play a critical role in Agrobacterium ’s lifestyle. We present and discuss the functions, advantages, and costs associated with this niche construction and exploitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyoshi DE, Morris RO, Hinz R et al (1983) Cytokinin/auxin balance in crown gall tumors is regulated by specific loci in the T-DNA. Proc Natl Acad Sci USA 80:407–411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ampomah OY, Avetisyan A, Hansen E et al (2013) The thuEFGKAB operon of rhizobia and Agrobacterium tumefaciens codes for transport of trehalose, maltitol, and isomers of sucrose and their assimilation through the formation of their 3-keto derivatives. J Bacteriol 195:3797–3807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anet EFLJ (1957) Chemistry of non-enzymic browning. II. Some crystalline amino acid-deoxy-sugars. Austral J Chem 10:193–197

    CAS  Google Scholar 

  • Anet EFLJ, Reynolds TM (1957) Chemistry of non-enzymic browning. II. Reactions between amino acids, organic acids, and sugars in freeze-dried apricots and peaches. Austral J Chem 10:182–192

    CAS  Google Scholar 

  • Aoki S, Kawaoka A, Sekine M et al (1994) Sequence of the cellular T-DNA in the untransformed genome of Nicotiana glauca that is homologous to ORFs 13 and 14 of the Ri plasmid and analysis of its expression in genetic tumours of N. glauca x N. langsdorffii. Mol Gen Genet 243:706–710

    CAS  PubMed  Google Scholar 

  • Baek CH, Farrand SK, Lee KE et al (2003) Convergent evolution of Amadori opine catabolic systems in plasmids of Agrobacterium tumefaciens. J Bacteriol 185:513–524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baude J, Vial L, Villard C et al (2016) Coordinated regulation of species-specific hydroxycinnamic acid degradation and siderophore biosynthesis pathways in Agrobacterium fabrum. Appl Environ Microbiol 82:3515–3524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beauchamp CJ, Chilton WS, Dion P et al (1990) Fungal catabolism of crown gall opines. Appl Environ Microbiol 56:150–155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beck von Bodman S, Hayman GT, Farrand SK (1992) Opine catabolism and conjugal transfer of the nopaline Ti plasmid pTiC58 are coordinately regulated by a single repressor. Proc Natl Acad Sci USA 89:643–647

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bednárová M, Stanĕk M, Vancura V et al (1979) Microorganisms in the rhizosphere of wheat colonized by the fungus Gaeumannomyces graminis var. tritici. Folia Microbiol (Praha) 24:253–261

    Google Scholar 

  • Bélanger C, Canfield ML, Moore LW et al (1995) Genetic analysis of nonpathogenic Agrobacterium tumefaciens mutants arising in crown gall tumors. J Bacteriol 177:3752–3757

    PubMed  PubMed Central  Google Scholar 

  • Bhattacharya A, Sood P, Citovsky V (2010) The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol 11:705–719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brencic A, Eberhard A, Winans SC (2004) Signal quenching, detoxification and mineralization of vir gene-inducing phenolics by the VirH2 protein of Agrobacterium tumefaciens. Mol Microbiol 51:1103–1115

    CAS  PubMed  Google Scholar 

  • Bolton GW, Nester EW, Gordon MP (1986) Plant phenolic compounds induce expression of the Agrobacterium tumefaciens loci needed for virulence. Science 232:983–985

    CAS  PubMed  Google Scholar 

  • Boncompagni E, Osteras M, Poggi MC, le Rudulier D (1999) Occurrence of choline and glycine betaine uptake and metabolism in the family rhizobiaceae and their roles in osmoprotection. Appl Environ Microbiol 65:2072–2077

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouzar H, Chilton WS, Nesme X, Dessaux Y, Vaudequin V, Petit A, Jones JB, Hodge NC (1995) A new Agrobacterium strain isolated from aerial tumors on Ficus benjamina L. Appl Environ Microbiol 61:65–73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouzar H, Moore LW (1987) Isolation of different Agrobacterium biovars from a natural oak savanna and tallgrass prairie. Appl Environ Microbiol 53:717–721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouzar H, Ouadah D, Krimi K et al (1993) Correlative association between resident plasmids and the host chromosome in a diverse Agrobacterium soil population. Appl Environ Microbiol 59:1310–1317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K et al (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 48:91–95

    Google Scholar 

  • Burr TJ, Katz BH, Bishop AL (1987) Populations of Agrobacterium in vineyard and nonvineyard soils and grape roots in vineyards and nurseries. Plant Dis 71:617–620

    Google Scholar 

  • Cardarelli M, Mariotti D, Pomponi M et al (1987) Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype. Mol Gen Genet 209:475–480

    CAS  PubMed  Google Scholar 

  • Caretto S, Linsalata V, Colella G et al (2015) Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress. Int J Mol Sci 16:26378–26394. https://doi.org/10.3390/ijms161125967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlier A, Chevrot R, Dessaux Y et al (2004) The assimilation of gamma-butyrolactone in Agrobacterium tumefaciens C58 interferes with the accumulation of the N-acyl-homoserine lactone signal. Mol Plant Microbe Interact 17:951–957

    CAS  PubMed  Google Scholar 

  • Chen K, Otten L (2017) Natural Agrobacterium transformants: recent results and some theoretical considerations. Front Plant Sci 8:1600. https://doi.org/10.3389/fpls.2017.01600

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen L, Chen Y, Wood DW et al (2002) A new type IV secretion system promotes conjugal transfer in Agrobacterium tumefaciens. J Bacteriol 184:4838–4845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chevrot R, Rosen R, Haudecoeur E et al (2006) GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 103:7460–7464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chilton MD, Tepfer DA, Petit A et al (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295:432–434

    CAS  Google Scholar 

  • Chilton WS, Chilton MD (1984) Mannityl opine analogs allow isolation of catabolic pathway regulatory mutants. J Bacteriol 158:650–658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chilton WS, Petit A, Chilton MD, Dessaux Y (2001) Structure and characterization of the crown gall opines heliopine, vitopine and ridéopine. Phytochemistry 58:137–142

