Skip to main content

Linked CD4 T Cell Help: Broadening Immune Attack Against Cancer by Vaccination

  • Chapter
  • First Online:
Cancer Vaccines

Abstract

In the last decade, immunotherapy with monoclonal antibodies targeting immunological check points has become a breakthrough therapeutic modality for solid cancers. However, only up to 50 % of patients benefit from this powerful approach. For others vaccination might provide a plausible addition or alternative. For induction of effective anticancer immunity CD4+ T cell help is required, which is often difficult to induce to self cancer targets because of tolerogenic mechanisms. Our approach for cancer vaccines has been to incorporate into the vaccine design sequences able to activate foreign T cell help, through genetically linking cancer targets to microbial sequences (King et al. in Nat Med 4(11):1281–1286, 1998; Savelyeva et al. in Nat Biotechnol 19(8):760–764, 2001). This harnesses the non-tolerized CD4 T cell repertoire available in patients to help induction of effective immunity against fused cancer antigens. Multiple immune effector mechanisms including antibody, CD8+ T cells as well as CD4 effector T cells can be activated using this strategy. Delivery via DNA vaccines has already indicated clinical efficacy. The same principle of linked T cell help has now been transferred to other novel vaccine modalities to further potentiate immunity against cancer targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams SI, Hand PH, Tsang KY, Schlom J (1996) Mutant ras epitopes as targets for cancer vaccines. Semin Oncol 23(1):118–134

    CAS  PubMed  Google Scholar 

  • Acres B, Lacoste G, Limacher JM (2015) Targeted immunotherapy designed to treat MUC1-expressing solid tumour. Curr Top Microbiol Immunol. doi:10.1007/82_2015_429

    PubMed  Google Scholar 

  • Ahlen G, Soderholm J, Tjelle T, KjekenR, Frelin L, Hoglund U,… Sallberg M (2007) In vivo electroporation enhances the immunogenicity of hepatitis C virus nonstructural 3/4A DNA by increased local DNA uptake, protein expression, inflammation, and infiltration of CD3+ T cells. J Immunol 179(7):4741–4753

    Google Scholar 

  • Arbuthnot P, Kew M (2001) Hepatitis B virus and hepatocellular carcinoma. Int J Exp Pathol 82(2):77–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arrowood JR, Hayney MS (2002) Immunization recommendations for adults with cancer. Ann Pharmacother 36(7–8):1219–1229

    Article  PubMed  Google Scholar 

  • Barber GN (2011) Cytoplasmic DNA innate immune pathways. Immunol Rev 243(1):99–108. doi:10.1111/j.1600-065X.2011.01051.x

    Article  CAS  PubMed  Google Scholar 

  • Bendandi M, Marillonnet S, Kandzia R, Thieme F, Nickstadt A, Herz S,… Gleba Y (2010) Rapid, high-yield production in plants of individualized idiotype vaccines for non-Hodgkin’s lymphoma. Ann Oncol 21(12):2420–2427. doi:10.1093/annonc/mdq256 (mdq256 [pii])

  • Berchuck A, Kamel A, Whitaker R, Kerns B, Olt G, Kinney R et al (1990) Overexpression of HER-2/neu is associated with poor survival in advanced epithelial ovarian cancer. Cancer Res 50(13):4087–4091

    CAS  PubMed  Google Scholar 

  • Bogen B (1996) Peripheral T cell tolerance as a tumor escape mechanism: deletion of CD4+ T cells specific for a monoclonal immunoglobulin idiotype secreted by a plasmacytoma. Eur J Immunol 26(11):2671–2679. doi:10.1002/eji.1830261119

    Article  CAS  PubMed  Google Scholar 

  • Boisguerin V, Castle JC, Loewer M, Diekmann J, Mueller F, Britten CM,… Sahin U (2014) Translation of genomics-guided RNA-based personalised cancer vaccines: towards the bedside. Br J Cancer 111(8):1469–1475. doi:10.1038/bjc.2013.820

    Google Scholar 

  • Bopp T, Becker C, Klein M, Klein-Hessling S, Palmetshofer A, Serfling E,… Schmitt E (2007) Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J Exp Med 204(6):1303–1310. doi:10.1084/jem.20062129

