Skip to main content

MYC and RAF: Key Effectors in Cellular Signaling and Major Drivers in Human Cancer

  • Chapter
  • First Online:
Viruses, Genes, and Cancer

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 407))

Abstract

The prototypes of the human MYC and RAF gene families are orthologs of animal proto-oncogenes that were originally identified as transduced alleles in the genomes of highly oncogenic retroviruses. MYC and RAF genes are now established as key regulatory elements in normal cellular physiology, but also as major cancer driver genes. Although the predominantly nuclear MYC proteins and the cytoplasmic RAF proteins have different biochemical functions, they are functionally linked in pivotal signaling cascades and circuits. The MYC protein is a transcription factor and together with its dimerization partner MAX holds a central position in a regulatory network of bHLH-LZ proteins. MYC regulates transcription conducted by all RNA polymerases and controls virtually the entire transcriptome. Fundamental cellular processes including distinct catabolic and anabolic branches of metabolism, cell cycle regulation, cell growth and proliferation, differentiation, stem cell regulation, and apoptosis are under MYC control. Deregulation of MYC expression by rearrangement or amplification of the MYC locus or by defects in kinase-mediated upstream signaling, accompanied by loss of apoptotic checkpoints, leads to tumorigenesis and is a hallmark of most human cancers. The critically controlled serine/threonine RAF kinases are central nodes of the cytoplasmic MAPK signaling cascade transducing converted extracellular signals to the nucleus for reshaping transcription factor controlled gene expression profiles. Specific mutations of RAF kinases, such as the prevalent BRAF(V600E) mutation in melanoma, or defects in upstream signaling or feedback loops cause decoupled kinase activities which lead to tumorigenesis. Different strategies for pharmacological interference with MYC- or RAF-induced tumorigenesis are being developed and several RAF kinase inhibitors are already in clinical use.

Dedication: This article is dedicated to Peter K. Vogt. His pioneering work has profound and sustained impact on the fields of virology and cancer genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abraham D, Podar K, Pacher M, Kubicek M, Welzel N, Hemmings BA, Dilworth SM, Mischak H, Kolch W, Baccarini M (2000) Raf-1-associated protein phosphatase 2A as a positive regulator of kinase activation. J Biol Chem 275:22300–22304

    Article  CAS  PubMed  Google Scholar 

  • Adelmann CH, Ching G, Du L, Saporito RC, Bansal V, Pence LJ, Liang R, Lee W, Tsai KY (2016) Comparative profiles of BRAF inhibitors: the paradox index as a predictor of clinical toxicity. Oncotarget 7:30453–30460

    Article  PubMed  PubMed Central  Google Scholar 

  • Altman BJ, Stine ZE, Dang CV (2016) From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer 16:619–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson S, Poudel KR, Roh-Johnson M, Brabletz T, Yu M, Borenstein-Auerbach N, Grady WN, Bai J, Moens CB, Eisenman RN, Conacci-Sorrell M (2016) MYC-nick promotes cell migration by inducing fascin expression and Cdc42 activation. Proc Natl Acad Sci USA 113:E5481–E5490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreadi C, Cheung LK, Giblett S, Patel B, Jin H, Mercer K, Kamata T, Lee P, Williams A, McMahon M, Marais R, Pritchard C (2012) The intermediate-activity (L597V)BRAF mutant acts as an epistatic modifier of oncogenic RAS by enhancing signaling through the RAF/MEK/ERK pathway. Genes Dev 26:1945–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews FH, Singh AR, Joshi S, Smith CA, Morales GA, Garlich JR, Durden DL, Kutateladze TG (2017) Dual-activity PI3K-BRD4 inhibitor for the orthogonal inhibition of MYC to block tumor growth and metastasis. Proc Natl Acad Sci USA 114: E1072–1080

    Google Scholar 

  • Ayer DE, Kretzner L, Eisenman RN (1993) Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 72:211–222

    Article  CAS  PubMed  Google Scholar 

  • Baccarini M (2005) Second nature: biological functions of the Raf-1 “kinase”. FEBS Lett 579:3271–3277

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian S, Hurley LH, Neidle S (2011) Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat Rev Drug Discov 10:261–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begg AM (1927) A filtrable endothelioma of the fowl. Lancet 209:912–915

    Article  Google Scholar 

  • Berg T, Cohen SB, Desharnais J, Sonderegger C, Maslyar DJ, Goldberg J, Boger DL, Vogt PK (2002) Small-molecule antagonists of Myc/Max dimerization inhibit Myc-induced transformation of chicken embryo fibroblasts. Proc Natl Acad Sci USA 99:3830–3835

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Beverly LJ, Varmus HE (2009) MYC-induced myeloid leukemogenesis is accelerated by all six members of the antiapoptotic BCL family. Oncogene 28:1274–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bister K (2015) Discovery of oncogenes: the advent of molecular cancer research. Proc Natl Acad Sci USA 112:15259–15260

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Bister K, Jansen HW (1986) Oncogenes in retroviruses and cells: biochemistry and molecular genetics. Adv Cancer Res 47:99–188

    Article  CAS  PubMed  Google Scholar 

  • Bister K, Vogt PK (1978) Genetic analysis of the defectiveness in strain MC29 avian leukosis virus. Virology 88:213–221

    Article  CAS  PubMed  Google Scholar 

  • Bister K, Hayman MJ, Vogt PK (1977) Defectiveness of avian myelocytomatosis virus MC29: isolation of long–term nonproducer cultures and analysis of virus–specific polypeptide synthesis. Virology 82:431–448

    Article  CAS  PubMed  Google Scholar 

  • Blackwood EM, Eisenman RN (1991) Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251:1211–1217

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H, Spevak W, Zhang C, Zhang Y, Habets G, Burton EA, Wong B, Tsang G, West BL, Powell B, Shellooe R, Marimuthu A, Nguyen H, Zhang KY, Artis DR, Schlessinger J, Su F, Higgins B, Iyer R, D’Andrea K, Koehler A, Stumm M, Lin PS, Lee RJ, Grippo J, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, Chapman PB, Flaherty KT, Xu X, Nathanson KL, Nolop K (2010) Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467:596–599

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Boone DN, Qi Y, Li Z, Hann SR (2011) Egr1 mediates p53-independent c-Myc-induced apoptosis via a noncanonical ARF-dependent transcriptional mechanism. Proc Natl Acad Sci USA 108:632–637