    CAS  PubMed  Google Scholar 

  • Chilton WS, Stomp AM, Beringue V et al (1995) The chrysopine family of amadori-type crown gall opines. Phytochemistry 40:619–628

    CAS  Google Scholar 

  • Christie PJ (2016) The mosaic Type IV secretion systems. EcoSal Plus 7(1). https://doi.org/10.1128/ecosalplus.esp-0020-2015

  • Close TJ, Tait RC, Kado CI (1985) Regulation of Ti plasmid virulence genes by a chromosomal locus of Agrobacterium tumefaciens. J Bacteriol 164:774–781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costantino P, Hooykaas PJJ, Dendulk-Ras H et al (1980) Tumor formation and rhizogenicity of Agrobacterium rhizogenes carrying Ti plasmids. Gene 11:79–87

    CAS  PubMed  Google Scholar 

  • Cushnie TTP, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:342–356

    Google Scholar 

  • Davioud E, Petit A, Tate ME et al (1988) Cucumopine—a new T-DNA-encoded opine in hairy root and crown gall. Phytochemistry 27:2429–2433

    CAS  Google Scholar 

  • Deeken R, Engelmann JC, Efetova M et al (2006) An integrated view of gene expression and solute profiles of Arabidopsis tumors: a genome-wide approach. Plant Cell 18:3617–3634

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Greve H, Dhaese P, Seurinck J et al (1982) Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene. J Mol Appl Genet 1:499–511

    PubMed  Google Scholar 

  • Dehio C (2005) Bartonella-host-cell interactions and vascular tumour formation. Nat Rev Microbiol 3:621–631

    CAS  PubMed  Google Scholar 

  • De Lajudie PM, Young JPW (2017) International Committee on Systematics of Prokaryotes Subcommittee for the Taxonomy of Rhizobium and Agrobacterium—minutes of the meeting, Budapest, 25 August 2016. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijsem.0.002144

    Article  PubMed  Google Scholar 

  • De Paolis A, Mauro ML, Pomponi M et al (1985) Localization of agropine-synthesizing functions in the TR region of the root-inducing plasmid of Agrobacterium rhizogenes 1855. Plasmid 13:1–7

    PubMed  Google Scholar 

  • Dessaux Y, Grandclément C, Faure D (2016) Engineering the rhizosphere. Trends Plant Sci 21:266–278

    CAS  PubMed  Google Scholar 

  • Dessaux Y, Guyon P, Farrand SK et al (1986a) Agrobacterium Ti and Ri plasmids specify enzymic lactonization of mannopine to agropine. J Gen Microbiol 132:2549–2559

    CAS  PubMed  Google Scholar 

  • Dessaux Y, Guyon P, Petit A et al (1988) Opine utilization by Agrobacterium spp.: octopine-type Ti plasmids encode two pathways for mannopinic acid degradation. J Bacteriol 170:2939–2946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dessaux Y, Petit A, Ellis JG et al (1989) Ti plasmid-controlled chromosome transfer in Agrobacterium tumefaciens. J Bacteriol 171:6363–6366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dessaux Y, Petit A, Farrand SK et al (1998) Opine and opine-like molecules involved in plant-Rhizobiaceaea interactions. In: Spaink HP, Kondorosi A, Hooykaas P (eds) The Rhizobiaceae. Kluwer Academic Publishers, Dordrecht, pp 173–197

    Google Scholar 

  • Dessaux Y, Petit A, Tempé J et al (1986b) Arginine catabolism in Agrobacterium strains: role of the Ti plasmid. J Bacteriol 166:44–50

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dessaux Y, Tempé J, Farrand SK (1987) Genetic analysis of mannityl opine catabolism in octopine-type Agrobacterium tumefaciens strain 15955. Mol Gen Genet 208:301–308

    CAS  PubMed  Google Scholar 

  • Dion P (1986) Utilization of octopine by marine bacteria isolated from mollusks. Can J Microbiol 32:959–963

    CAS  Google Scholar 

  • Douglas CJ, Staneloni RJ, Rubin RA et al (1985) Identification and genetic analysis of an Agrobacterium tumefaciens chromosomal virulence region. J Bacteriol 161:850–860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Durand-Tardif M, Broglie R, Slightom J (1985) Structure and expression of Ri T-DNA from Agrobacterium rhizogenes in Nicotiana tabacum. Organ and phenotypic specificity. J Mol Biol 186:557–564

    CAS  PubMed  Google Scholar 

  • Dunoyer P, Himber C, Voinnet O (2006) Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections. Nat Genet 38:258–263

    CAS  PubMed  Google Scholar 

  • Ellis JG, Kerr A, Tempé J et al (1979) Arginine catabolism: a new function of both octopine and nopaline Ti-plasmids of Agrobacterium. Mol Gen Genet 173:263–269

    CAS  PubMed  Google Scholar 

  • Ellis JG, Kerr A, Petit A et al (1982) Conjugal transfer of nopaline and agropine Ti-plasmids—the role of agrocinopines. Mol Gen Genet 186:269–274

    CAS  Google Scholar 

  • Ellis JG, Murphy PJ (1981) Four new opines from crown gall tumours—their detection and properties. Mol Gen Genet 181:36–43

    CAS  Google Scholar 

  • Ellis JG, Ryder MH, Tate ME (1984) Agrobacterium tumefaciens TR-DNA encodes a pathway for agropine biosynthesis. Mol Gen Genet 195:466–473

    CAS  Google Scholar 

  • El Sahili A, Li SZ, Lang J et al (2015) A pyranose-2-phosphate motif is responsible for both antibiotic import and quorum-sensing regulation in Agrobacterium tumefaciens. PLoS Pathog 11(8):e1005071. https://doi.org/10.1371/journal.ppat.1005071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engström P, Zambryski P, Van Montagu M et al (1987) Characterization of Agrobacterium tumefaciens virulence proteins induced by the plant factor acetosyringone. J Mol Biol 197:635–645