    Google Scholar 

  • Buchan S, Gronevik E, Mathiesen I, King CA, Stevenson FK, Rice J (2005) Electroporation as a “prime/boost” strategy for naked DNA vaccination against a tumor antigen. J Immunol 174(10):6292–6298

    Article  CAS  PubMed  Google Scholar 

  • Buonaguro L, Petrizzo A, Tornesello ML, Buonaguro FM (2011) Translating tumor antigens into cancer vaccines. Clin Vaccine Immunol 18(1):23–34. doi:10.1128/CVI.00286-10

    Article  CAS  PubMed  Google Scholar 

  • Calvo AC, Olivan S, Manzano R, Zaragoza P, Aguilera J, Osta R (2012) Fragment C of tetanus toxin: new insights into its neuronal signaling pathway. Int J Mol Sci 13(6):6883–6901. doi:10.3390/ijms13066883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos-Perez J, Rice J, Escors D, Collins M, Paterson A, Savelyeva N, Stevenson FK (2013) DNA fusion vaccine designs to induce tumor-lytic CD8+ T-cell attack via the immunodominant cysteine-containing epitope of NY-ESO 1. Int J Cancer 133(6):1400–1407. doi:10.1002/ijc.28156

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Cai SF, Fehniger TA, Song J, Collins LI, Piwnica-Worms DR, Ley TJ (2007) Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 27(4):635–646. doi:10.1016/j.immuni.2007.08.014

    Article  CAS  PubMed  Google Scholar 

  • Carbone DP, Ciernik IF, Kelley MJ, Smith MC, Nadaf S, Kavanaugh D,… Berzofsky JA (2005) Immunization with mutant p53- and K-ras-derived peptides in cancer patients: immune response and clinical outcome. J Clin Oncol 23(22):5099–5107. doi:10.1200/JCO.2005.03.158

    Google Scholar 

  • Chotprakaikiat W, Allen A, Bui-Munh D, Harden E, Jobsri J, Cavallo F, Gleba Y, Stevenson FK, Ottensmeier C, Klimyuk V, Savelyeva N (2016) A plant expressed conjugate vaccine breaks CD4 tolerance and induces potent immunity againstmetastatic Her2+ breast cancer. Oncoimmunology. doi:10.1080/2162402X.2016.1166323

    PubMed  PubMed Central  Google Scholar 

  • Chudley L, McCann K, Mander A, Tjelle T, Campos-Perez J, Godeseth R,… Ottensmeier C (2012) DNA fusion-gene vaccination in patients with prostate cancer induces high-frequency CD8(+) T-cell responses and increases PSA doubling time. Cancer Immunol Immunother 61(11):2161–2170. doi:10.1007/s00262-012-1270-0

    Google Scholar 

  • Chung Y, Tanaka S, Chu F, Nurieva RI, MartinezGJ, Rawal S,… Dong C (2011) Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat Med 17(8):983–988. doi:10.1038/nm.2426

    Google Scholar 

  • Cohen-Chalamish S, Hasson A, Weinberg D, Namer LS, Banai Y, Osman F, Kaempfer R (2009) Dynamic refolding of IFN-gamma mRNA enables it to function as PKR activator and translation template. Nat Chem Biol 5(12):896–903. doi:10.1038/nchembio.234

    Article  CAS  PubMed  Google Scholar 

  • Cook TM, Protheroe RT, Handel JM (2001) Tetanus: a review of the literature. Br J Anaesth 87(3):477–487

    Article  CAS  PubMed  Google Scholar 

  • Damodaran S, Olson EM (2012). Targeting the human epidermal growth factor receptor 2 pathway in breast cancer. Hosp Pract (1995) 40(4):7–15. doi:10.3810/hp.2012.10.997

    Google Scholar 

  • Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C (2004). Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303(5663):1529–1531. doi:10.1126/science.1093616

    Google Scholar 

  • Dorothee G, Vergnon I, Menez J, Echchakir H, Grunenwald D, Kubin M,… Mami-Chouaib F (2002) Tumor-infiltrating CD4+ T lymphocytes express APO2 ligand (APO2L)/TRAIL upon specific stimulation with autologous lung carcinoma cells: role of IFN-alpha on APO2L/TRAIL expression and -mediated cytotoxicity. J Immunol 169(2):809–817