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bouchard C, Dittrich O, Kiermaier A, Dohmann K, Menkel A, Eilers M, Lüscher B (2001) Regulation of cyclin D2 gene expression by the Myc/Max/Mad network: Myc-dependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter. Genes Dev 15:2042–2047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brennan DF, Dar AC, Hertz NT, Chao WC, Burlingame AL, Shokat KM, Barford D (2011) A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK. Nature 472:366–369

    Article  ADS  CAS  PubMed  Google Scholar 

  • Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM (1984) Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224:1121–1124

    Article  ADS  CAS  PubMed  Google Scholar 

  • Buchwalter G, Gross C, Wasylyk B (2004) Ets ternary complex transcription factors. Gene 324:1–14

    Article  CAS  PubMed  Google Scholar 

  • Cairo S, Wang Y, de Reyniès A, Duroure K, Dahan J, Redon MJ, Fabre M, McClelland M, Wang XW, Croce CM, Buendia MA (2010) Stem cell-like micro-RNA signature driven by Myc in aggressive liver cancer. Proc Natl Acad Sci USA 107:20471–20476

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Caunt CJ, Sale MJ, Smith PD, Cook SJ (2015) MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nat Rev Cancer 15:577–592

    Article  CAS  PubMed  Google Scholar 

  • Cermelli S, Jang IS, Bernard B, Grandori C (2014) Synthetic lethal screens as a means to understand and treat MYC-driven cancers. Cold Spring Harb Perspect Med 4:a014209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, Hogg D, Lorigan P, Lebbe C, Jouary T, Schadendorf D, Ribas A, O’Day SJ, Sosman JA, Kirkwood JM, Eggermont AM, Dreno B, Nolop K, Li J, Nelson B, Hou J, Lee RJ, Flaherty KT, McArthur GA (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coffin JM, Varmus HE, Bishop JM, Essex M, Hardy WD Jr, Martin GS, Rosenberg NE, Scolnick EM, Weinberg RA, Vogt PK (1981) Proposal for naming host cell-derived inserts in retrovirus genomes. J Virol 40:953–957

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coll J, Righi M, Taisne C, Dissous C, Gegonne A, Stehelin D (1983) Molecular cloning of the avian acute transforming retrovirus MH2 reveals a novel cell-derived sequence (v-mil) in addition to the myc oncogene. EMBO J 2:2189–2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conacci-Sorrell M, Ngouenet C, Eisenman RN (2010) Myc-nick: a cytoplasmic cleavage product of Myc that promotes α-tubulin acetylation and cell differentiation. Cell 142:480–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conacci-Sorrell M, McFerrin L, Eisenman RN (2014) An overview of MYC and its interactome. Cold Spring Harb Perspect Med 4:a014357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10:704–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cseh B, Doma E, Baccarini M (2014) “RAF” neighborhood: protein-protein interaction in the Raf/Mek/Erk pathway. FEBS Lett 588:2398–2406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cully M, You H, Levine AJ, Mak TW (2006) Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6:184–192

    Article  CAS  PubMed  Google Scholar 

  • Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM (1982) Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA 79:7824–7827

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang CV (2012) MYC on the path to cancer. Cell 149:22–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang CV (2013) MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb Perspect Med 3:a014217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dang CV (2014) Gene regulation: fine-tuned amplification in cells. Nature 511:417–418

    Article  ADS  CAS  PubMed  Google Scholar 

  • Dang CV, Kim JW, Gao P, Yustein J (2008) The interplay between MYC and HIF in cancer. Nat Rev Cancer 8:51–56

    Article  CAS  PubMed  Google Scholar 

  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  ADS  CAS  PubMed  Google Scholar 

  • Davis AC, Wims M, Spotts GD, Hann SR, Bradley A (1993) A null c-myc mutation causes lethality before 10.5 days of gestation in homozygotes and reduced fertility in heterozygous female mice. Genes Dev 7:671–682

    Article  CAS  PubMed  Google Scholar 

  • Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, Kastritis E, Gilpatrick T, Paranal RM, Qi J, Chesi M, Schinzel AC, McKeown MR, Heffernan TP, Vakoc CR, Bergsagel PL, Ghobrial IM, Richardson PG, Young RA, Hahn WC, Anderson KC, Kung AL, Bradner JE, Mitsiades CS (2011) BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146:904–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dent P, Haser W, Haystead TA, Vincent LA, Roberts TM, Sturgill TW (1992) Activation of mitogen-activated protein kinase kinase by v-Raf in NIH 3T3 cells and in vitro. Science 257:1404–1407

    Article  ADS  CAS  PubMed  Google Scholar 

  • Desideri E, Cavallo AL, Baccarini M (2015) Alike but different: RAF paralogs and their signaling outputs. Cell 161:967–970

    Article  CAS  PubMed  Google Scholar 

  • Di Leva G, Garofalo M, Croce CM (2014) MicroRNAs in cancer. Annu Rev Pathol 9:287–314

    Article  PubMed  CAS  Google Scholar 

  • Dominguez-Sola D, Ying CY, Grandori C, Ruggiero L, Chen B, Li M, Galloway DA, Gu W, Gautier J, Dalla-Favera R (2007) Non-transcriptional control of DNA replication by c-Myc. Nature 448:445–451

    Article  ADS  CAS  PubMed  Google Scholar 

  • Duesberg PH, Vogt PK (1970) Differences between the ribonucleic acids of transforming and nontransforming avian tumor viruses. Proc Natl Acad Sci USA 67:1673–1680

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Duesberg PH, Bister K, Vogt PK (1977) The RNA of avian acute leukemia virus MC29. Proc Natl Acad Sci USA 74:4320–4324

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Eilers M, Eisenman RN (2008) Myc’s broad reach. Genes Dev 22:2755–2766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenman RN (2001) Deconstructing Myc. Genes Dev 15:2023–2030

    Article  CAS  PubMed  Google Scholar 

  • Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, Waters CM, Penn LZ, Hancock DC (1992) Induction of apoptosis in fibroblasts by c-myc protein. Cell 69:119–128

    Article  CAS  PubMed  Google Scholar 

  • Farrell AS, Sears RC (2014) MYC degradation. Cold Spring Harb Perspect Med 4:a014365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Felsher DW, Bishop JM (1999) Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc Natl Acad Sci USA 96:3940–3944

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferré-D’Amaré AR, Prendergast GC, Ziff EB, Burley SK (1993) Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363:38–45

    Article  ADS  PubMed  Google Scholar 

  • Fetics SK, Guterres H, Kearney BM, Buhrman G, Ma B, Nussinov R, Mattos C (2015) Allosteric effects of the oncogenic RasQ61L mutant on Raf-RBD. Structure 23:505–516