    PubMed  Google Scholar 

  • Farrand SK, Hwang I, Cook DM (1996) The tra region of the nopaline-type Ti plasmid is a chimera with elements related to the transfer systems of RSF1010, RP4, and F. J Bacteriol 178:4233–4247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flores-Mireles AL, Eberhard A, Winans SC (2012) Agrobacterium tumefaciens can obtain sulphur from an opine that is synthesized by octopine synthase using S-methylmethionine as a substrate. Mol Microbiol 84:845–856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fortin C, Nester EW, Dion P (1992) Growth inhibition and loss of virulence in cultures of Agrobacterium tumefaciens treated with acetosyringone. J Bacteriol 174:5676–5685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fortin C, Marquis C, Nester EW et al (1993) Dynamic structure of Agrobacterium tumefaciens Ti plasmids. J Bacteriol 175:4790–4799

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garg N, Manchanda G, Kumar A (2014) Bacterial quorum sensing: circuits and applications. Antonie Van Leeuwenhoek 105:289–305

    PubMed  Google Scholar 

  • Gelvin SB (2012) Traversing the Cell: Agrobacterium T-DNA’s journey to the host genome. Front Plant Sci 3:52. https://doi.org/10.3389/fpls.2012.00052

    Article  PubMed  PubMed Central  Google Scholar 

  • Gelvin SB (2017) Integration of Agrobacterium T-DNA into the plant genome. Annu Rev Genet. https://doi.org/10.1146/annurev-genet-120215-035320

    Article  PubMed  Google Scholar 

  • Genetello C, Van Larebeke N, Holsters M et al (1977) Ti plasmids of Agrobacterium as conjugative plasmids. Nature 265:561–563

    CAS  PubMed  Google Scholar 

  • Gohlke J, Deeken R (2014) Plant responses to Agrobacterium tumefaciens and crown gall development. Front Plant Sci 5:155. https://doi.org/10.3389/fpls.2014.00155

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomes NCM, Heuer H, Schönfeld J et al (2001) Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant Soil 232:167–180

    CAS  Google Scholar 

  • Gordon DM, Ryder MH, Heinrich K et al (1996) An experimental test of the rhizopine concept in Rhizobium meliloti. Appl Environ Microbiol 62:3991–3996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grandclément C, Tannières M, Moréra S et al (2016) Quorum quenching: Role in nature and applied developments. FEMS Microbiol Rev 40:86–116

    PubMed  Google Scholar 

  • Grieshaber M, Gäde G (1976) The biological role of octopine in the squid, Loligo vulgaris (Lamarck). J Comp Physiol 108:225–232

    CAS  Google Scholar 

  • Guyon P, Chilton MD, Petit A et al (1980) Agropine in “null-type” crown gall tumors: Evidence for generality of the opine concept. Proc Natl Acad Sci USA 77:2693–2697

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guyon P, Petit A, Tempé J et al (1993) Transformed plants producing opines specifically promote growth of opine-degrading agrobacteria. Mol Plant-Microbe Interact 6:92–98

    CAS  Google Scholar 

  • Haudecoeur E, Tannières M, Cirou A et al (2009) Different regulation and roles of lactonases AiiB and AttM in Agrobacterium tumefaciens C58. Mol Plant Microbe Interact 22:529–537

    CAS  PubMed  Google Scholar 

  • Hawes MC, Smith LY (1989) Requirement for chemotaxis in pathogenicity of Agrobacterium tumefaciens on roots of soil grown pea plants. J Bacteriol 171:5668–5671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hawes MC, Pueppke SG (1987) Correlation between binding of Agrobacterium tumefaciens by root cap cells and susceptibility of plants to crown gall. Plant Cell Rep 6:287–290

    CAS  PubMed  Google Scholar 

  • Hood EE, Chilton WS, Chilton MD et al (1986) T-DNA and opine synthetic loci in tumors incited by Agrobacterium tumefaciens A281 on soybean and alfalfa plants. J Bacteriol 168:1283–1290

    CAS  PubMed  PubMed Central  Google Scholar 

  • He F, Nair GR, Soto CS et al (2009) Molecular basis of ChvE function in sugar binding, sugar utilization, and virulence in Agrobacterium tumefaciens. J Bacteriol 191:5802–5813

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heinrich K, Gordon DM, Ryder MH et al (1999) A rhizopine strain of Sinorhizobium meliloti remains at a competitive nodulation advantage after an extended period in the soil. Soil Biol Biochem 31:1063–1065

    CAS  Google Scholar 

  • Hinsinger P, Bengough AG, VetterleinIain D et al (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152

    CAS  Google Scholar 

  • Holsters M, Silva B, Van Vliet F et al (1978) In vivo transfer of the Ti-plasmid of Agrobacterium tumefaciens to Escherichia coli. Mol Gen Genet 163:335–358

    CAS  PubMed  Google Scholar 

  • Hong SB, Hwang I, Dessaux Y (1997) A T-DNA gene required for agropine biosynthesis by transformed plants is functionally and evolutionarily related to a Ti plasmid gene required for catabolism of agropine by Agrobacterium strains. J Bacteriol 179:4831–4840

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hooykaas PJJ, Klapwijk PM, Nuti MP et al (1977) Transfer of the Agrobacterium tumefaciens Ti-plasmid to avirulent agrobacteria and to Rhizobium ex planta. J Gen Microbiol 98:477–484

    Google Scholar 

  • Hwang I, Li PL, Zhang L, Piper KR et al (1994) TraI, a LuxI homologue, is responsible for production of conjugation factor, the Ti plasmid N-acylhomoserine lactone autoinducer. Proc Natl Acad Sci USA 91:4639–4643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hynes MF, Simon R, Pühler A (1985) The development of plasmid-free strains of Agrobacterium tumefaciens by using incompatibility with a Rhizobium meliloti plasmid to eliminate pAtC58. Plasmid 13:99–105