    Google Scholar 

  • Einstein MH, Baron M, Levin MJ, Chatterjee A, Edwards RP, Zepp F,… Group HPVS (2009) Comparison of the immunogenicity and safety of Cervarix and Gardasil human papillomavirus (HPV) cervical cancer vaccines in healthy women aged 18–45 years. Hum Vaccin 5(10):705–719

    Google Scholar 

  • el-Shami K, Tirosh B, Bar-Haim E, Carmon L, Vadai E, Fridkin M,… Eisenbach L (1999) MHC class I-restricted epitope spreading in the context of tumor rejection following vaccination with a single immunodominant CTL epitope. Eur J Immunol 29(10):3295–3301. doi:10.1002/(SICI)1521-4141(199910)29:10<3295::AID-IMMU3295>3.0.CO;2-N

  • Facciabene A, Motz GT, Coukos G (2012) T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res 72(9):2162–2171. doi:10.1158/0008-5472.CAN-11-3687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forconi F, King CA, Sahota SS, Kennaway CK, Russell NH, Stevenson FK (2002) Insight into the potential for DNA idiotypic fusion vaccines designed for patients by analysing xenogeneic anti-idiotypic antibody responses. Immunology 107(1):39–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fratta E, Coral S, Covre A, Parisi G, Colizzi F, Danielli R,… Maio M (2011) The biology of cancer testis antigens: putative function, regulation and therapeutic potential. Mol Oncol 5(2):164–182. doi:10.1016/j.molonc.2011.02.001

    Google Scholar 

  • Geall AJ, Mandl CW, Ulmer JB (2013) RNA: the new revolution in nucleic acid vaccines. Semin Immunol 25(2):152–159. doi:10.1016/j.smim.2013.05.001

    Article  CAS  PubMed  Google Scholar 

  • George AJ, Folkard SG, Hamblin TJ, Stevenson FK (1988) Idiotypic vaccination as a treatment for a B cell lymphoma. J Immunol 141(6):2168–2174

    CAS  PubMed  Google Scholar 

  • Gerloni M, Xiong S, Mukerjee S, Schoenberger SP, Croft M, Zanetti M (2000) Functional cooperation between T helper cell determinants. Proc Natl Acad Sci USA 97(24):13269–13274. doi:10.1073/pnas.230429197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodnow CC, Crosbie J, Adelstein S, Lavoie TB, Smith-Gill SJ, Brink RA et al (1988) Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature 334(6184):676–682. doi:10.1038/334676a0

    Article  CAS  PubMed  Google Scholar 

  • Gregerson DS, Heuss ND, Lehmann U, McPherson SW (2009) Peripheral induction of tolerance by retinal antigen expression. J Immunol 183(2):814–822. doi:10.4049/jimmunol.0803748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haabeth OA, Tveita AA, Fauskanger M, Schjesvold F, Lorvik KB, Hofgaard PO,… Bogen B (2014) How do CD4(+) T cells detect and eliminate tumor cells that either lack or express MHC class II molecules? Front Immunol 5:174. doi:10.3389/fimmu.2014.00174

  • Hsieh CS, Lee HM, Lio CW (2012) Selection of regulatory T cells in the thymus. Nat Rev Immunol 12(3):157–167. doi:10.1038/nri3155

    CAS  PubMed  Google Scholar 

  • Hudis CA (2007) Trastuzumab–mechanism of action and use in clinical practice. N Engl J Med 357(1):39–51. doi:10.1056/NEJMra043186

    Article  CAS  PubMed  Google Scholar 

  • Jager D (2007) Potential target antigens for immunotherapy identified by serological expression cloning (SEREX). Methods Mol Biol 360:319–326. doi:10.1385/1-59745-165-7:319

    PubMed  Google Scholar 

  • Jobsri J, Allen A, Rajagopal D, Shipton M, Kanyuka K, Lomonossoff GP,… Savelyeva N (2015) Plant virus particles carrying tumour antigen activate TLR7 and induce high levels of protective antibody. PLoS One 10(2):e0118096. doi:10.1371/journal.pone.0118096