    Article  CAS  PubMed  Google Scholar 

  • Fieber W, Schneider ML, Matt T, Kräutler B, Konrat R, Bister K (2001) Structure, function, and dynamics of the dimerization and DNA binding domain of oncogenic transcription factor v-Myc. J Mol Biol 307:1395–1410

    Article  CAS  PubMed  Google Scholar 

  • Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, O’Dwyer PJ, Lee RJ, Grippo JF, Nolop K, Chapman PB (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363:809–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleuren ED, Zhang L, Wu J, Daly RJ (2016) The kinome ‘at large’ in cancer. Nat Rev Cancer 16:83–98

    Article  CAS  PubMed  Google Scholar 

  • Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A, Teague JW, Campbell PJ, Stratton MR, Futreal PA (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39:D945–D950

    Article  CAS  PubMed  Google Scholar 

  • Freeman AK, Ritt DA, Morrison DK (2013) Effects of Raf dimerization and its inhibition on normal and disease-associated Raf signaling. Mol Cell 49:751–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukushima T, Suzuki S, Mashiko M, Ohtake T, Endo Y, Takebayashi Y, Sekikawa K, Hagiwara K, Takenoshita S (2003) BRAF mutations in papillary carcinomas of the thyroid. Oncogene 22:6455–6457

    Article  CAS  PubMed  Google Scholar 

  • Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR (2004) A census of human cancer genes. Nat Rev Cancer 4:177–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabay M, Li Y, Felsher DW (2014) MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb Perspect Med 4:a014241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao C, Su Y, Koeman J, Haak E, Dykema K, Essenberg C, Hudson E, Petillo D, Khoo SK, Vande Woude GF (2016) Chromosome instability drives phenotypic switching to metastasis. Proc Natl Acad Sci USA 113:14793–14798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Roman N, Grandori C, Eisenman RN, White RJ (2003) Direct activation of RNA polymerase III transcription by c-Myc. Nature 421:290–294

    Article  ADS  CAS  PubMed  Google Scholar 

  • Graf T, von Weizsaecker F, Grieser S, Coll J, Stehelin D, Patschinsky T, Bister K, Bechade C, Calothy G, Leutz A (1986) v-mil induces autocrine growth and enhanced tumorigenicity in v-myc-transformed avian macrophages. Cell 45:357–364

    Article  CAS  PubMed  Google Scholar 

  • Grandori C, Cowley SM, James LP, Eisenman RN (2000) The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 16:653–699

    Article  CAS  PubMed  Google Scholar 

  • Grandori C, Gomez-Roman N, Felton-Edkins ZA, Ngouenet C, Galloway DA, Eisenman RN, White RJ (2005) c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat Cell Biol 7:311–318

    Article  CAS  PubMed  Google Scholar 

  • Gregory MA, Qi Y, Hann SR (2005) The ARF tumor suppressor: keeping Myc on a leash. Cell Cycle 4:249–252

    Article  CAS  PubMed  Google Scholar 

  • Gross S, Rahal R, Stransky N, Lengauer C, Hoeflich KP (2015) Targeting cancer with kinase inhibitors. J Clin Invest 125:1780–1789

    Article  PubMed  PubMed Central  Google Scholar 

  • Habib T, Park H, Tsang M, de Alborán IM, Nicks A, Wilson L, Knoepfler PS, Andrews S, Rawlings DJ, Eisenman RN, Iritani BM (2007) Myc stimulates B lymphocyte differentiation and amplifies calcium signaling. J Cell Biol 179:717–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hänsel-Hertsch R, Beraldi D, Lensing SV, Marsico G, Zyner K, Parry A, Di Antonio M, Pike J, Kimura H, Narita M, Tannahill D, Balasubramanian S (2016) G-quadruplex structures mark human regulatory chromatin. Nat Genet 48:1267–1272

    Article  PubMed  CAS  Google Scholar 

  • Hart JR, Roberts TC, Weinberg MS, Morris KV, Vogt PK (2014a) MYC regulates the non-coding transcriptome. Oncotarget 5:12543–12554

    Article  PubMed  PubMed Central  Google Scholar 

  • Hart JR, Garner AL, Yu J, Ito Y, Sun M, Ueno L, Rhee JK, Baksh MM, Stefan E, Hartl M, Bister K, Vogt PK, Janda KD (2014b) Inhibitor of MYC identified in a Kröhnke pyridine library. Proc Natl Acad Sci USA 111:12556–12561

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartl M, Nist A, Khan MI, Valovka T, Bister K (2009) Inhibition of Myc-induced cell transformation by brain acid-soluble protein 1 (BASP1). Proc Natl Acad Sci USA 106:5604–5609

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartl M, Mitterstiller AM, Valovka T, Breuker K, Hobmayer B, Bister K (2010) Stem cell-specific activation of an ancestral myc protooncogene with conserved basic functions in the early metazoan Hydra. Proc Natl Acad Sci USA 107:4051–4056

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, Ludlam MJ, Stokoe D, Gloor SL, Vigers G, Morales T, Aliagas I, Liu B, Sideris S, Hoeflich KP, Jaiswal BS, Seshagiri S, Koeppen H, Belvin M, Friedman LS, Malek S (2010) RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464:431–435

    Article  ADS  CAS  PubMed  Google Scholar 

  • Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M, Rutkowski P, Blank CU, Miller WH Jr, Kaempgen E, Martín-Algarra S, Karaszewska B, Mauch C, Chiarion-Sileni V, Martin AM, Swann S, Haney P, Mirakhur B, Guckert ME, Goodman V, Chapman PB (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380:358–365

    Article  CAS  PubMed  Google Scholar 

  • Hayward WS, Neel BG, Astrin SM (1981) Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 290:475–480

    Article  ADS  CAS  PubMed  Google Scholar 

  • He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512

    Article  ADS  CAS  PubMed  Google Scholar 

  • Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, Hussain J, Reis-Filho JS, Springer CJ, Pritchard C, Marais R (2010) Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140:209–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermeking H, Rago C, Schuhmacher M, Li Q, Barrett JF, Obaya AJ, O’Connell BC, Mateyak MK, Tam W, Kohlhuber F, Dang CV, Sedivy JM, Eick D, Vogelstein B, Kinzler KW (2000) Identification of CDK4 as a target of c-MYC. Proc Natl Acad Sci USA 97:2229–2234