    CAS  PubMed  Google Scholar 

  • Iacobellis NS, Devay JE (1986) Long-term storage of plant-pathogenic bacteria in sterile distilled water. Appl Environ Microbiol 52:388–389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Idnurm A, Bailey AM, Cairns TC et al (2017) A silver bullet in a golden age of functional genomics: the impact of Agrobacterium-mediated transformation of fungi. Fungal Biol Biotechnol 4:6. https://doi.org/10.1186/s40694-017-0035-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Inceoglu Ö, Al-Soud WA, Salles JF et al (2011) Comparative analysis of bacterial communities in a potato field as determined by pyrosequencing. PLoS One 63(2):460–470

    Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33

    CAS  Google Scholar 

  • Joos H, Inzé D, Caplan A (1983) Genetic analysis of T-DNA transcripts in nopaline crown galls. Cell 32:1057–1067

    CAS  PubMed  Google Scholar 

  • Jouanin L (1984) Restriction map of an agropine-type Ri plasmid and its homologies with Ti plasmids. Plasmid 12:91–102

    CAS  PubMed  Google Scholar 

  • Kanemoto RH, Powell AT, Akiyoshi DE et al (1989) Nucleotide sequence and analysis of the plant-inducible locus pinF from Agrobacterium tumefaciens. J Bacteriol 171:2506–2512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kefeli VI, Kalevitch MV, Borsari B (2003) Phenolic cycle in plants and environment. J Cell Mol Biol 2:13–18

    Google Scholar 

  • Kerr A, Manigault P, Tempé J (1977) Transfer of virulence in vivo and in vitro in Agrobacterium. Nature 265:560–561

    CAS  PubMed  Google Scholar 

  • Khan SR, Gaines J, Roop RM et al (2008) Broad-host-range expression vectors with tightly regulated promoters and their use to examine the influence of TraR and TraM expression on Ti plasmid quorum sensing. Appl Environ Microbiol 74:5053–5062

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khanaka H, Catteau M, Tailliez R (1981) Antibiotic sensitivity in Rhizobium and Agrobacterium. Zentralbl Bakt Mikrobiol Hygiene I Abt Orig C2:282–288

    Google Scholar 

  • Kim H, Farrand SK (1997) Characterization of the acc operon from the nopaline-type Ti plasmid pTiC58, which encodes utilization of agrocinopines A and B and susceptibility to agrocin 84. J Bacteriol 179:7559–7572

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Farrand SK (1988) Opine catabolic loci from Agrobacterium plasmids confer chemotaxis to their cognate substrates. Mol Plant Microbe Interact 11:131–143

    Google Scholar 

  • Kim KS, Chilton WS, Farrand SK (1996) A Ti plasmid-encoded enzyme required for degradation of mannopine is functionally homologous to the T-region-encoded enzyme required for synthesis of this opine in crown gall tumors. J Bacteriol 178:3285–3292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KS, Farrand SK (1996) Ti plasmid-encoded genes responsible for catabolism of the crown gall opine mannopine by Agrobacterium tumefaciens are homologs of the T-region genes responsible for synthesis of this opine by the plant tumor. J Bacteriol 178:3275–3284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klapwijk PM, Oudshoorn M, Schilperoort RA (1977) Inducible permease involved in the uptake of octopine, lysopine and octopinic acid by Agrobacterium tumefaciens strains carrying virulence-associated plasmids. J Gen Microbiol 102:1–11

    CAS  Google Scholar 

  • Klapwijk PM, Scheulderman T, Schilperoort RA (1978) Coordinated regulation of octopine degradation and conjugative transfer of Ti plasmids in Agrobacterium tumefaciens: evidence for a common regulatory gene and separate operons. J Bacteriol 136:775–785

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klein DT, Klein RM (1953) Transmittance of tumor-inducing ability to avirulent crown-gall and related bacteria. J Bacteriol 66:220–228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koncz C, De Greve H, André D et al (1983) The opine synthase genes carried by Ti plasmids contain all signals necessary for expression in plants. EMBO J 2:1597–1603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krimi Z, Petit A, Mougel C et al (2002) Seasonal fluctuations and long-term persistence of pathogenic populations of Agrobacterium spp. in soils. Appl Environ Microbiol 68:3358–3365

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzmanović N, Puławska J, Prokić A et al (2015) Agrobacterium arsenijevicii sp. nov., isolated from crown gall tumors on raspberry and cherry plum. Syst Appl Microbiol 38:373–378

    PubMed  Google Scholar 

  • Kyndt T, Quispe D, Zhai H et al (2015) The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop. Proc Natl Acad Sci USA 112:5844–5849

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lacroix B, Citovsky V (2013) The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation. Int J Dev Biol 57:467–481

    CAS  PubMed  Google Scholar 

  • Lacroix B, Citovsky V (2016) Transfer of DNA from bacteria to eukaryotes. MBio 7(4). pii: e00863-16

    Google Scholar 

  • Lang J, Gonzalez-Mula A, Taconnat L et al (2016) The plant GABA signaling downregulates horizontal transfer of the Agrobacterium tumefaciens virulence plasmid. New Phytol 210:974–983

    CAS  PubMed  Google Scholar 

  • Lang J, Planamente S, Mondy S et al (2013) Concerted transfer of the virulence Ti plasmid and companion At plasmid in the Agrobacterium tumefaciens-induced plant tumour. Mol Microbiol 90:1178–1189

    CAS  PubMed  Google Scholar 

  • Lang J, Vigouroux A, Planamente S et al (2014) Agrobacterium uses a unique ligand-binding mode for trapping opines and acquiring a competitive advantage in the niche construction on plant host. PLoS Pathog 10(10):e1004444

    PubMed  PubMed Central  Google Scholar 

  • Lassalle F, Muller D, Nesme X (2015) Ecological speciation in bacteria: reverse ecology approaches reveal the adaptive part of bacterial cladogenesis. Res Microbiol 166:729–741