    Google Scholar 

  • Joseph-Pietras D, Gao Y, Zojer N, Ait-Tahar K, Banham AH, Pulford K,… Sahota SS (2010). DNA vaccines to target the cancer testis antigen PASD1 in human multiple myeloma. Leukemia 24(11):1951–1959. doi:10.1038/leu.2010.196

    Google Scholar 

  • Ju ST, Cui H, Panka DJ, Ettinger R, Marshak-Rothstein A (1994) Participation of target Fas protein in apoptosis pathway induced by CD4+ Th1 and CD8+ cytotoxic T cells. Proc Natl Acad Sci USA 91(10):4185–4189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF,… Investigators IS (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422. doi:10.1056/NEJMoa1001294

    Google Scholar 

  • Kaplan MJ, Ray D, Mo RR, Yung RL, Richardson BC (2000) TRAIL (Apo2 ligand) and TWEAK (Apo3 ligand) mediate CD4+ T cell killing of antigen-presenting macrophages. J Immunol 164(6):2897–2904

    Article  CAS  PubMed  Google Scholar 

  • Kariko K, Buckstein M, Ni H, Weissman D (2005) Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23(2):165–175. doi:10.1016/j.immuni.2005.06.008

    Article  CAS  PubMed  Google Scholar 

  • King CA, Spellerberg MB, Zhu D, Rice J, Sahota SS, Thompsett AR, Stevenson FK (1998) DNA vaccines with single-chain Fv fused to fragment C of tetanus toxin induce protective immunity against lymphoma and myeloma. Nat Med 4(11):1281–1286. doi:10.1038/3266

    Article  CAS  PubMed  Google Scholar 

  • King E, Ottensmeier C, Pollock KG (2015) Novel approaches for vaccination against HPV-induced cancers. Curr Top Microbiol Immunol. doi:10.1007/82_2015_430

    PubMed  Google Scholar 

  • Kraynyak KA, Bodles-Brakhop A, Bagarazzi M (2015) Tapping the potential of DNA delivery with electroporation for cancer immunotherapy. Curr Top Microbiol Immunol. doi:10.1007/82_2015_431

    PubMed  Google Scholar 

  • Kreiter S, Diken M, Selmi A, Tureci O, Sahin U (2011) Tumor vaccination using messenger RNA: prospects of a future therapy. Curr Opin Immunol 23(3):399–406. doi:10.1016/j.coi.2011.03.007

    Article  CAS  PubMed  Google Scholar 

  • Kreiter S, Vormehr M, van de Roemer N, Diken M, Lower M, Diekmann J,… Sahin U (2015) Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520(7549):692–696. doi:10.1038/nature14426

    Google Scholar 

  • Lanzardo S, Conti L, Rooke R, Ruiu R, Accart N, Bolli E,… Cavallo F (2016). Immunotargeting of antigen xCT attenuates stem-like cell behavior and metastatic progression in breast cancer. Cancer Res 76(1):62–72. doi:10.1158/0008-5472.CAN-15-1208

    Google Scholar 

  • Lebel ME, Chartrand K, Leclerc D, Lamarre A (2015) Plant viruses as nanoparticle-based vaccines and adjuvants. Vaccines (Basel) 3(3):620–637. doi:10.3390/vaccines3030620

    Article  Google Scholar 

  • Linnemann C, van Buuren MM, Bies L, Verdegaal EM, Schotte R, Calis JJ,… Schumacher TN (2015) High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat Med 21(1):81–85. doi:10.1038/nm.3773

    Google Scholar 

  • Low L, Mander A, McCann K, Dearnaley D, Tjelle T, Mathiesen I,… Ottensmeier CH (2009) DNA vaccination with electroporation induces increased antibody responses in patients with prostate cancer. Hum Gene Ther 20(11):1269–1278. doi:10.1089/hum.2009.067

    Google Scholar 

  • MacLennan IC (1994) Germinal centers. Annu Rev Immunol 12:117–139. doi:10.1146/annurev.iy.12.040194.001001

