Skip to main content

Transcriptional Control of NK Cells

  • Chapter
  • First Online:
Natural Killer Cells

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 395))

Abstract

Natural killer (NK) cells are innate lymphocytes that survey the environment and protect the host from infected and cancerous cells. As their name implies, NK cells represent an early line of defense during pathogen invasion by directly killing infected cells and secreting inflammatory cytokines. Although the function of NK cells was first described more than four decades ago, the development of this cytotoxic lineage is not well understood. In recent years, we have begun to identify specific transcription factors that control each stage of development and maturation, from ontogeny of the NK cell progenitor to the effector functions of activated NK cells in peripheral organs. This chapter highlights the transcription factors that are unique to NK cells, or shared between NK cells and other hematopoietic cell lineages, but govern the biology of this cytolytic lymphocyte.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aliahmad P, Kaye J (2008) Development of all CD4 T lineages requires nuclear factor TOX. J Exp Med 205:245–256

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Aliahmad P, de la Torre B, Kaye J (2010) Shared dependence on the DNA-binding factor TOX for the development of lymphoid tissue-inducer cell and NK cell lineages. Nat Immunol 11:945–952

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Aliahmad P, Seksenyan A, Kaye J (2012) The many roles of TOX in the immune system. Curr Opin Immunol 24:173–177

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Anderson SK (2006) Transcriptional regulation of NK cell receptors. Curr Top Microbiol Immunol 298:59–75

    PubMed  CAS  Google Scholar 

  • Andrews DM, Scalzo AA, Yokoyama WM, Smyth MJ, Degli-Esposti MA (2003) Functional interactions between dendritic cells and NK cells during viral infection. Nat Immunol 4:175–181

    Article  PubMed  CAS  Google Scholar 

  • Artis D, Spits H (2015) The biology of innate lymphoid cells. Nature 517:293–301

    Article  PubMed  CAS  Google Scholar 

  • Ashkar AA, Black GP, Wei Q, He H, Liang L, Head JR, Croy BA (2003) Assessment of requirements for IL-15 and IFN regulatory factors in uterine NK cell differentiation and function during pregnancy. J Immunol 171:2937–2944

    Article  PubMed  CAS  Google Scholar 

  • Bacon CM, Petricoin EF 3rd, Ortaldo JR, Rees RC, Larner AC, Johnston JA, O’Shea JJ (1995) Interleukin 12 induces tyrosine phosphorylation and activation of STAT4 in human lymphocytes. Proc Natl Acad Sci USA 92:7307–7311

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Baeuerle PA, Henkel T (1994) Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 12:141–179

    Article  PubMed  CAS  Google Scholar 

  • Bain G, Maandag EC, Izon DJ, Amsen D, Kruisbeek AM, Weintraub BC, Krop I, Schlissel MS, Feeney AJ, van Roon M et al (1994) E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79:885–892

    Article  PubMed  CAS  Google Scholar 

  • Bancerek J, Poss ZC, Steinparzer I, Sedlyarov V, Pfaffenwimmer T, Mikulic I, Dolken L, Strobl B, Muller M, Taatjes DJ et al (2013) CDK8 kinase phosphorylates transcription factor STAT1 to selectively regulate the interferon response. Immunity 38:250–262

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Baranek T, Manh TP, Alexandre Y, Maqbool MA, Cabeza JZ, Tomasello E, Crozat K, Bessou G, Zucchini N, Robbins SH et al (2012) Differential responses of immune cells to type I interferon contribute to host resistance to viral infection. Cell Host Microbe 12:571–584

    Article  PubMed  CAS  Google Scholar 

  • Barton K, Muthusamy N, Fischer C, Ting CN, Walunas TL, Lanier LL, Leiden JM (1998) The Ets-1 transcription factor is required for the development of natural killer cells in mice. Immunity 9:555–563

    Article  PubMed  CAS  Google Scholar 

  • Beaulieu AM, Zawislak CL, Nakayama T, Sun JC (2014) The transcription factor Zbtb32 controls the proliferative burst of virus-specific natural killer cells responding to infection. Nat Immunol 15:546–553

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Becknell B, Hughes TL, Freud AG, Blaser BW, Yu J, Trotta R, Mao HC, Caligiuri de Jesus ML, Alghothani M, Benson DM Jr et al (2007) Hlx homeobox transcription factor negatively regulates interferon-gamma production in monokine-activated natural killer cells. Blood 109:2481–2487