    PubMed  Google Scholar 

  • Lattanzio V, Kroon PA, Quideau S et al (2008) Plant phenolics—secondary metabolites with diverse functions. In: Daayf F, Lattanzio V (eds) Recent advances in polyphenol research. Wiley, Oxford, pp 1–35

    Google Scholar 

  • Li PL, Hwang I, Miyagi H et al (1999) Essential components of the Ti plasmid trb system, a type IV macromolecular transporter. J Bacteriol 181:5033–5041

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li PL, Farrand SK (2000) The replicator of the nopaline-type Ti plasmid pTiC58 is a member of the repABC family and is influenced by the TraR-dependent quorum-sensing regulatory system. J Bacteriol 182:179–188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Llop P, Murillo J, Lastra B et al (2009) Recovery of nonpathogenic mutant bacteria from tumors caused by several Agrobacterium tumefaciens strains: a frequent event? Appl Environ Microbiol 75:6504–6514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma LS, Hachani A, Lin JS et al (2014) Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in planta. Cell Host Microbe 16:94–104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mansouri H, Petit A, Oger P et al (2002) Engineered rhizosphere: the trophic bias generated by opine-producing plants is independent of the opine type, the soil origin, and the plant species. Appl Environ Microbiol 68:2562–2566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marasco R, Lago CT, De Felice M (1995) Utilization of cellobiose and other beta-d-glucosides in Agrobacterium tumefaciens. Res Microbiol 146:485–492

    CAS  PubMed  Google Scholar 

  • Marty L, Vigouroux A, Aumont-Nicaise M et al (2016) Structural basis for high specificity of Amadori compound and mannopine opine binding in bacterial pathogens. J Biol Chem 291:22638–22649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matveeva TV, Bogomaz DI, Pavlova OA et al (2012) Horizontal gene transfer from genus Agrobacterium to the plant Linaria in nature. Mol Plant Microbe Interact 25:1542–1551

    CAS  PubMed  Google Scholar 

  • Merlo DJ, Nester EW (1977) Plasmids in avirulent strains of Agrobacterium. J Bacteriol 129:76–80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mhedbi-Hajri N, Yahiaoui N, Mondy S et al (2016) Transcriptome analysis revealed that a quorum sensing system regulates the transfer of the pAt megaplasmid in Agrobacterium tumefaciens. BMC Genomics 17:661

    PubMed  PubMed Central  Google Scholar 

  • Mondy S, Lenglet A, Beury-Cirou A et al (2014) An increasing opine carbon bias in artificial exudation systems and genetically modified plant rhizospheres leads to an increasing reshaping of bacterial populations. Mol Ecol 23:4846–4861

    PubMed  Google Scholar 

  • Montoya AL, Chilton MD, Gordon MP et al (1977) Octopine and nopaline metabolism in Agrobacterium tumefaciens and crown gall tumor cells: role of plasmid genes. J Bacteriol 129:101–107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moore LW, Chilton WS, Canfield ML (1997) Diversity of opines and opine-catabolizing bacteria isolated from naturally occurring crown gall tumors. Appl Environ Microbiol 63:201–207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moore L, Warren G, Strobel G (1979) Involvement of a plasmid in the hairy root disease of plants caused by Agrobacterium rhizogenes. Plasmid 2:617–626

    CAS  PubMed  Google Scholar 

  • Morton ER, Platt TG, Fuqua C et al (2014) Non-additive costs and interactions alter the competitive dynamics of co-occurring ecologically distinct plasmids. Proc Biol Sci 281(1779):20132173

    PubMed  PubMed Central  Google Scholar 

  • Mousavi SA, Österman J, Wahlberg N et al (2014) Phylogeny of the Rhizobium-Allorhizobium-Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol 37:208–215

    CAS  PubMed  Google Scholar 

  • Murphy PJ, Heycke N, Banfalvi Z et al (1987) Genes for the catabolism and synthesis of an opine-like compound in Rhizobium meliloti are closely linked and on the Sym plasmid. Proc Natl Acad Sci USA 84:493–497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nair GR, Lai X, Wise AA et al (2011) The integrity of the periplasmic domain of the VirA sensor kinase is critical for optimal coordination of the virulence signal response in Agrobacterium tumefaciens. J Bacteriol 193:1436–1448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nautiyal CS, Dion P (1990) Characterization of the opine-utilizing microflora associated with samples of soil and plants. Appl Environ Microbiol 56:2576–2579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nautiyal CS, Dion P, Chilton WS (1991) Mannopine and mannopinic acid as substrates for Arthrobacter sp. strain MBA209 and Pseudomonas putida NA513. J Bacteriol 173:2833–2841

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nester EW (2015) Agrobacterium: nature’s genetic engineer. Front Plant Sci 5:730

    PubMed  PubMed Central  Google Scholar 

  • Nobile S, Deshusses J (1986) Transport of gamma-butyrobetaine in an Agrobacterium species isolated from soil. J Bacteriol 168:780–784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nüsslein K, Tiedje JM (1998) Characterization of the dominant and rare members of a young Hawaiian soil bacterial community with small-subunit ribosomal DNA amplified from DNA fractionated on the basis of its guanine and cytosine composition. Appl Environ Microbiol 64:1283–1289

    PubMed  PubMed Central  Google Scholar 

  • Ooms G, Hooykaas PJ, Moolenaar G et al (1981) Grown gall plant tumors of abnormal morphology, induced by Agrobacterium tumefaciens carrying mutated octopine Ti plasmids; analysis of T-DNA functions. Gene 14:33–50

    CAS  PubMed  Google Scholar 

  • Ong SA, Peterson T, Neilands JB (1979) Agrobactin, a siderophore from Agrobacterium tumefaciens. J Biol Chem 254:1860–1865

    CAS  PubMed  Google Scholar 

  • Oger P, Petit A, Dessaux Y (1997) Genetically engineered plants producing opines alter their biological environment. Nat Biotechnol 15:369–372