    Article  CAS  PubMed  Google Scholar 

  • Mariani L, Venuti A (2010) HPV vaccine: an overview of immune response, clinical protection, and new approaches for the future. J Transl Med 8:105. doi:10.1186/1479-5876-8-105

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin B, Auffray C, Delpoux A, Pommier A, Durand A, Charvet C,… Lucas B (2013). Highly self-reactive naive CD4 T cells are prone to differentiate into regulatory T cells. Nat Commun 4:2209. doi:10.1038/ncomms3209

  • McCann KJ, Godeseth R, Chudley L, Mander A, Di Genova G, Lloyd-Evans P,… Ottensmeier CH (2015). Idiotypic DNA vaccination for the treatment of multiple myeloma: safety and immunogenicity in a phase I clinical study. Cancer Immunol Immunother 64(8):1021–1032. doi:10.1007/s00262-015-1703-7

    Google Scholar 

  • McCann KJ, Mander A, Cazaly A, Chudley L, Stasakova J, Thirdborough SM,… Ottensmeier CH (2016) Targeting carcinoembryonic antigen with DNA vaccination: on-target adverse events link with immunological and clinical outcomes. Clin Cancer Res. doi:10.1158/1078-0432.CCR-15-2507

    Google Scholar 

  • McCarthy H, Ottensmeier CH, Hamblin TJ, Stevenson FK (2003) Anti-idiotype vaccines. Br J Haematol 123(5):770–781

    Article  CAS  PubMed  Google Scholar 

  • McCormick AA, Corbo TA, Wykoff-Clary S, Nguyen LV, Smith ML, Palmer KE, Pogue GP (2006a) TMV-peptide fusion vaccines induce cell-mediated immune responses and tumor protection in two murine models. Vaccine 24(40–41):6414–6423. doi:10.1016/j.vaccine.2006.06.003

    Article  CAS  PubMed  Google Scholar 

  • McCormick AA, Corbo TA, Wykoff-Clary S, Palmer KE, Pogue GP (2006b) Chemical conjugate TMV-peptide bivalent fusion vaccines improve cellular immunity and tumor protection. Bioconjug Chem 17(5):1330–1338. doi:10.1021/bc060124m

    Article  CAS  PubMed  Google Scholar 

  • Melief CJ, van Hall T, Arens R, Ossendorp F, van der Burg SH (2015) Therapeutic cancer vaccines. J Clin Invest 125(9):3401–3412. doi:10.1172/JCI80009

    Article  PubMed  PubMed Central  Google Scholar 

  • Merrell KT, Benschop RJ, Gauld SB, Aviszus K, Decote-Ricardo D, Wysocki LJ, Cambier JC (2006) Identification of anergic B cells within a wild-type repertoire. Immunity 25(6):953–962. doi:10.1016/j.immuni.2006.10.017

    Article  CAS  PubMed  Google Scholar 

  • Miller JM, Mesaros N, Van Der Wielen M, Baine Y (2011) Conjugate meningococcal vaccines development: GSK biologicals experience. Adv Prev Med 2011:846756. doi:10.4061/2011/846756

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitchell DA, Batich KA, Gunn MD, Huang MN, Sanchez-Perez L, Nair SK, Sampson JH (2015) Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature 519(7543):366–369. doi:10.1038/nature14320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monie A, Hung CF, Roden R, Wu TC (2008) Cervarix: a vaccine for the prevention of HPV 16, 18-associated cervical cancer. Biologics 2(1):97–105

    PubMed  Google Scholar 

  • Nemazee D (1996) Antigen receptor ‘capacity’ and the sensitivity of self-tolerance. Immunol Today 17(1):25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neninger Vinageras E, de la Torre A, Osorio Rodriguez M, Catala Ferrer M, Bravo I, Mendoza del Pino M,… Lage Davila A (2008) Phase II randomized controlled trial of an epidermal growth factor vaccine in advanced non-small-cell lung cancer. J Clin Oncol 26(9):1452–1458. doi:10.1200/JCO.2007.11.5980

    Google Scholar 

  • Neubauer V, Helting TB (1981) Structure of tetanus toxin: the arrangement of papain digestion products within the heavy chain-light chain framework of extracellular toxin. Biochim Biophys Acta 668(1):141–148