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Holderfield M, Deuker MM, McCormick F, McMahon M (2014a) Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat Rev Cancer 14:455–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holderfield M, Nagel TE, Stuart DD (2014b) Mechanism and consequences of RAF kinase activation by small-molecule inhibitors. Br J Cancer 111:640–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollenhorst PC, McIntosh LP, Graves BJ (2011) Genomic and biochemical insights into the specificity of ETS transcription factors. Annu Rev Biochem 80:437–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howe LR, Leevers SJ, Gómez N, Nakielny S, Cohen P, Marshall CJ (1992) Activation of the MAP kinase pathway by the protein kinase raf. Cell 71:335–342

    Article  CAS  PubMed  Google Scholar 

  • Hsieh AL, Walton ZE, Altman BJ, Stine ZE, Dang CV (2015) MYC and metabolism on the path to cancer. Semin Cell Dev Biol 43:11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Stites EC, Yu H, Germino EA, Meharena HS, Stork PJ, Kornev AP, Taylor SS, Shaw AS (2013) Allosteric activation of functionally asymmetric RAF kinase dimers. Cell 154:1036–1046

    Google Scholar 

  • Hu J, Ahuja LG, Meharena HS, Kannan N, Kornev AP, Taylor SS, Shaw AS (2015) Kinase regulation by hydrophobic spine assembly in cancer. Mol Cell Biol 35:264–276

    Article  PubMed  CAS  Google Scholar 

  • Huebner K, ar-Rushdi A, Griffin CA, Isobe M, Kozak C, Emanuel BS, Nagarajan L, Cleveland JL, Bonner TI, Goldsborough MD, Croce CM, Rapp U (1986) Actively transcribed genes in the raf oncogene group, located on the X chromosome in mouse and human. Proc Natl Acad Sci USA 83:3934–3938

    Google Scholar 

  • Hung CL, Wang LY, Yu YL, Chen HW, Srivastava S, Petrovics G, Kung HJ (2014) A long noncoding RNA connects c-Myc to tumor metabolism. Proc Natl Acad Sci USA 111:18697–18702

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurlin PJ, Quéva C, Eisenman RN (1997) Mnt, a novel Max-interacting protein is coexpressed with Myc in proliferating cells and mediates repression at Myc binding sites. Genes Dev 11:44–58

    Article  CAS  PubMed  Google Scholar 

  • Hurlin PJ, Steingrìmsson E, Copeland NG, Jenkins NA, Eisenman RN (1999) Mga, a dual-specificity transcription factor that interacts with Max and contains a T-domain DNA-binding motif. EMBO J 18:7019–7028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikawa S, Fukui M, Ueyama Y, Tamaoki N, Yamamoto T, Toyoshima K (1988) B-raf, a new member of the raf family, is activated by DNA rearrangement. Mol Cell Biol 8:2651–2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen HW, Patschinsky T, Bister K (1983a) Avian oncovirus MH2: molecular cloning of proviral DNA and structural analysis of viral RNA and protein. J Virol 48:61–73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen HW, Rueckert B, Lurz R, Bister K (1983b) Two unrelated cell–derived sequences in the genome of avian leukemia and carcinoma inducing retrovirus MH2. EMBO J 2:1969–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen HW, Lurz R, Bister K, Bonner TI, Mark GE, Rapp UR (1984) Homologous cell–derived oncogenes in avian carcinoma virus MH2 and murine sarcoma virus 3611. Nature 307:281–284

    Article  ADS  CAS  PubMed  Google Scholar 

  • Kan NC, Flordellis CS, Garon CF, Duesberg PH, Papas TS (1983) Avian carcinoma virus MH2 contains a transformation-specific sequence, mht, and shares the myc sequence with MC29, CMII, and OK10 viruses. Proc Natl Acad Sci USA 80:6566–6570

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanatsu-Shinohara M, Tanaka T, Ogonuki N, Ogura A, Morimoto H, Cheng PF, Eisenman RN, Trumpp A, Shinohara T (2016) Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal. Genes Dev 30:2637–2648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karnoub AE, Weinberg RA (2008) Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9:517–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly K, Cochran BH, Stiles CD, Leder P (1983) Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell 35:603–610

    Article  CAS  PubMed  Google Scholar 

  • Kessler JD, Kahle KT, Sun T, Meerbrey KL, Schlabach MR, Schmitt EM, Skinner SO, Xu Q, Li MZ, Hartman ZC, Rao M, Yu P, Dominguez-Vidana R, Liang AC, Solimini NL, Bernardi RJ, Yu B, Hsu T, Golding I, Luo J, Osborne CK, Creighton CJ, Hilsenbeck SG, Schiff R, Shaw CA, Elledge SJ, Westbrook TF (2012) A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis. Science 335:348–353

    Article  ADS  CAS  PubMed  Google Scholar 

  • Kim T, Jeon YJ, Cui R, Lee JH, Peng Y, Kim SH, Tili E, Alder H, Croce CM (2015) Role of MYC-regulated long noncoding RNAs in cell cycle regulation and tumorigenesis. J Natl Cancer Inst 107:dju505

    Google Scholar 

  • Knoepfler PS, Kenney AM (2006) Neural precursor cycling at sonic speed: N-Myc pedals, GSK-3 brakes. Cell Cycle 5:47–52

    Article  CAS  PubMed  Google Scholar 

  • Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11:325–337

    Article  CAS  PubMed  Google Scholar 

  • Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39:673–677

    Article  CAS  PubMed  Google Scholar 

  • Kyriakis JM, App H, Zhang XF, Banerjee P, Brautigan DL, Rapp UR, Avruch J (1992) Raf-1 activates MAP kinase-kinase. Nature 358:417–421

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lake D, Correa SA, Müller J (2016) Negative feedback regulation of the ERK1/2 MAPK pathway. Cell Mol Life Sci 73:4397–4413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lal A, Navarro F, Maher CA, Maliszewski LE, Yan N, O’Day E, Chowdhury D, Dykxhoorn DM, Tsai P, Hofmann O, Becker KG, Gorospe M, Hide W, Lieberman J (2009) miR-24 inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3′UTR microRNA recognition elements. Mol Cell 35:610–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurenti E, Wilson A, Trumpp A (2009) Myc’s other life: stem cells and beyond. Curr Opin Cell Biol 21:844–854

    Article  CAS  PubMed  Google Scholar 

  • Lavoie H, Therrien M (2015) Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol 16:281–298