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Beima KM, Miazgowicz MM, Lewis MD, Yan PS, Huang TH, Weinmann AS (2006) T-bet binding to newly identified target gene promoters is cell type-independent but results in variable context-dependent functional effects. J Biol Chem 281:11992–12000

    Article  PubMed  CAS  Google Scholar 

  • Benezra R, Davis RL, Lockshon D, Turner DL, Weintraub H (1990) The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61:49–59

    Article  PubMed  CAS  Google Scholar 

  • Bernink JH, Peters CP, Munneke M, te Velde AA, Meijer SL, Weijer K, Hreggvidsdottir HS, Heinsbroek SE, Legrand N, Buskens CJ et al (2013) Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol 14:221–229

    Article  PubMed  CAS  Google Scholar 

  • Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17:189–220

    Article  PubMed  CAS  Google Scholar 

  • Boggs SS, Trevisan M, Patrene K, Geogopoulos K (1998) Lack of natural killer cell precursors in fetal liver of Ikaros knockout mutant mice. Nat Immun 16:137–145

    Article  PubMed  CAS  Google Scholar 

  • Boos MD, Yokota Y, Eberl G, Kee BL (2007) Mature natural killer cell and lymphoid tissue-inducing cell development requires Id2-mediated suppression of E protein activity. J Exp Med 204:1119–1130

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Borghesi L, Aites J, Nelson S, Lefterov P, James P, Gerstein R (2005) E47 is required for V(D)J recombinase activity in common lymphoid progenitors. J Exp Med 202:1669–1677

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Busslinger M (2004) Transcriptional control of early B cell development. Annu Rev Immunol 22:55–79

    Article  PubMed  CAS  Google Scholar 

  • Carlyle JR, Michie AM, Furlonger C, Nakano T, Lenardo MJ, Paige CJ, Zuniga-Pflucker JC (1997) Identification of a novel developmental stage marking lineage commitment of progenitor thymocytes. J Exp Med 186:173–182

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Carotta S, Brady J, Wu L, Nutt SL (2006) Transient Notch signaling induces NK cell potential in Pax5-deficient pro-B cells. Eur J Immunol 36:3294–3304

    Article  PubMed  CAS  Google Scholar 

  • Carotta S, Dakic A, D’Amico A, Pang SH, Greig KT, Nutt SL, Wu L (2010) The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner. Immunity 32:628–641

    Article  PubMed  CAS  Google Scholar 

  • Chang HC, Zhang S, Thieu VT, Slee RB, Bruns HA, Laribee RN, Klemsz MJ, Kaplan MH (2005) PU.1 expression delineates heterogeneity in primary Th2 cells. Immunity 22:693–703

    Article  PubMed  CAS  Google Scholar 

  • Cherrier M, Sawa S, Eberl G (2012) Notch, Id2, and RORgammat sequentially orchestrate the fetal development of lymphoid tissue inducer cells. J Exp Med 209:729–740

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chiossone L, Chaix J, Fuseri N, Roth C, Vivier E, Walzer T (2009) Maturation of mouse NK cells is a 4-stage developmental program. Blood 113:5488–5496

    Article  PubMed  CAS  Google Scholar 

  • Choi HJ, Geng Y, Cho H, Li S, Giri PK, Felio K, Wang CR (2011) Differential requirements for the Ets transcription factor Elf-1 in the development of NKT cells and NK cells. Blood 117:1880–1887

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chow KT, Timblin GA, McWhirter SM, Schlissel MS (2013) MK5 activates Rag transcription via Foxo1 in developing B cells. J Exp Med 210:1621–1634

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cichocki F, Schlums H, Li H, Stache V, Holmes T, Lenvik TR, Chiang SC, Miller JS, Meeths M, Anderson SK et al (2014) Transcriptional regulation of Munc13-4 expression in cytotoxic lymphocytes is disrupted by an intronic mutation associated with a primary immunodeficiency. J Exp Med 211:1079–1091

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Collins A, Littman DR, Taniuchi I (2009) RUNX proteins in transcription factor networks that regulate T-cell lineage choice. Nat Rev Immunol 9:106–115

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Colucci F, Di Santo JP (2000) The receptor tyrosine kinase c-kit provides a critical signal for survival, expansion, and maturation of mouse natural killer cells. Blood 95:984–991