    Article  CAS  PubMed  Google Scholar 

  • Paludan SR, Bowie AG (2013) Immune sensing of DNA. Immunity 38(5):870–880. doi:10.1016/j.immuni.2013.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Diez A, Joncker NT, Choi K, Chan WF, Anderson CC, Lantz O, Matzinger P (2007) CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood 109(12):5346–5354. doi:10.1182/blood-2006-10-051318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Gracia JL, Labiano S, Rodriguez-Ruiz ME, Sanmamed MF, Melero I (2014) Orchestrating immune check-point blockade for cancer immunotherapy in combinations. Curr Opin Immunol 27:89–97. doi:10.1016/j.coi.2014.01.002

    Article  CAS  PubMed  Google Scholar 

  • Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437. doi:10.1038/nm.3394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quaratino S, Forssmann U, Marschner J (2014) New approaches in immunotherapy for the treatment of lung cancer. Curr Top Microbiol Immunol. doi:10.1007/82_2014_428

    PubMed  Google Scholar 

  • Quoix E, Lena H, Losonczy G, Forget F, Chouaid C, Papai Z,… Limacher JM (2015) TG4010 immunotherapy and first-line chemotherapy for advanced non-small-cell lung cancer (TIME): results from the phase 2b part of a randomised, double-blind, placebo-controlled, phase 2b/3 trial. Lancet Oncology. doi:10.1016/S1470-2045(15)00483-0

    Google Scholar 

  • Ribas A, Timmerman JM, Butterfield LH, Economou JS (2003) Determinant spreading and tumor responses after peptide-based cancer immunotherapy. Trends Immunol 24(2):58–61

    Article  CAS  PubMed  Google Scholar 

  • Rice J, King CA, Spellerberg MB, Fairweather N, Stevenson FK (1999) Manipulation of pathogen-derived genes to influence antigen presentation via DNA vaccines. Vaccine 17(23–24):3030–3038

    Article  CAS  PubMed  Google Scholar 

  • Rice J, Elliott T, Buchan S, Stevenson FK (2001) DNA fusion vaccine designed to induce cytotoxic T cell responses against defined peptide motifs: implications for cancer vaccines. J Immunol 167(3):1558–1565

    Article  CAS  PubMed  Google Scholar 

  • Rice J, Buchan S, Stevenson FK (2002) Critical components of a DNA fusion vaccine able to induce protective cytotoxic T cells against a single epitope of a tumor antigen. J Immunol 169(7):3908–3913

    Article  CAS  PubMed  Google Scholar 

  • Rice J, Ottensmeier CH, Stevenson FK (2008) DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 8(2):108–120. doi:10.1038/nrc2326 (nrc2326 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Rochman S (2015) New peptide vaccine for HER2-expressing breast tumors. J Natl Cancer Inst 107(2). doi:10.1093/jnci/djv022

    Google Scholar 

  • Rodriguez PC, Rodriguez G, Gonzalez G, Lage A (2010) Clinical development and perspectives of CIMAvax EGF, Cuban vaccine for non-small-cell lung cancer therapy. MEDICC Rev 12(1):17–23

    PubMed  Google Scholar 

  • Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L, Ye X,… Rudensky AY (2008) Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28(4):546–558. doi:10.1016/j.immuni.2008.02.017

    Google Scholar 

  • Sahin U, Kariko K, Tureci O (2014) mRNA-based therapeutics–developing a new class of drugs. Nat Rev Drug Discov 13(10):759–780. doi:10.1038/nrd4278

    Article  CAS  PubMed  Google Scholar 

  • Sansom DM (2000) CD28, CTLA-4 and their ligands: who does what and to whom? Immunology 101(2):169–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savelyeva N, Munday R, Spellerberg MB, Lomonossoff GP, Stevenson FK (2001) Plant viral genes in DNA idiotypic vaccines activate linked CD4+ T-cell mediated immunity against B-cell malignancies. Nat Biotechnol 19(8):760–764. doi:10.1038/90816 (90816 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Savelyeva N, Zhu D, Stevenson FK (2003) Engineering DNA vaccines that include plant virus coat proteins. Biotechnol Genet Eng Rev 20:101–114