    CAS  PubMed  Google Scholar 

  • Otten L, De Ruffray P (1994) Agrobacterium vitis nopaline Ti plasmid pTiAB4: relationship to other Ti plasmids and T-DNA structure. Mol Gen Genet 245:493–505

    CAS  PubMed  Google Scholar 

  • Otten L, Gérard JC, De Ruffray P (1993) The Ti plasmid from the wide host range Agrobacterium vitis strain Tm4: map and homology with other Ti plasmids. Plasmid 29:154–159

    CAS  PubMed  Google Scholar 

  • Parke D, Ornston LN, Nester EW (1987) Chemotaxis to plant phenolic inducers of virulence genes is constitutively expressed in the absence of the Ti plasmid in Agrobacterium tumefaciens. J Bacteriol 169:5336–5338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palanichelvam K, Oger P, Clough SJ et al (2000) A second T-region of the soybean-supervirulent chrysopine-type Ti plasmid pTiChry5, and construction of a fully disarmed vir helper plasmid. Mol Plant Microbe Interact 13:1081–1091

    CAS  PubMed  Google Scholar 

  • Palumbo JD, Kado CI, Phillips DA (1998) An isoflavonoid-inducible efflux pump in Agrobacterium tumefaciens is involved in competitive colonization of roots. J Bacteriol 180:3107–3113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 14:576–588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Penyalver R, Oger P, López MM et al (2001) Iron-binding compounds from Agrobacterium spp.: biological control strain Agrobacterium rhizogenes K84 produces a hydroxamate siderophore. Appl Environ Microbiol 67:654–664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petit A, David C, Dahl G (1983) Further extension of the opine concept: plasmids in Agrobacterium rhizogenes cooperate for opine degradation. Mol Gen Genet 190:204–214

    CAS  Google Scholar 

  • Petit A, Tempé J (1985) The function of T-DNA in nature. In: Van Vloten-Doting L, Groot GSP, Hall TC (eds) Molecular form and function of the plant genome. Plenum Press, New York/London, pp 625–636

    Google Scholar 

  • Petit A, Tempé J, Kerr A et al (1978) Substrate induction of conjugative activity of Agrobacterium tumefaciens Ti plasmids. Nature 271:570–572

    CAS  Google Scholar 

  • Pionnat S, Keller H, Héricher D et al (1999) Ti plasmids from Agrobacterium characterize rootstock clones that initiated a spread of crown gall disease in Mediterranean countries. Appl Environ Microbiol 65:4197–4206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piper KR, Beck von Bodman S, Farrand SK (1993) Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 362:448–450

    CAS  PubMed  Google Scholar 

  • Piper KR, Beck Von Bodman S, Hwang I (1999) Hierarchical gene regulatory systems arising from fortuitous gene associations: controlling quorum sensing by the opine regulon in Agrobacterium. Mol Microbiol 32:1077–1089

    CAS  PubMed  Google Scholar 

  • Pitzschke A, Hirt H (2010) New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. EMBO J 29:1021–1032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Platt TG, Bever JD, Fuqua C (2012) A cooperative virulence plasmid imposes a high fitness cost under conditions that induce pathogenesis. Proc Biol Sci 279:1691–1699

    CAS  PubMed  Google Scholar 

  • Powell GK, Morris RO (1986) Nucleotide sequence and expression of a Pseudomonas savastanoi cytokinin biosynthetic gene: homology with Agrobacterium tumefaciens tmr and tzs loci. Nucleic Acids Res 14:2555–2565

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin Y, Su S, Farrand SK (2007) Molecular basis of transcriptional antiactivation. TraM disrupts the TraR-DNA complex through stepwise interactions. J Biol Chem 282:19979–19991

    CAS  PubMed  Google Scholar 

  • Ream LW, Gordon MP, Nester EW (1983) Multiple mutations in the T region of the Agrobacterium tumefaciens tumor-inducing plasmid. Proc Natl Acad Sci USA 80:1660–1664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riley PS, Weaver RE (1977) Comparison of thirty-seven strains of Vd-3 bacteria with Agrobacterium radiobacter: morphological and physiological observations. J Clin Microbiol 5:172–177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rondon MR, Ballering KS, Thomas MG (2004) Identification and analysis of a siderophore biosynthetic gene cluster from Agrobacterium tumefaciens C58. Microbiology 150:3857–3866

    CAS  PubMed  Google Scholar 

  • Rong LJ, Karcher SJ, Gelvin SB (1991) Genetic and molecular analyses of picA, a plant-inducible locus on the Agrobacterium tumefaciens chromosome. J Bacteriol 173:5110–5120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg S, Huguet T (1984) The pAtC58 plasmid of Agrobacterium tumefaciens is not essential for tumor induction. Mol Gen Genet 196:533–536

    CAS  Google Scholar 

  • Rossbach S, Rasul G, Schneider M et al (1995) Structural and functional conservation of the rhizopine catabolism (moc) locus is limited to selected Rhizobium meliloti strains and unrelated to their geographical origin. Mol Plant Microbe Interact 8:549–559

    CAS  PubMed  Google Scholar 

  • Rüger HJ, Höfle MG (1992) Marine star-shaped-aggregate-forming bacteria: Agrobacterium atlanticum sp. nov.; Agrobacterium meteori sp. nov.; Agrobacterium ferrugineum sp. nov., nom. rev.; Agrobacterium gelatinovorum sp. nov., nom. rev.; and Agrobacterium stellulatum sp. nov., nom. rev. Int J Syst Bacteriol 42:133–143

    PubMed  Google Scholar 

  • Ryu CM (2015) Against friend and foe: type 6 effectors in plant-associated bacteria. J Microbiol 53:201–208

    CAS  PubMed  Google Scholar 

  • Saint CP, Wexler M, Murphy PJ et al (1993) Characterization of genes for synthesis and catabolism of a new rhizopine induced in nodules by Rhizobium meliloti Rm220-3: extension of the rhizopine concept. J Bacteriol 175:5205–5215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Cañizares C, Jorrín B et al (2017) Understanding the holobiont: the interdependence of plants and their microbiome. Curr Opin Microbiol 38:188–196