    PubMed  CAS  Google Scholar 

  • Colucci F, Samson SI, DeKoter RP, Lantz O, Singh H, Di Santo JP (2001) Differential requirement for the transcription factor PU.1 in the generation of natural killer cells versus B and T cells. Blood 97:2625–2632

    Article  PubMed  CAS  Google Scholar 

  • Constantinides MG, McDonald BD, Verhoef PA, Bendelac A (2014) A committed precursor to innate lymphoid cells. Nature 508:397–401

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cortes M, Georgopoulos K (2004) Aiolos is required for the generation of high affinity bone marrow plasma cells responsible for long-term immunity. J Exp Med 199:209–219

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cortes M, Wong E, Koipally J, Georgopoulos K (1999) Control of lymphocyte development by the Ikaros gene family. Curr Opin Immunol 11:167–171

    Article  PubMed  CAS  Google Scholar 

  • Cortez VS, Fuchs A, Cella M, Gilfillan S, Colonna M (2014) Cutting edge: Salivary gland NK cells develop independently of Nfil3 in steady-state. J Immunol 192:4487–4491

    Article  PubMed  CAS  Google Scholar 

  • Cowell IG (2002) E4BP4/NFIL3, a PAR-related bZIP factor with many roles. BioEssays 24:1023–1029

    Article  PubMed  CAS  Google Scholar 

  • Crotta S, Gkioka A, Male V, Duarte JH, Davidson S, Nisoli I, Brady HJ, Wack A (2014) The transcription factor E4BP4 is not required for extramedullary pathways of NK cell development. J Immunol 192:2677–2688

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Crotty S, Johnston RJ, Schoenberger SP (2010) Effectors and memories: Bcl-6 and Blimp-1 in T and B lymphocyte differentiation. Nat Immunol 11:114–120

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cruz-Guilloty F, Pipkin ME, Djuretic IM, Levanon D, Lotem J, Lichtenheld MG, Groner Y, Rao A (2009) Runx3 and T-box proteins cooperate to establish the transcriptional program of effector CTLs. J Exp Med 206:51–59

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dakic A, Metcalf D, Di Rago L, Mifsud S, Wu L, Nutt SL (2005) PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. J Exp Med 201:1487–1502

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Daussy C, Faure F, Mayol K, Viel S, Gasteiger G, Charrier E, Bienvenu J, Henry T, Debien E, Hasan UA et al (2014) T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J Exp Med 211:563–577

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • De Obaldia ME, Bhandoola A (2015) Transcriptional regulation of innate and adaptive lymphocyte lineages. Annu Rev Immunol 33:607–642

    Article  PubMed  CAS  Google Scholar 

  • DeHart SL, Heikens MJ, Tsai S (2005) Jagged2 promotes the development of natural killer cells and the establishment of functional natural killer cell lines. Blood 105:3521–3527

    Article  PubMed  CAS  Google Scholar 

  • DeKoter RP, Lee HJ, Singh H (2002) PU.1 regulates expression of the interleukin-7 receptor in lymphoid progenitors. Immunity 16:297–309

    Article  PubMed  CAS  Google Scholar 

  • Deng Y, Kerdiles Y, Chu J, Yuan S, Wang Y, Chen X, Mao H, Zhang L, Zhang J, Hughes T et al (2015) Transcription factor Foxo1 is a negative regulator of natural killer cell maturation and function. Immunity 42:457–470

    Article  PubMed  CAS  Google Scholar 

  • Di Santo JP (2006) Natural killer cell developmental pathways: a question of balance. Annu Rev Immunol 24:257–286

    Article  PubMed  CAS  Google Scholar 

  • Dias S, Mansson R, Gurbuxani S, Sigvardsson M, Kee BL (2008) E2A proteins promote development of lymphoid-primed multipotent progenitors. Immunity 29:217–227

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dickinson RE, Griffin H, Bigley V, Reynard LN, Hussain R, Haniffa M, Lakey JH, Rahman T, Wang XN, McGovern N et al (2011) Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency. Blood 118:2656–2658

    Article  PubMed  CAS  Google Scholar 

  • Djuretic IM, Levanon D, Negreanu V, Groner Y, Rao A, Ansel KM (2007) Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nat Immunol 8:145–153

    Article  PubMed  CAS  Google Scholar 

  • Douagi I, Colucci F, Di Santo JP, Cumano A (2002) Identification of the earliest prethymic bipotent T/NK progenitor in murine fetal liver. Blood 99:463–471