    Article  CAS  PubMed  Google Scholar 

  • Schiller JT, Castellsague X, Garland SM (2012) A review of clinical trials of human papillomavirus prophylactic vaccines. Vaccine 30(Suppl 5):F123–F138. doi:10.1016/j.vaccine.2012.04.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348(6230):69–74. doi:10.1126/science.aaa4971

    Article  CAS  PubMed  Google Scholar 

  • Schumacher T, Bunse L, Pusch S, Sahm F, Wiestler B, Quandt J,… Platten M (2014) A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 512(7514):324–327. doi:10.1038/nature13387

    Google Scholar 

  • Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182

    Article  CAS  PubMed  Google Scholar 

  • Smith CL, Mirza F, Pasquetto V, Tscharke DC, Palmowski MJ, Dunbar PR,… Cerundolo V (2005) Immunodominance of poxviral-specific CTL in a human trial of recombinant-modified vaccinia Ankara. J Immunol 175(12):8431–8437

    Google Scholar 

  • Sonpavde G, Di Lorenzo G, Higano CS, Kantoff PW, Madan R, Shore ND (2012) The role of sipuleucel-T in therapy for castration-resistant prostate cancer: a critical analysis of the literature. Eur Urol 61(4):639–647. doi:10.1016/j.eururo.2011.10.027

    Article  CAS  PubMed  Google Scholar 

  • Spellerberg MB, Zhu D, Thompsett A, King CA, Hamblin TJ, Stevenson FK (1997) DNA vaccines against lymphoma: promotion of anti-idiotypic antibody responses induced by single chain Fv genes by fusion to tetanus toxin fragment C. J Immunol 159(4):1885–1892

    CAS  PubMed  Google Scholar 

  • Stevenson FK, Ottensmeier CH, Johnson P, Zhu D, Buchan SL, McCann KJ, Rice J (2004a) DNA vaccines to attack cancer. Proc Natl Acad Sci USA 101(Suppl 2):14646–14652. doi:10.1073/pnas.0404896101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevenson FK, Rice J, Ottensmeier CH, Thirdborough SM, Zhu D (2004b) DNA fusion gene vaccines against cancer: from the laboratory to the clinic. Immunol Rev 199:156–180. doi:10.1111/j.0105-2896.2004.00145.x

    Article  CAS  PubMed  Google Scholar 

  • Stevenson FK, Di Genova G, Ottensmeier CH, Savelyeva N (2013) Genetic vaccines against cancer: design, testing and clinical performance. In: Prendergast GC, Jaffee EM (eds) Cancer immunotherapy immune suppression and tumor growth, 2nd edn. Elsevier, United States, pp. 223–233

    Google Scholar 

  • Swain SM, Baselga J, Kim SB, Ro J, Semiglazov V, Campone M,… Group CS (2015) Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med 372(8):724–734. doi:10.1056/NEJMoa1413513

    Google Scholar 

  • Thomas WD, Hersey P (1998) TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in Fas ligand-resistant melanoma cells and mediates CD4 T cell killing of target cells. J Immunol 161(5):2195–2200

    CAS  PubMed  Google Scholar 

  • Timmerman JM (2009) Carrier protein conjugate vaccines: the “missing link” to improved antibody and CTL responses? Hum Vaccin 5(3):181–183

    Article  CAS  PubMed  Google Scholar 

  • Tiriveedhi V, Tucker N, Herndon J, Li L, Sturmoski M, Ellis M,… Gillanders WE (2014) Safety and preliminary evidence of biologic efficacy of a mammaglobin-a DNA vaccine in patients with stable metastatic breast cancer. Clin Cancer Res 20(23):5964–5975. doi:10.1158/1078-0432.CCR-14-0059

    Google Scholar 

  • Tran E, Turcotte S, Gros A, Robbins PF, Lu YC, Dudley ME,… Rosenberg SA (2014) Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344(6184):641–645. doi:10.1126/science.1251102

    Google Scholar 

  • Trimble CL, Morrow MP, Kraynyak KA, Shen X, Dallas M, Yan J,… Bagarazzi ML (2015). Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet 386(10008):2078–2088. doi:10.1016/S0140-6736(15)00239-1

