Skip to main content

Coping with High Temperature: A Unique Regulation in A. tumefaciens

  • Chapter
  • First Online:
Agrobacterium Biology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 418))

Abstract

Elevation of temperature is a frequent and considerable stress for mesophilic bacteria. Therefore, several molecular mechanisms have evolved to cope with high temperature. We have been studying the response of Agrobacterium tumefaciens to temperature stress, focusing on two aspects: the heat-shock response and the temperature-dependent regulation of methionine biosynthesis. The results indicate that the molecular mechanisms involved in A. tumefaciens control of growth at high temperature are unique and we are still missing important information essential for understanding how these bacteria cope with temperature stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arsene F, Tomoyasu T, Bukau B (2000) The heat shock response of Escherichia coli. Int J Food Microbiol 55:3–9

    Article  CAS  Google Scholar 

  • Biran D, Brot N, Weissbach H, Ron EZ (1995) Heat shock-dependent transcriptional activation of the metA gene of Escherichia coli. J Bacteriol 177:1374–1379

    Article  CAS  Google Scholar 

  • Biran D, Gur E, Gollan L, Ron EZ (2000) Control of methionine biosynthesis in Escherichia coli by proteolysis. Mol Microbiol 37:1436–1443

    Article  CAS  Google Scholar 

  • Boshoff A, Stephens LL, Blatch GL (2008) The Agrobacterium tumefaciens DnaK: ATPase cycle, oligomeric state and chaperone properties. Int J Biochem Cell B 40:804–812

    Article  CAS  Google Scholar 

  • Chilton MD, Currier TC, Farrand SK, Bendich AJ, Gordon MP, Nester EW (1974) Agrobacterium-tumefaciens DNA and Ps8 bacteriophage DNA not detected in crown gall tumors. Proc Natl Acad Sci USA 71:3672–3676

    Article  CAS  Google Scholar 

  • Christians ES, Yan LJ, Benjamin IJ (2002) Heat shock factor 1 and heat shock proteins: critical partners in protection against acute cell injury. Crit Care Med 30:S43–S50

    Article  CAS  Google Scholar 

  • Craig EA (1985) The heat shock response. CRC Crit Rev Biochem 18:239–280

    Article  CAS  Google Scholar 

  • Erickson JW, Vaughn V, Walter WA, Neidhardt FC, Gross CA (1987) Regulation of the promoters and transcripts of rpoH, the Escherichia coli heat shock regulatory gene. Genes Develop 1:419–432

    Article  CAS  Google Scholar 

  • Ghazaei C (2017) Role and mechanism of the Hsp70 molecular chaperone machines in bacterial pathogens. J Med Microbiol 66:259–265

    Article  Google Scholar 

  • Grossman AD, Erickson JW, Gross CA (1984) The htpR gene product of E. coli is a sigma factor for heat-shock promoters. Cell 38:383–390

    Article  CAS  Google Scholar 

  • Guan N, Li J, Shin HD, Du G, Chen J, Liu L (2017) Microbial response to environmental stresses: from fundamental mechanisms to practical applications. Appl Microbiol Biotechnol 101:3991–4008

    Article  CAS  Google Scholar 

  • Guisbert E, Herman C, Lu CZ, Gross CA (2004) A chaperone network controls the heat shock response in E. coli. Genes Develop 18:2812–2821

    Article  CAS  Google Scholar 

  • Gur E, Biran D, Gazit E, Ron EZ (2002) In vivo aggregation of a single enzyme limits growth of Escherichia coli at elevated temperatures. Mol Microbiol 46:1391–1397

    Article  CAS  Google Scholar 

  • Gur E, Biran D, Ron EZ (2011) Regulated proteolysis in Gram-negative bacteria–how and when? Nature Rev Microbiol 9:839–848

    Article  CAS  Google Scholar 

  • Hecker M, Schumann W, Volker U (1996) Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol 19:417–428

    Article  CAS  Google Scholar 

  • Herman C, Thevenet D, D’Ari R, Bouloc P (1995) Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by HflB. Proc Natl Acad Sci USA 92:3516–3520

    Article  CAS  Google Scholar 

  • Hwang HH, Liu YT, Huang SC, Tung CY, Huang FC, Tsai YL, Cheng TF, Lai EM (2015) Overexpression of the HspL promotes Agrobacterium tumefaciens virulence in Arabidopsis under heat shock conditions. Phytopathol 105:160–168

    Article  CAS  Google Scholar 

  • Inbar O, Ron EZ (1993) Induction of cadmium tolerance in Escherichia coli K-12. FEMS Microbiol Lett 113:197–200

    Article  CAS  Google Scholar 

  • Katz C, Rasouly A, Gur E, Shenhar Y, Biran D, Ron EZ (2009) Temperature-dependent proteolysis as a control element in Escherichia coli metabolism. Res Microbiol 160:684–686

    Article  CAS  Google Scholar 

  • Li Z, Menoret A, Srivastava P (2002) Roles of heat-shock proteins in antigen presentation and cross-presentation. Curr Opin Immunol 14:45–51