    Article  CAS  PubMed  Google Scholar 

  • Lavoie H, Thevakumaran N, Gavory G, Li JJ, Padeganeh A, Guiral S, Duchaine J, Mao DY, Bouvier M, Sicheri F, Therrien M (2013) Inhibitors that stabilize a closed RAF kinase domain conformation induce dimerization. Nat Chem Biol 9:428–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CH, Jackson AL, Guo J, Linsley PS, Eisenman RN (2009) Myc-regulated microRNAs attenuate embryonic stem cell differentiation. EMBO J 28:3157–3170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CY, Lovén J, Rahl PB, Paranal RM, Burge CB, Bradner JE, Lee TI, Young RA (2012) Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151:56–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lito P, Pratilas CA, Joseph EW, Tadi M, Halilovic E, Zubrowski M, Huang A, Wong WL, Callahan MK, Merghoub T, Wolchok JD, de Stanchina E, Chandarlapaty S, Poulikakos PI, Fagin JA, Rosen N (2012) Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell 22:668–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lito P, Rosen N, Solit DB (2013) Tumor adaptation and resistance to RAF inhibitors. Nat Med 19:1401–1409

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Levens D (2006) Making myc. Curr Top Microbiol Immunol 302:1–32

    CAS  PubMed  Google Scholar 

  • Liu P, Cheng H, Santiago S, Raeder M, Zhang F, Isabella A, Yang J, Semaan DJ, Chen C, Fox EA, Gray NS, Monahan J, Schlegel R, Beroukhim R, Mills GB, Zhao JJ (2011) Oncogenic PIK3CA-driven mammary tumors frequently recur via PI3K pathway-dependent and PI3K pathway-independent mechanisms. Nat Med 17:1116–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louis SF, Vermolen BJ, Garini Y, Young IT, Guffei A, Lichtensztejn Z, Kuttler F, Chuang TC, Moshir S, Mougey V, Chuang AY, Kerr PD, Fest T, Boukamp P, Mai S (2005) c-Myc induces chromosomal rearrangements through telomere and chromosome remodeling in the interphase nucleus. Proc Natl Acad Sci USA 102:9613–9618

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  ADS  CAS  PubMed  Google Scholar 

  • Marks JL, Gong Y, Chitale D, Golas B, McLellan MD, Kasai Y, Ding L, Mardis ER, Wilson RK, Solit D, Levine R, Michel K, Thomas RK, Rusch VW, Ladanyi M, Pao W (2008) Novel MEK1 mutation identified by mutational analysis of epidermal growth factor receptor signaling pathway genes in lung adenocarcinoma. Cancer Res 68:5524–5528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marx M, Eychène A, Laugier D, Béchade C, Crisanti P, Dezélée P, Pessac B, Calothy G (1988) A novel oncogene related to c-mil is transduced in chicken neuroretina cells induced to proliferate by infection with an avian lymphomatosis virus. EMBO J 7:3369–3373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matallanas D, Birtwistle M, Romano D, Zebisch A, Rauch J, von Kriegsheim A, Kolch W (2011) Raf family kinases: old dogs have learned new tricks. Genes Cancer 2:232–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormick F (2016) K-Ras protein as a drug target. J Mol Med 94:253–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McFadden DG, Politi K, Bhutkar A, Chen FK, Song X, Pirun M, Santiago PM, Kim-Kiselak C, Platt JT, Lee E, Hodges E, Rosebrock AP, Bronson RT, Socci ND, Hannon GJ, Jacks T, Varmus H (2016) Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma. Proc Natl Acad Sci USA 113:E6409–E6417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKeown MR, Bradner JE (2014) Therapeutic strategies to inhibit MYC. Cold Spring Harb Perspect Med 4:a014266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McMahon SB, Wood MA, Cole MD (2000) The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol Cell Biol 20:556–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellon P, Pawson A, Bister K, Martin GS, Duesberg PH (1978) Specific RNA sequences and gene products of MC29 avian acute leukemia virus. Proc Natl Acad Sci USA 75:5874–5878

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendell JT (2005) MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle 4:1179–1184

    Article  CAS  PubMed  Google Scholar 

  • Mendell JT (2008) miRiad roles for the miR-17-92 cluster in development and disease. Cell 133:217–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S, Mele DA, Bergeron L, Sims RJ III (2011) Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci USA 108:16669–16674

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Moodie SA, Willumsen BM, Weber MJ, Wolfman A (1993) Complexes of Ras.GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 260:1658–1661

    Article  ADS  CAS  PubMed  Google Scholar 

  • Morton S, Davis RJ, McLaren A, Cohen P (2003) A reinvestigation of the multisite phosphorylation of the transcription factor c-Jun. EMBO J 22:3876–3886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy LO, Blenis J (2006) MAPK signal specificity: the right place at the right time. Trends Biochem Sci 31:268–275

    Article  CAS  PubMed  Google Scholar 

  • Murugan AK, Dong J, Xie J, Xing M (2009) MEK1 mutations, but not ERK2 mutations, occur in melanomas and colon carcinomas, but none in thyroid carcinomas. Cell Cycle 8:2122–2124

    Article  CAS  PubMed  Google Scholar 

  • Nagashima T, Inoue N, Yumoto N, Saeki Y, Magi S, Volinsky N, Sorkin A, Kholodenko BN, Okada-Hatakeyama M (2015) Feedforward regulation of mRNA stability by prolonged extracellular signal-regulated kinase activity. FEBS J 282:613–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair SK, Burley SK (2003) X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors. Cell 112:193–205

    Article  CAS  PubMed  Google Scholar 

  • Nau MM, Brooks BJ, Battey J, Sausville E, Gazdar AF, Kirsch IR, McBride OW, Bertness V, Hollis GF, Minna JD (1985) L-myc, a new myc-related gene amplified and expressed in human small cell lung cancer. Nature 318:69–73

    Article  ADS  CAS  PubMed  Google Scholar 

  • Nie Z, Hu G, Wei G, Cui K, Yamane A, Resch W, Wang R, Green DR, Tessarollo L, Casellas R, Zhao K, Levens D (2012) c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 151:68–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843

    Article  ADS  PubMed  CAS  Google Scholar 

  • Okazaki K, Sagata N (1995) The Mos/MAP kinase pathway stabilizes c-Fos by phosphorylation and augments its transforming activity in NIH 3T3 cells. EMBO J 14:5048–5059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okimoto RA, Lin L, Olivas V, Chan E, Markegard E, Rymar A, Neel D, Chen X, Hemmati G, Bollag G, Bivona TG (2016) Preclinical efficacy of a RAF inhibitor that evades paradoxical MAPK pathway activation in protein kinase BRAF-mutant lung cancer. Proc Natl Acad Sci USA 113:13456–13461