    Article  PubMed  CAS  Google Scholar 

  • Duncan GS, Mittrucker HW, Kagi D, Matsuyama T, Mak TW (1996) The transcription factor interferon regulatory factor-1 is essential for natural killer cell function in vivo. J Exp Med 184:2043–2048

    Article  PubMed  CAS  Google Scholar 

  • Eckelhart E, Warsch W, Zebedin E, Simma O, Stoiber D, Kolbe T, Rulicke T, Mueller M, Casanova E, Sexl V (2011) A novel Ncr1-Cre mouse reveals the essential role of STAT5 for NK-cell survival and development. Blood 117:1565–1573

    Article  PubMed  CAS  Google Scholar 

  • Felices M, Ankarlo DE, Lenvik TR, Nelson HH, Blazar BR, Verneris MR, Miller JS (2014) Notch signaling at later stages of NK cell development enhances KIR expression and functional maturation. J Immunol 193:3344–3354

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Firth MA, Madera S, Beaulieu AM, Gasteiger G, Castillo EF, Schluns KS, Kubo M, Rothman PB, Vivier E, Sun JC (2013) Nfil3-independent lineage maintenance and antiviral response of natural killer cells. J Exp Med 210:2981–2990

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Freud AG, Yokohama A, Becknell B, Lee MT, Mao HC, Ferketich AK, Caligiuri MA (2006) Evidence for discrete stages of human natural killer cell differentiation in vivo. J Exp Med 203:1033–1043

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fuchs A, Vermi W, Lee JS, Lonardi S, Gilfillan S, Newberry RD, Cella M, Colonna M (2013) Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. Immunity 38:769–781

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Galon J, Sudarshan C, Ito S, Finbloom D, O’Shea JJ (1999) IL-12 induces IFN regulating factor-1 (IRF-1) gene expression in human NK and T cells. J Immunol 162:7256–7262

    PubMed  CAS  Google Scholar 

  • Garcia-Sastre A, Biron CA (2006) Type 1 interferons and the virus-host relationship: a lesson in detente. Science 312:879–882

    Article  PubMed  CAS  Google Scholar 

  • Gascoyne DM, Long E, Veiga-Fernandes H, de Boer J, Williams O, Seddon B, Coles M, Kioussis D, Brady HJ (2009) The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat Immunol 10:1118–1124

    Article  PubMed  CAS  Google Scholar 

  • Gasteiger G, Rudensky AY (2014) Interactions between innate and adaptive lymphocytes. Nat Rev Immunol 14:631–639

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Geiger TL, Abt MC, Gasteiger G, Firth MA, O’Connor MH, Geary CD, O’Sullivan TE, van den Brink MR, Pamer EG, Hanash AM et al (2014) Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens. J Exp Med 211:1723–1731

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Georgopoulos K, Moore DD, Derfler B (1992) Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science 258:808–812

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos K, Bigby M, Wang JH, Molnar A, Wu P, Winandy S, Sharpe A (1994) The Ikaros gene is required for the development of all lymphoid lineages. Cell 79:143–156

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos K, Winandy S, Avitahl N (1997) The role of the Ikaros gene in lymphocyte development and homeostasis. Annu Rev Immunol 15:155–176

    Article  PubMed  CAS  Google Scholar 

  • Gerondakis S, Siebenlist U (2010) Roles of the NF-kappaB pathway in lymphocyte development and function. Cold Spring Harb Perspect Biol 2:a000182

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ghosh S, Hayden MS (2012) Celebrating 25 years of NF-kappaB research. Immunol Rev 246:5–13

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gill S, Vasey AE, De Souza A, Baker J, Smith AT, Kohrt HE, Florek M, Gibbs KD Jr, Tate K, Ritchie DS et al (2012) Rapid development of exhaustion and down-regulation of eomesodermin limit the antitumor activity of adoptively transferred murine natural killer cells. Blood 119:5758–5768

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Goetz TL, Gu TL, Speck NA, Graves BJ (2000) Auto-inhibition of Ets-1 is counteracted by DNA binding cooperativity with core-binding factor alpha2. Mol Cell Biol 20:81–90

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gomez-Lozano N, Trompeter HI, de Pablo R, Estefania E, Uhrberg M, Vilches C (2007) Epigenetic silencing of potentially functional KIR2DL5 alleles: implications for the acquisition of KIR repertoires by NK cells. Eur J Immunol 37:1954–1965