    Article  CAS  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Ann Rev. Biochem 55:1151–1191

    Article  CAS  Google Scholar 

  • Mathew A, Morimoto RI (1998) Role of the heat-shock response in the life and death of proteins. Ann NY Acad Sci 851:99–111

    Article  CAS  Google Scholar 

  • Mathew A, Shi Y, Jolly C, Morimoto RI (2000) Analysis of the mammalian heat-shock response. Inducible gene expression and heat-shock factor activity. Meth Mol Biol 99:217–255

    CAS  Google Scholar 

  • Michaud S, Marin R, Tanguay RM (1997) Regulation of heat shock gene induction and expression during Drosophila development. Cell Mol Life Sci 53:104–113

    Article  CAS  Google Scholar 

  • Mujacic M, Baneyx F (2006) Regulation of Escherichia coli hchA, a stress-inducible gene encoding molecular chaperone Hsp31. Mol Microbiol 60:1576–1589

    Article  CAS  Google Scholar 

  • Nakahigashi K, Yanagi H, Yura T (1995) Isolation and sequence analysis of rpoH genes encoding sigma 32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation. Nucl Acids Res 23:4383–4390

    CAS  PubMed  Google Scholar 

  • Nakahigashi K, Yanagi H, Yura T (1998) Regulatory conservation and divergence of sigma32 homologs from Gram-negative bacteria: Serratia marcescens, Proteus mirabilis, Pseudomonas aeruginosa, and Agrobacterium tumefaciens. J Bacteriol 180:2402–2408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakahigashi K, Ron EZ, Yanagi H, Yura T (1999) Differential and independent roles of a sigma(32) homolog (RpoH) and an HrcA repressor in the heat shock response of Agrobacterium tumefaciens. J Bacteriol 181:7509–7515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakahigashi K, Yanagi H, Yura T (2001) DnaK chaperone-mediated control of activity of a sigma(32) homolog (RpoH) plays a major role in the heat shock response of Agrobacterium tumefaciens. J Bacteriol 183:5302–5310

    Article  CAS  Google Scholar 

  • Neidhardt FC, Phillips TA, VanBogelen RA, Smith MW, Georgalis Y, Subramanian AR (1981) Identity of the B56.5 protein, the A-protein, and the groE gene product of Escherichia coli. J Bacteriol 145:513–520

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  PubMed Central  Google Scholar 

  • Ramsay N (1988) A mutant in a major heat shock protein of Escherichia coli continues to show inducible thermotolerance. Mol Gen Genet 211:332–334

    Article  CAS  Google Scholar 

  • Rasouly A, Shenhar Y, Ron EZ (2007) Thermoregulation of Escherichia coli hchA transcript stability. J Bacteriol 189:5779–5781

    Article  CAS  Google Scholar 

  • Ron EZ (1975) Growth rate of Enterobacteriaceae at elevated temperatures: limitation by methionine. J Bacteriol 124:243–246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ron EZ (2009) An update on the bacterial stress response. Res Microbiol 160:243–244

    Article  Google Scholar 

  • Ron EZ, Davis BD (1971) Growth rate of Escherichia coli at elevated temperatures: limitation by methionine. J Bacteriol 107:391–396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ron EZ, Shani M (1971) Growth rate of Escherichia coli at elevated temperatures: reversible inhibition of homoserine trans-succinylase. J Bacteriol 107:397–400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ron EZ, Alajem S, Biran D, Grossman N (1990) Adaptation of Escherichia coli to elevated temperatures: the metA gene product is a heat shock protein. Antonie Van Leeuwenhoek 58:169–174

    Article  CAS  Google Scholar 

  • Rose JK, Rankin CH (2001) Analyses of habituation in Caenorhabditis elegans. Learn Mem 8:63–69

    Article  CAS  Google Scholar 

  • Rosen R, Ron EZ (2002) Proteome analysis in the study of the bacterial heat-shock response. Mass Spectrom Rev 21:244–265

    Article  CAS  Google Scholar 

  • Rosen R, Ron EZ (2011) Proteomics of a plant pathogen: Agrobacterium tumefaciens. Proteomics 11:3134–3142

    Article  CAS  Google Scholar 

  • Rosen R, Buttner K, Schmid R, Hecker M, Ron EZ (2001) Stress-induced proteins of Agrobacterium tumefaciens. FEMS Microbiol Ecol 35:277–285

    Article  CAS  Google Scholar 

  • Rosen R, Buttner K, Becher D, Nakahigashi K, Yura T, Hecker M, Ron EZ (2002) Heat shock proteome of Agrobacterium tumefaciens: evidence for new control systems. J Bacteriol 184:1772–1778

    Article  CAS  Google Scholar 

  • Rotem O, Biran D, Ron EZ (2013) Methionine biosynthesis in Agrobacterium tumefaciens: study of the first enzyme. Res Microbiol 164:12–16

    Article  CAS  Google Scholar 

  • Schumann W (2003) The Bacillus subtilis heat shock stimulon. Cell Stress Chaperones 8:207–217