    PubMed  Google Scholar 

  • Savka MA, Black RC, Binns AN et al (1996) Translocation and exudation of tumor metabolites in crown galled plants. Mol Plant Microbe Interact 9:310–313

    CAS  PubMed  Google Scholar 

  • Savka MA, Dessaux Y, McSpadden-Gardener BB et al (2013) The “biased rhizosphere” concept and advances in the omics era to study bacterial competitiveness and persistence in the phytosphere. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, vol 2. Wiley, Hoboken, pp 1147–1161

    Google Scholar 

  • Savka MA, Dessaux Y, Oger P et al (2002) Engineering bacterial competitiveness and persistence in the phytosphere. Mol Plant Microbe Interact 15:866–874

    CAS  PubMed  Google Scholar 

  • Savka MA, Farrand SK (1992) Mannityl opine accumulation and exudation by transgenic tobacco. Plant Physiol 98:784–789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Savka MA, Farrand SK (1997) Modification of rhizobacterial populations by engineering bacterium utilization of a novel plant-produced resource. Nat Biotechnol 15:363–368

    CAS  PubMed  Google Scholar 

  • Schell J, Van Montagu M, De Beuckeleer M et al (1979) Interactions and DNA transfer between Agrobacterium tumefaciens, the Ti-plasmid and the plant host. Proc R Soc Lond B Biol Sci 204:251–266

    CAS  PubMed  Google Scholar 

  • Schröder G, Schuelein R, Quebatte M, Dehio C (2011) Conjugative DNA transfer into human cells by the VirB/VirD4 type IV secretion system of the bacterial pathogen Bartonella henselae. Proc Natl Acad Sci USA 108:14643–14648

    PubMed  PubMed Central  Google Scholar 

  • Schroth MN, Weinhold AR, McCain AH (1971) Biology and control of Agrobacterium tumefaciens. Hilgardia 40:537–552

    CAS  Google Scholar 

  • Scott DB, Wilson R, Shaw GJ (1987) Biosynthesis and degradation of nodule-specific Rhizobium loti compounds in Lotus nodules. J Bacteriol 169:278–282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw CH (1991) Swimming against the tide: chemotaxis in Agrobacterium. Bioessays 13:25–29

    CAS  PubMed  Google Scholar 

  • Shaw GJ, Wilson RD, Lane GA (1986) Structure of rhizolotine, a novel opine-like metabolite from Lotus tenuis nodules. J Chem Soc Chem Commun 2:180–181

    Google Scholar 

  • Slightom JL, Durand-Tardif M (1986) Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid. Identification of open reading frames. J Biol Chem 261:108–121

    CAS  PubMed  Google Scholar 

  • Smith LT, Smith GM, Madkour MA (1990) Osmoregulation in Agrobacterium tumefaciens: accumulation of a novel disaccharide is controlled by osmotic strength and glycine betaine. J Bacteriol 172:6849–6855

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soedarjo M, Hemscheidt TK, Borthakur D (1994) Mimosine, a toxin present in leguminous trees (Leucaena spp.), induces a mimosine-degrading enzyme activity in some Rhizobium strains. Appl Environ Microbiol 60:4268–4272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soedarjo M, Borthakur D (1998) Mimosine, a toxin produced by the tree-legume Leucaena provides a nodulation competition advantage to mimosine-degrading Rhizobium strains. Soil Biol Biochem 30:1605–1613

    CAS  Google Scholar 

  • Spena A, Schmülling T, Koncz C et al (1987) Independent and synergistic activity of rolA, B and C loci in stimulating abnormal growth in plants. EMBO J 6:3891–3899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Subramoni S, Nathoo N, Klimov E (2014) Agrobacterium tumefaciens responses to plant-derived signaling molecules. Front Plant Sci 5:322

    PubMed  PubMed Central  Google Scholar 

  • Sukanya NK, Vaidyanathan CS (1964) Aminotransferases of Agrobacterium tumefaciens: transamination between tryptophan and phenylpyruvate. Biochem J 92:594–598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Süle S (1978) Biological control of crown gall by a peat cultured antagonist. Phytopath Z 91:273–275

    Google Scholar 

  • Suzuki K, Yamashita I, Tanaka N (2002) Tobacco plants were transformed by Agrobacterium rhizogenes infection during their evolution. Plant J 32:775–787

    CAS  PubMed  Google Scholar 

  • Tannières M, Lang J, Barnier C et al (2017) Quorum-quenching limits quorum-sensing exploitation by signal-negative invaders. Sci Rep 7:40126

    PubMed  PubMed Central  Google Scholar 

  • Teixeira LC, Peixoto RS, Cury JC et al (2010) Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. ISME J 4(2010):989–1001

    PubMed  Google Scholar 

  • Tempé J, Petit A (1983) La piste des opines. In: Pühler A (ed) Molecular genetics of the bacteria-plant interaction. Springer, Berlin-Heidelberg, pp 14–32

    Google Scholar 

  • Tennigkeit J, Matzura H (1991) Nucleotide sequence analysis of a chloramphenicol-resistance determinant from Agrobacterium tumefaciens and identification of its gene product. Gene 8:113–116

    Google Scholar 

  • Tepfer D, Goldmann A, Pamboukdjian N et al (1988) A plasmid of Rhizobium meliloti 41 encodes catabolism of two compounds from root exudate of Calystegium sepium. J Bacteriol 170:1153–1161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tepfer DA, Tempé J (1981) Production d’agropine par des racines formées sous l’action d’Agrobacterium rhizogenes souche A4. C R Hebd Séances Acad Sci Ser III 292:153–156

    CAS  Google Scholar 

  • Teyssier-Cuvelle S, Mougel C, Nesme X (1999) Direct conjugal transfers of Ti plasmid to soil microflora. Mol Ecol 8:1273–1284