    Article  CAS  PubMed  Google Scholar 

  • Payne GS, Bishop JM, Varmus HE (1982) Multiple arrangements of viral DNA and an activated host oncogene in bursal lymphomas. Nature 295:209–214

    Article  ADS  CAS  PubMed  Google Scholar 

  • Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N (2010) RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464:427–430

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Poulikakos PI, Persaud Y, Janakiraman M, Kong X, Ng C, Moriceau G, Shi H, Atefi M, Titz B, Gabay MT, Salton M, Dahlman KB, Tadi M, Wargo JA, Flaherty KT, Kelley MC, Misteli T, Chapman PB, Sosman JA, Graeber TG, Ribas A, Lo RS, Rosen N, Solit DB (2011) RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480:387–390

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D, Beijersbergen RL, Bardelli A, Bernards R (2012) Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483:100–103

    Article  ADS  CAS  PubMed  Google Scholar 

  • Prochownik EV, Vogt PK (2010) Therapeutic targeting of Myc. Genes. Cancer 1:650–659

    CAS  Google Scholar 

  • Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D (2011) RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 11:761–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi Y, Gregory MA, Li Z, Brousal JP, West K, Hann SR (2004) p19ARF directly and differentially controls the functions of c-Myc independently of p53. Nature 431:712–717

    Article  ADS  CAS  PubMed  Google Scholar 

  • Raffeiner P, Röck R, Schraffl A, Hartl M, Hart JR, Janda KD, Vogt PK, Stefan E, Bister K (2014) In vivo quantification and perturbation of Myc-Max interactions and the impact on oncogenic potential. Oncotarget 5:8869–8878

    Article  PubMed  PubMed Central  Google Scholar 

  • Raffeiner P, Schraffl A, Schwarz T, Röck R, Ledolter K, Hartl M, Konrat R, Stefan E, Bister K (2017) Calcium-dependent binding of Myc to calmodulin. Oncotarget 8:3327–3343

    Article  PubMed  Google Scholar 

  • Rahl PB, Young RA (2014) MYC and transcription elongation. Cold Spring Harb Perspect Med 4:a020990

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajagopalan H, Nowak MA, Vogelstein B, Lengauer C (2003) The significance of unstable chromosomes in colorectal cancer. Nat Rev Cancer 3:695–701

    Article  CAS  PubMed  Google Scholar 

  • Rajakulendran T1, Sahmi M, Lefrançois M, Sicheri F, Therrien M (2009) A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461:542–545

    Google Scholar 

  • Rapp UR, Goldsborough MD, Mark GE, Bonner TI, Groffen J, Reynolds FH Jr, Stephenson JR (1983) Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus. Proc Natl Acad Sci USA 80:4218–4222

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Rapp UR, Cleveland JL, Fredrickson TN, Holmes KL, Morse HC III, Jansen HW, Patschinsky T, Bister K (1985) Rapid induction of hemopoietic neoplasms in newborn mice by a raf(mil)/myc recombinant murine retrovirus. J Virol 55:23–33

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ratnikov BI, Scott DA, Osterman AL, Smith JW, Ronai ZA (2017) Metabolic rewiring in melanoma. Oncogene 36:147–157

    Article  CAS  PubMed  Google Scholar 

  • Rauch N, Rukhlenko OS, Kolch W, Kholodenko BN (2016) MAPK kinase signalling dynamics regulate cell fate decisions and drug resistance. Curr Opin Struct Biol 41:151–158

    Article  CAS  PubMed  Google Scholar 

  • Robins T, Bister K, Garon C, Papas T, Duesberg PH (1982) Structural relationship between a normal chicken DNA locus and the transforming gene of the avian acute leukemia virus MC29. J Virol 41:635–642

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson MJ, Cobb MH (1997) Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 9:180–186

    Article  CAS  PubMed  Google Scholar 

  • Roskoski R Jr (2012a) MEK1/2 dual-specificity protein kinases: structure and regulation. Biochem Biophys Res Commun 417:5–10

    Article  CAS  PubMed  Google Scholar 

  • Roskoski R Jr (2012b) ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 66:105–143

    Article  CAS  PubMed  Google Scholar 

  • Roussel M, Saule S, Lagrou C, Rommens C, Beug H, Graf T, Stehelin D (1979) Three new types of viral oncogene of cellular origin specific for haematopoietic cell transformation. Nature 281:452–455

    Article  ADS  CAS  PubMed  Google Scholar 

  • Samatar AA, Poulikakos PI (2014) Targeting RAS-ERK signalling in cancer: promises and challenges. Nat Rev Drug Discov 13:928–942

    Article  CAS  PubMed  Google Scholar 

  • Santos SD, Verveer PJ, Bastiaens PI (2007) Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat Cell Biol 9:324–330

    Article  CAS  PubMed  Google Scholar 

  • Scognamiglio R, Cabezas-Wallscheid N, Thier MC, Altamura S, Reyes A, Prendergast ÁM, Baumgärtner D, Carnevalli LS, Atzberger A, Haas S, von Paleske L, Boroviak T, Wörsdörfer P, Essers MA, Kloz U, Eisenman RN, Edenhofer F, Bertone P, Huber W, van der Hoeven F, Smith A, Trumpp A (2016) Myc depletion induces a pluripotent dormant state mimicking diapause. Cell 164:668–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sears RC (2004) The life cycle of c-Myc: from synthesis to degradation. Cell Cycle 3:1133–1137

    Article  CAS  PubMed  Google Scholar 

  • Sheiness D, Bishop JM (1979) DNA and RNA from uninfected vertebrate cells contain nucleotide sequences related to the putative transforming gene of avian myelocytomatosis virus. J Virol 31:514–521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheiness D, Fanshier L, Bishop JM (1978) Identification of nucleotide sequences which may encode the oncogenic capacity of avian retrovirus MC29. J Virol 28:600–610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, Dalla-Favera R, Dang CV (1997) c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci USA 94:6658–6663

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Shortt J, Johnstone RW (2012) Oncogenes in cell survival and cell death. Cold Spring Harb Perspect Biol 4:a009829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shroff EH, Eberlin LS, Dang VM, Gouw AM, Gabay M, Adam SJ, Bellovin DI, Tran PT, Philbrick WM, Garcia-Ocana A, Casey SC, Li Y, Dang CV, Zare RN, Felsher DW (2015) MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism. Proc Natl Acad Sci USA 112:6539–6544

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu S, Polyak K (2017) BET bromodomain proteins as cancer therapeutic targets. Cold Spring Harb Symp Quant Biol 81:030908