    Article  PubMed  CAS  Google Scholar 

  • Good SR, Thieu VT, Mathur AN, Yu Q, Stritesky GL, Yeh N, O’Malley JT, Perumal NB, Kaplan MH (2009) Temporal induction pattern of STAT4 target genes defines potential for Th1 lineage-specific programming. J Immunol 183:3839–3847

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gordon SM, Chaix J, Rupp LJ, Wu J, Madera S, Sun JC, Lindsten T, Reiner SL (2012) The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation. Immunity 36:55–67

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Grant LR, Yao ZJ, Hedrich CM, Wang F, Moorthy A, Wilson K, Ranatunga D, Bream JH (2008) Stat4-dependent, T-bet-independent regulation of IL-10 in NK cells. Genes Immun 9:316–327

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Grossman J, Cuellar-Rodriguez J, Gea-Banacloche J, Zerbe C, Calvo K, Hughes T, Hakim F, Cole K, Parta M, Freeman A et al (2014) Nonmyeloablative allogeneic hematopoietic stem cell transplantation for GATA2 deficiency. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant 20:1940–1948

    Article  Google Scholar 

  • Gu TL, Goetz TL, Graves BJ, Speck NA (2000) Auto-inhibition and partner proteins, core-binding factor beta (CBFbeta) and Ets-1, modulate DNA binding by CBFalpha2 (AML1). Mol Cell Biol 20:91–103

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Guo Y, Maillard I, Chakraborti S, Rothenberg EV, Speck NA (2008) Core binding factors are necessary for natural killer cell development and cooperate with Notch signaling during T-cell specification. Blood 112:480–492

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hahm K, Cobb BS, McCarty AS, Brown KE, Klug CA, Lee R, Akashi K, Weissman IL, Fisher AG, Smale ST (1998) Helios, a T cell-restricted Ikaros family member that quantitatively associates with Ikaros at centromeric heterochromatin. Genes Dev 12:782–796

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hart SM, Foroni L (2002) Core binding factor genes and human leukemia. Haematologica 87:1307–1323

    PubMed  CAS  Google Scholar 

  • Hatton RD, Harrington LE, Luther RJ, Wakefield T, Janowski KM, Oliver JR, Lallone RL, Murphy KM, Weaver CT (2006) A distal conserved sequence element controls Ifng gene expression by T cells and NK cells. Immunity 25:717–729

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa Y, Smyth MJ (2006) CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. J Immunol 176:1517–1524

    Article  PubMed  CAS  Google Scholar 

  • Hedrick SM, Hess Michelini R, Doedens AL, Goldrath AW, Stone EL (2012) FOXO transcription factors throughout T cell biology. Nat Rev Immunol 12:649–661

    Article  PubMed  CAS  Google Scholar 

  • Heemskerk MH, Blom B, Nolan G, Stegmann AP, Bakker AQ, Weijer K, Res PC, Spits H (1997) Inhibition of T cell and promotion of natural killer cell development by the dominant negative helix loop helix factor Id3. J Exp Med 186:1597–1602

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Held W, Kunz B, Lowin-Kropf B, van de Wetering M, Clevers H (1999) Clonal acquisition of the Ly49A NK cell receptor is dependent on the trans-acting factor TCF-1. Immunity 11:433–442

    Article  PubMed  CAS  Google Scholar 

  • Held W, Clevers H, Grosschedl R (2003) Redundant functions of TCF-1 and LEF-1 during T and NK cell development, but unique role of TCF-1 for Ly49 NK cell receptor acquisition. Eur J Immunol 33:1393–1398

    Article  PubMed  CAS  Google Scholar 

  • Hess Michelini R, Doedens AL, Goldrath AW, Hedrick SM (2013) Differentiation of CD8 memory T cells depends on Foxo1. J Exp Med 210:1189–1200

    Article  PubMed  CAS  Google Scholar 

  • Hesslein DG, Lanier LL (2011) Transcriptional control of natural killer cell development and function. Adv Immunol 109:45–85

    Article  PubMed  CAS  Google Scholar 

  • Ho IC, Tai TS, Pai SY (2009) GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation. Nat Rev Immunol 9:125–135

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hollenhorst PC, McIntosh LP, Graves BJ (2011) Genomic and biochemical insights into the specificity of ETS transcription factors. Annu Rev Biochem 80:437–471