    CAS  PubMed  Google Scholar 

  • Thoai NV, Robin Y (1959) Métabolisme des dérivés guanidylés: VIII. Biosynthèse de l’octopine et répartition de l’enzyme l’opérant chez les invertebrés. Biochimica Biophysica Acta 35:446–453

    Google Scholar 

  • Thomashow MF, Karlinsey JE, Marks JR et al (1987) Identification of a new virulence locus in Agrobacterium tumefaciens that affects polysaccharide composition and plant cell attachment. J Bacteriol 169:3209–3216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tremblay G, Gagliardo R, Chilton WS et al (1987) Diversity among opine-utilizing bacteria: identification of coryneform isolates. Appl Environ Microbiol 53:1519–1524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quispe-Huamanquispe DG, Gheysen G, Kreuze JF (2017) Horizontal gene transfer contributes to plant evolution: the case of Agrobacterium T-DNAs. Front Plant Sci 8:2015

    Google Scholar 

  • Vain P (2007) Thirty years of plant transformation technology development. Plant Biotechnol J 5:221–229

    CAS  PubMed  Google Scholar 

  • Van Larebeke N, Engler G, Holsters M et al (1974) Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature 252:169–170

    PubMed  Google Scholar 

  • van Veen RJM, den Dulk-Ras H, Schilperoort RA et al (1989) Ti plasmid containing Rhizobium meliloti are non-tumorigenic on plants, despite proper virulence gene induction and T-strand formation. Arch Microbiol 153:85–89

    Google Scholar 

  • Vaudequin-Dransart V, Petit A, Poncet C et al (1995) Novel Ti plasmids in Agrobacterium strains isolated from fig tree and chrysanthemum tumors and their opinelike molecules. Mol Plant Microbe Interact 8:311–321

    CAS  PubMed  Google Scholar 

  • Vaudequin-Dransart V, Petit A, Chilton WS et al (1998) The cryptic plasmid of Agrobacterium tumefaciens cointegrates with the Ti plasmid and cooperates for opine degradation. Mol Plant Microbe Interact 11:583–591

    CAS  Google Scholar 

  • Vigouroux A, El Sahili A, Lang J et al (2017) Structural basis for high specificity of octopine binding to exploit the constructed octopine-niche on plant host. Sci Rep 7:18033

    PubMed  PubMed Central  Google Scholar 

  • Watson B, Currier TC, Gordon MP, Chilton MD, Nester EW (1975) Plasmid required for virulence of Agrobacterium tumefaciens. J Bacteriol 123:255–264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wendt T, Doohan F, Mullins E (2012) Production of Phytophthora infestans-resistant potato (Solanum tuberosum) utilising Ensifer adhaerens OV14. Transgenic Res 21:567–578

    CAS  PubMed  Google Scholar 

  • Wexler M, Gordon D, Murphy PJ (1995) The distribution of inositol rhizopine genes in Rhizobium populations. Soil Biol Biochem 27:531–537

    CAS  Google Scholar 

  • White FF, Garfinkel DJ, Huffman GA et al (1983) Sequences homologous to Agrobacterium rhizogenes T-DNA in the genomes of uninfected plants. Nature 301:348–350

    CAS  Google Scholar 

  • White FF, Ghidossi G, Gordon MP et al (1982) Tumor induction by Agrobacterium rhizogenes involves the transfer of plasmid DNA to the plant genome. Proc Natl Acad Sci USA 79:3193–3197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wichelecki DJ, Vetting MW, Chou L et al (2015) ATP-binding cassette (ABC) transport system solute-binding protein-guided identification of novel d-altritol and galactitol catabolic pathways in Agrobacterium tumefaciens C58. J Biol Chem 290:28963–28976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willmitzer L, Sanchez-Serramo J, Duschelder E et al (1982) DNA from Agrobacterium rhizogenes is transferred to and expressed in axemic hairy root plant tissue. Mol Gen Genet 186:16–22

    CAS  Google Scholar 

  • Wilson M, Savka MA, Hwang I et al (1995) Altered epiphytic colonization of mannityl opine-producing transgenic tobacco plants by a mannityl opine-catabolizing strain of Pseudomonas syringae. Appl Environ Microbiol 61:2151–2158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu HY, Chung PC, Shih HW et al (2008) Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens. J Bacteriol 190:2841–2850

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada T, Palm CJ, Brooks B et al (1985) Nucleotide sequences of the Pseudomonas savastanoi indoleacetic acid genes show homology with Agrobacterium tumefaciens T-DNA. Proc Natl Acad Sci USA 82:6522–6526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zanker H, Lurz G, Langridge U et al (1994) Octopine and nopaline oxidases from Ti plasmids of Agrobacterium tumefaciens: molecular analysis, relationship, and functional characterization. J Bacteriol 176:4511–4517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zanker H, von Lintig J, Schröder J (1992) Opine transport genes in the octopine (occ) and nopaline (noc) catabolic regions in Ti plasmids of Agrobacterium tumefaciens. J Bacteriol 174:841–849

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zechner EL, de la Cruz F, Eisenbrandt R et al (2001) Conjugative-DNA transfer processes. In: Thomas CM (ed) The horizontal gene pool: bacterial plasmids and gene spread. Harwood Academic Publishers, Amsterdam, p 87

    Google Scholar 

  • Zhang L, Murphy PJ, Kerr A et al (1993) Agrobacterium conjugation and gene regulation by N-acyl-l-homoserine lactones. Nature 362:446–448

    CAS  PubMed  Google Scholar 

  • Zhao J, Binns AN (2014) GxySBA ABC transporter of Agrobacterium tumefaciens and its role in sugar utilization and vir gene expression. J Bacteriol 196:3150–3159

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Dessaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dessaux, Y., Faure, D. (2018). Niche Construction and Exploitation by Agrobacterium: How to Survive and Face Competition in Soil and Plant Habitats. In: Gelvin, S. (eds) Agrobacterium Biology. Current Topics in Microbiology and Immunology, vol 418. Springer, Cham. https://doi.org/10.1007/82_2018_83

Download citation

Publish with us

Policies and ethics