    Article  Google Scholar 

  • Solit DB, Rosen N (2011) Resistance to BRAF inhibition in melanomas. N Engl J Med 364:772–774

    Article  CAS  PubMed  Google Scholar 

  • Soucek L, Evan GI (2010) The ups and downs of Myc biology. Curr Opin Genet Dev 20:91–95

    Article  CAS  PubMed  Google Scholar 

  • Soucek L, Helmer-Citterich M, Sacco A, Jucker R, Cesareni G, Nasi S (1998) Design and properties of a Myc derivative that efficiently homodimerizes. Oncogene 17:2463–2472

    Article  CAS  PubMed  Google Scholar 

  • Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM, Karnezis AN, Swigart LB, Nasi S, Evan GI (2008) Modelling Myc inhibition as a cancer therapy. Nature 455:679–683

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefan E, Hart JR, Bister K (2015) Stopping MYC in its tracks. Aging 7:463–464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stehelin D, Varmus HE, Bishop JM, Vogt PK (1976) DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260:170–173

    Article  ADS  CAS  PubMed  Google Scholar 

  • Stephen AG, Esposito D, Bagni RK, McCormick F (2014) Dragging ras back in the ring. Cancer Cell 25:272–281

    Article  CAS  PubMed  Google Scholar 

  • Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV (2015) MYC, metabolism, and cancer. Cancer Discov 5:1024–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su F, Viros A, Milagre C, Trunzer K, Bollag G, Spleiss O, Reis-Filho JS, Kong X, Koya RC, Flaherty KT, Chapman PB, Kim MJ, Hayward R, Martin M, Yang H, Wang Q, Hilton H, Hang JS, Noe J, Lambros M, Geyer F, Dhomen N, Niculescu-Duvaz I, Zambon A, Niculescu-Duvaz D, Preece N, Robert L, Otte NJ, Mok S, Kee D, Ma Y, Zhang C, Habets G, Burton EA, Wong B, Nguyen H, Kockx M, Andries L, Lestini B, Nolop KB, Lee RJ, Joe AK, Troy JL, Gonzalez R, Hutson TE, Puzanov I, Chmielowski B, Springer CJ, McArthur GA, Sosman JA, Lo RS, Ribas A, Marais R (2012) RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med 366:207–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun C, Wang L, Huang S, Heynen GJ, Prahallad A, Robert C, Haanen J, Blank C, Wesseling J, Willems SM, Zecchin D, Hobor S, Bajpe PK, Lieftink C, Mateus C, Vagner S, Grernrum W, Hofland I, Schlicker A, Wessels LF, Beijersbergen RL, Bardelli A, Di Nicolantonio F, Eggermont AM, Bernards R (2014) Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature 508:118–122

    Article  ADS  CAS  PubMed  Google Scholar 

  • Tabor V, Bocci M, Alikhani N, Kuiper R, Larsson LG (2014) MYC synergizes with activated BRAFV600E in mouse lung tumor development by suppressing senescence. Cancer Res 74:4222–4229

    Article  CAS  PubMed  Google Scholar 

  • Taub R, Kirsch I, Morton C, Lenoir G, Swan D, Tronick S, Aaronson S, Leder P (1982) Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci USA 79:7837–7841

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor SS, Kornev AP (2011) Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem Sci 36:65–77

    Article  CAS  PubMed  Google Scholar 

  • Thomas LR, Wang Q, Grieb BC, Phan J, Foshage AM, Sun Q, Olejniczak ET, Clark T, Dey S, Lorey S, Alicie B, Howard GC, Cawthon B, Ess KC, Eischen CM, Zhao Z, Fesik SW, Tansey WP (2015) Interaction with WDR5 promotes target gene recognition and tumorigenesis by MYC. Mol Cell 58:440–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas LR, Foshage AM, Weissmiller AM, Popay TM, Grieb BC, Qualls SJ, Ng V, Carboneau B, Lorey S, Eischen CM, Tansey WP (2016) Interaction of MYC with host cell factor-1 is mediated by the evolutionarily conserved Myc box IV motif. Oncogene 35:3613–3618

    Article  CAS  PubMed  Google Scholar 

  • Tiacci E, Trifonov V, Schiavoni G, Holmes A, Kern W, Martelli MP, Pucciarini A, Bigerna B, Pacini R, Wells VA, Sportoletti P, Pettirossi V, Mannucci R, Elliott O, Liso A, Ambrosetti A, Pulsoni A, Forconi F, Trentin L, Semenzato G, Inghirami G, Capponi M, Di Raimondo F, Patti C, Arcaini L, Musto P, Pileri S, Haferlach C, Schnittger S, Pizzolo G, Foà R, Farinelli L, Haferlach T, Pasqualucci L, Rabadan R, Falini B (2011) BRAF mutations in hairy-cell leukemia. N Engl J Med 364:2305–2315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokheim CJ, Papadopoulos N, Kinzler KW, Vogelstein B, Karchin R (2016) Evaluating the evaluation of cancer driver genes. Proc Natl Acad Sci USA 113:14330–14335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toyoshima M, Howie HL, Imakura M, Walsh RM, Annis JE, Chang AN, Frazier J, Chau BN, Loboda A, Linsley PS, Cleary MA, Park JR, Grandori C (2012) Functional genomics identifies therapeutic targets for MYC-driven cancer. Proc Natl Acad Sci USA 109:9545–9550

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsavachidou D, Coleman ML, Athanasiadis G, Li S, Licht JD, Olson MF, Weber BL (2004) SPRY2 is an inhibitor of the ras/extracellular signal-regulated kinase pathway in melanocytes and melanoma cells with wild-type BRAF but not with the V599E mutant. Cancer Res 64:5556–5559

    Article  CAS  PubMed  Google Scholar 

  • Tseng YY, Moriarity BS, Gong W, Akiyama R, Tiwari A, Kawakami H, Ronning P, Reuland B, Guenther K, Beadnell TC, Essig J, Otto GM, O’Sullivan MG, Largaespada DA, Schwertfeger KL, Marahrens Y, Kawakami Y, Bagchi A (2014) PVT1 dependence in cancer with MYC copy-number increase. Nature 512:82–86

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Turajlic S, Swanton C (2016) Metastasis as an evolutionary process. Science 352:169–175

    Article  ADS  CAS  PubMed  Google Scholar 

  • Valovka T, Schönfeld M, Raffeiner P, Breuker K, Dunzendorfer-Matt T, Hartl M, Bister K (2013) Transcriptional control of DNA replication licensing by Myc. Sci Rep 3:3444