    Article  CAS  Google Scholar 

  • Schumann W (2016) Regulation of bacterial heat shock stimulons. Cell Stress Chaperones 21:959–968

    Article  CAS  Google Scholar 

  • Segal G, Ron EZ (1993) Heat shock transcription of the groESL operon of Agrobacterium tumefaciens may involve a hairpin-loop structure. J Bacteriol 175:3083–3088

    Article  CAS  Google Scholar 

  • Segal G, Ron EZ (1995a) The dnaKJ operon of Agrobacterium tumefaciens: transcriptional analysis and evidence for a new heat shock promoter. J Bacteriol 177:5952–5958

    Article  CAS  Google Scholar 

  • Segal G, Ron EZ (1995b) The groESL operon of Agrobacterium tumefaciens: evidence for heat shock-dependent mRNA cleavage. J Bacteriol 177:750–757

    Article  CAS  Google Scholar 

  • Segal G, Ron EZ (1996a) Heat shock activation of the groESL operon of Agrobacterium tumefaciens and the regulatory roles of the inverted repeat. J Bacteriol 178:3634–3640

    Article  CAS  Google Scholar 

  • Segal G, Ron EZ (1996b) Regulation and organization of the groE and dnaK operons in Eubacteria. FEMS Microbiol Lett 138:1–10

    Article  CAS  Google Scholar 

  • Segal G, Ron EZ (1998) Regulation of heat-shock response in bacteria. Ann NY Acad Sci 851:147–151

    Article  CAS  Google Scholar 

  • Shenhar Y, Rasouly A, Biran D, Ron EZ (2009) Adaptation of Escherichia coli to elevated temperatures involves a change in stability of heat shock gene transcripts. Environ Microbiol 11:2989–2997

    Article  CAS  Google Scholar 

  • Srivastava P (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nature Rev Immunol 2:185–194

    Article  CAS  Google Scholar 

  • Straus D, Walter W, Gross CA (1990) DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32. Genes Developt 4:2202–2209

    Article  CAS  Google Scholar 

  • Su SC, Stephens BB, Alexandre G, Farrand SK (2006) Lon protease of the alpha-proteobacterium Agrobacterium tumefaciens is required for normal growth, cellular morphology and full virulence. Microbiol-Sgm 152:1197–1207

    Article  CAS  Google Scholar 

  • Taylor WE, Straus DB, Grossman AD, Burton ZF, Gross CA, Burgess RR (1984) Transcription from a heat-inducible promoter causes heat shock regulation of the sigma subunit of E. coli RNA polymerase. Cell 38:371–381

    Article  CAS  Google Scholar 

  • Tomoyasu T, Gamer J, Bukau B, Kanemori M, Mori H, Rutman AJ, Oppenheim AB, Yura T, Yamanaka K, Niki H et al (1995) Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32. EMBO J 14:2551–2560

    Article  CAS  Google Scholar 

  • Tomoyasu T, Ogura T, Tatsuta T, Bukau B (1998) Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Mol Microbiol 30:567–581

    Article  CAS  Google Scholar 

  • Tsai YL, Wang MH, Gao C, Kluesener S, Baron C, Narberhaus F, Lai EM (2009) Small heat-shock protein HspL is induced by VirB protein(s) and promotes VirB/D4-mediated DNA transfer in Agrobacterium tumefaciens. Microbiol-Sgm 155:3270–3280

    Article  CAS  Google Scholar 

  • Tsai YL, Chiang YR, Narberhaus F, Baron C, Lai EM (2010) The Small heat-shock protein HspL is a VirB8 chaperone promoting Type IV secretion-mediated DNA transfer. J Biol Chem 285:19757–19766

    Article  CAS  Google Scholar 

  • Tsai YL, Chiang YR, Wu CF, Narberhaus F, Lai EM (2012) One out of Four: HspL but no other small heat shock protein of Agrobacterium tumefaciens acts as efficient virulence-promoting VirB8 chaperone. PLoS ONE 7:e49685

    Article  CAS  Google Scholar 

  • Yura T, Nakahigashi K (1999) Regulation of the heat-shock response. Curr Opin Microbiol 2:153–158

    Article  CAS  Google Scholar 

  • Yura T, Kawasaki Y, Kusukawa N, Nagai H, Wada C, Yano R (1990) Roles and regulation of the heat shock sigma factor sigma 32 in Escherichia coli. Antonie Van Leeuwenhoek 58:187–190

    Article  CAS  Google Scholar 

  • Zhou YN, Kusukawa N, Erickson JW, Gross CA, Yura T (1988) Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor sigma 32. J Bacteriol 170:3640–3649

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliora Z. Ron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Biran, D., Rotem, O., Rosen, R., Ron, E.Z. (2018). Coping with High Temperature: A Unique Regulation in A. tumefaciens. In: Gelvin, S. (eds) Agrobacterium Biology. Current Topics in Microbiology and Immunology, vol 418. Springer, Cham. https://doi.org/10.1007/82_2018_119

Download citation

Publish with us

Policies and ethics