    Google Scholar 

  • Tuse D, Ku N, Bendandi M, Becerra C, Collins R Jr, Langford N, Butler-Ransohoff JE (2015) Clinical safety and immunogenicity of tumor-targeted, plant-made Id-KLH conjugate vaccines for follicular lymphoma. Biomed Res Int 2015:648143. doi:10.1155/2015/648143

    Article  PubMed  PubMed Central  Google Scholar 

  • Vigneron N, Stroobant V, Van den Eynde BJ, van der Bruggen P (2013) Database of T cell-defined human tumor antigens: the 2013 update. Cancer Immun 13:15

    PubMed  PubMed Central  Google Scholar 

  • Villanueva H, de Cerio AL, Inoges S, Pastor F, Soldevilla MM, Bendandi M (2011) BiovaxID(R): a customized idiotype vaccine for the treatment of B-cell lymphoma. Expert Rev Vaccines 10(12):1661–1669. doi:10.1586/erv.11.132

    Article  CAS  PubMed  Google Scholar 

  • Vinuesa CG, Tangye SG, Moser B, Mackay CR (2005) Follicular B helper T cells in antibody responses and autoimmunity. Nat Rev Immunol 5(11):853–865. doi:10.1038/nri1714

    Article  CAS  PubMed  Google Scholar 

  • Wan YY, Flavell RA (2007) ‘Yin-Yang’ functions of transforming growth factor-beta and T regulatory cells in immune regulation. Immunol Rev 220:199–213. doi:10.1111/j.1600-065X.2007.00565.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warnakulasuriya S (2010) Living with oral cancer: epidemiology with particular reference to prevalence and life-style changes that influence survival. Oral Oncol 46(6):407–410. doi:10.1016/j.oraloncology.2010.02.015

    Article  PubMed  Google Scholar 

  • Weinberg AD, Morris NP, Kovacsovics-Bankowski M, Urba WJ, Curti BD (2011) Science gone translational: the OX40 agonist story. Immunol Rev 244(1):218–231. doi:10.1111/j.1600-065X.2011.01069.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiner LM, Dhodapkar MV, Ferrone S (2009) Monoclonal antibodies for cancer immunotherapy. Lancet 373(9668):1033–1040. doi:10.1016/S0140-6736(09)60251-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wherry EJ, Kurachi M (2015) Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15(8):486–499. doi:10.1038/nri3862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing Y, Hogquist KA (2012) T-cell tolerance: central and peripheral. Cold Spring Harb Perspect Biol 4(6). doi:10.1101/cshperspect.a006957

    Google Scholar 

  • Yewdell JW (2010) Designing CD8+ T cell vaccines: it’s not rocket science (yet). Curr Opin Immunol 22(3):402–410. doi:10.1016/j.coi.2010.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yewdell JW, Bennink JR (1999) Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu Rev Immunol 17:51–88. doi:10.1146/annurev.immunol.17.1.51

    Article  CAS  PubMed  Google Scholar 

  • Yi Q, Osterborg A, Bergenbrant S, Mellstedt H, Holm G, Lefvert AK (1995) Idiotype-reactive T-cell subsets and tumor load in monoclonal gammopathies. Blood 86(8):3043–3049

    CAS  PubMed  Google Scholar 

  • Zanetti M (2015) Tapping CD4 T cells for cancer immunotherapy: the choice of personalized genomics. J Immunol 194(5):2049–2056. doi:10.4049/jimmunol.1402669

    Article  CAS  PubMed  Google Scholar 

  • Zuo L, Li L, Wang Q, Fleming TP, You S (2009) Mammaglobin as a potential molecular target for breast cancer drug delivery. Cancer Cell Int 9:8. doi:10.1186/1475-2867-9-8

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Savelyeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Savelyeva, N. et al. (2016). Linked CD4 T Cell Help: Broadening Immune Attack Against Cancer by Vaccination. In: Savelyeva, N., Ottensmeier, C. (eds) Cancer Vaccines. Current Topics in Microbiology and Immunology, vol 405. Springer, Cham. https://doi.org/10.1007/82_2016_500

Download citation

Publish with us

Policies and ethics