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Aelst L, Barr M, Marcus S, Polverino A, Wigler M (1993) Complex formation between RAS and RAF and other protein kinases. Proc Natl Acad Sci USA 90:6213–6217

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Vennstrom B, Sheiness D, Zabielski J, Bishop JM (1982) Isolation and characterization of c–myc, a cellular homolog of the oncogene (v-myc) of avian myelocytomatosis virus strain 29. J Virol 42:773–779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vita M, Henriksson M (2006) The Myc oncoprotein as a therapeutic target for human cancer. Semin Cancer Biol 16:318–330

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW (2013) Cancer genome landscapes. Science 29:1546–1558

    Article  ADS  CAS  Google Scholar 

  • Vogt PK (2012) Retroviral oncogenes: a historical primer. Nat Rev Cancer 12:639–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vojtek AB, Hollenberg SM, Cooper JA (1993) Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74:205–214

    Article  CAS  PubMed  Google Scholar 

  • Wan PTC, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Cancer Genome Project, Jones CM, Marshall CJ, Springer CJ, Barford D, Marais R (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116:855–867

    Article  Google Scholar 

  • Wanzel M, Herold S, Eilers M (2003) Transcriptional repression by Myc. Trends Cell Biol 13:146–150

    Article  CAS  PubMed  Google Scholar 

  • Warburg O, Posener K, Negelein E (1924) Über den Stoffwechsel der Carcinomzelle. Biochem Z 152:309–344

    CAS  Google Scholar 

  • Wasylyk B, Hagman J, Gutierrez-Hartmann A (1998) Ets transcription factors: nuclear effectors of the Ras-MAP-kinase signaling pathway. Trends Biochem Sci 23:213–216

    Article  CAS  PubMed  Google Scholar 

  • Weinberg MS, Hart JR, Vogt PK (2015) A brave new MYC-amplified world. Aging 7:459–460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Welcker M, Orian A, Jin J, Grim JE, Harper JW, Eisenman RN, Clurman BE (2004) The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c–Myc protein degradation. Proc Natl Acad Sci USA 101:9085–9090

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Wellbrock C, Karasarides M, Marais R (2004) The RAF proteins take centre stage. Nat Rev Mol Cell Biol 5:875–885

    Article  CAS  PubMed  Google Scholar 

  • Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C, Del Bianco C, Rodriguez CG, Sai H, Tobias J, Li Y, Wolfe MS, Shachaf C, Felsher D, Blacklow SC, Pear WS, Aster JC (2006) c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 20:2096–2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilde BR, Ayer DE (2015) Interactions between Myc and MondoA transcription factors in metabolism and tumourigenesis. Br J Cancer 113:1529–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf E, Lin CY, Eilers M, Levens DL (2015) Taming of the beast: shaping Myc-dependent amplification. Trends Cell Biol 25:241–248

    Article  CAS  PubMed  Google Scholar 

  • Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H, Ishida N, Okumura F, Nakayama K, Nakayama KI (2004) Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J 23:2116–2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang D, Liu H, Goga A, Kim S, Yuneva M, Bishop JM (2010) Therapeutic potential of a synthetic lethal interaction between the MYC proto-oncogene and inhibition of aurora-B kinase. Proc Natl Acad Sci USA 107:13836–13841

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Z, Torres NM, Tao A, Gao Y, Luo L, Li Q, de Stanchina E, Abdel-Wahab O, Solit DB, Poulikakos PI, Rosen N (2015) BRAF mutants evade ERK-dependent feedback by different mechanisms that determine their sensitivity to pharmacologic inhibition. Cancer Cell 28:370–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin X, Giap C, Lazo JS, Prochownik EV (2003) Low molecular weight inhibitors of Myc-Max interaction and function. Oncogene 22:6151–6159

    Article  CAS  PubMed  Google Scholar 

  • Yochum GS, Sherrick CM, Macpartlin M, Goodman RH (2010) A β-catenin/TCF-coordinated chromatin loop at MYC integrates 5′ and 3′ Wnt responsive enhancers. Proc Natl Acad Sci USA 107:145–150

    Article  ADS  CAS  PubMed  Google Scholar 

  • Yoon S, Seger R (2006) The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24:21–44

    Article  CAS  PubMed  Google Scholar 

  • Young SL, Diolaiti D, Conacci-Sorrell M, Ruiz-Trillo I, Eisenman RN, King N (2011) Premetazoan ancestry of the Myc-Max network. Mol Biol Evol 28:2961–2971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu W, Fantl WJ, Harrowe G, Williams LT (1998) Regulation of the MAP kinase pathway by mammalian Ksr through direct interaction with MEK and ERK. Curr Biol 8:56–64

    Article  CAS  PubMed  Google Scholar 

  • Zeller KI, Zhao X, Lee CW, Chiu KP, Yao F, Yustein JT, Ooi HS, Orlov YL, Shahab A, Yong HC, Fu Y, Weng Z, Kuznetsov VA, Sung WK, Ruan Y, Dang CV, Wei CL (2006) Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc Natl Acad Sci USA 103:17834–17839

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XF, Settleman J, Kyriakis JM, Takeuchi-Suzuki E, Elledge SJ, Marshall MS, Bruder JT, Rapp UR, Avruch J (1993) Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 364:308–313

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zhang C, Spevak W, Zhang Y, Burton EA, Ma Y, Habets G, Zhang J, Lin J, Ewing T, Matusow B, Tsang G, Marimuthu A, Cho H, Wu G, Wang W, Fong D, Nguyen H, Shi S, Womack P, Nespi M, Shellooe R, Carias H, Powell B, Light E, Sanftner L, Walters J, Tsai J, West BL, Visor G, Rezaei H, Lin PS, Nolop K, Ibrahim PN, Hirth P, Bollag G (2015) RAF inhibitors that evade paradoxical MAPK pathway activation. Nature 526:583–586

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ, Roussel MF (1998) Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 12:2424–2433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Gabriele Reiter for help with the preparation of the manuscript. Work by the authors has been supported by grants (P23652, P27606) from the Austrian Science Fund (FWF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Bister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Stefan, E., Bister, K. (2017). MYC and RAF: Key Effectors in Cellular Signaling and Major Drivers in Human Cancer. In: Hunter, E., Bister, K. (eds) Viruses, Genes, and Cancer. Current Topics in Microbiology and Immunology, vol 407. Springer, Cham. https://doi.org/10.1007/82_2017_4

Download citation

Publish with us

Policies and ethics