    Article  PubMed  CAS  Google Scholar 

  • Holmes ML, Huntington ND, Thong RP, Brady J, Hayakawa Y, Andoniou CE, Fleming P, Shi W, Smyth GK, Degli-Esposti MA et al (2014) Peripheral natural killer cell maturation depends on the transcription factor Aiolos. EMBO J 33:2721–2734

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Huntington ND, Puthalakath H, Gunn P, Naik E, Michalak EM, Smyth MJ, Tabarias H, Degli-Esposti MA, Dewson G, Willis SN et al (2007a) Interleukin 15-mediated survival of natural killer cells is determined by interactions among Bim, Noxa and Mcl-1. Nat Immunol 8:856–863

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Huntington ND, Tabarias H, Fairfax K, Brady J, Hayakawa Y, Degli-Esposti MA, Smyth MJ, Tarlinton DM, Nutt SL (2007b) NK cell maturation and peripheral homeostasis is associated with KLRG1 up-regulation. J Immunol 178:4764–4770

    Article  PubMed  CAS  Google Scholar 

  • Igarashi H, Gregory SC, Yokota T, Sakaguchi N, Kincade PW (2002) Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity 17:117–130

    Article  PubMed  CAS  Google Scholar 

  • Ikawa T, Kawamoto H, Fujimoto S, Katsura Y (1999) Commitment of common T/natural killer (NK) progenitors to unipotent T and NK progenitors in the murine fetal thymus revealed by a single progenitor assay. J Exp Med 190:1617–1626

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ikawa T, Fujimoto S, Kawamoto H, Katsura Y, Yokota Y (2001) Commitment to natural killer cells requires the helix-loop-helix inhibitor Id2. Proc Natl Acad Sci USA 98:5164–5169

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ikawa T, Hirose S, Masuda K, Kakugawa K, Satoh R, Shibano-Satoh A, Kominami R, Katsura Y, Kawamoto H (2010) An essential developmental checkpoint for production of the T cell lineage. Science 329:93–96

    Article  PubMed  CAS  Google Scholar 

  • Imada K, Bloom ET, Nakajima H, Horvath-Arcidiacono JA, Udy GB, Davey HW, Leonard WJ (1998) Stat5b is essential for natural killer cell-mediated proliferation and cytolytic activity. J Exp Med 188:2067–2074

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Intlekofer AM, Takemoto N, Wherry EJ, Longworth SA, Northrup JT, Palanivel VR, Mullen AC, Gasink CR, Kaech SM, Miller JD et al (2005) Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat Immunol 6:1236–1244

    Article  PubMed  CAS  Google Scholar 

  • Intlekofer AM, Banerjee A, Takemoto N, Gordon SM, Dejong CS, Shin H, Hunter CA, Wherry EJ, Lindsten T, Reiner SL (2008) Anomalous type 17 response to viral infection by CD8+ T cells lacking T-bet and eomesodermin. Science 321:408–411

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ito A, Kataoka TR, Kim DK, Koma Y, Lee YM, Kitamura Y (2001) Inhibitory effect on natural killer activity of microphthalmia transcription factor encoded by the mutant mi allele of mice. Blood 97:2075–2083

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki H, Somoza C, Shigematsu H, Duprez EA, Iwasaki-Arai J, Mizuno S, Arinobu Y, Geary K, Zhang P, Dayaram T et al (2005) Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood 106:1590–1600

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jaleco AC, Neves H, Hooijberg E, Gameiro P, Clode N, Haury M, Henrique D, Parreira L (2001) Differential effects of Notch ligands Delta-1 and Jagged-1 in human lymphoid differentiation. J Exp Med 194:991–1002

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jenne CN, Enders A, Rivera R, Watson SR, Bankovich AJ, Pereira JP, Xu Y, Roots CM, Beilke JN, Banerjee A et al (2009) T-bet-dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. J Exp Med 206:2469–2481

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • John LB, Ward AC (2011) The Ikaros gene family: transcriptional regulators of hematopoiesis and immunity. Mol Immunol 48:1272–1278

    Article  PubMed  CAS  Google Scholar 

  • Jouanguy E, Gineau L, Cottineau J, Beziat V, Vivier E, Casanova JL (2013) Inborn errors of the development of human natural killer cells. Curr Opin Allergy Clin Immunol 13:589–595

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kaisho T, Tsutsui H, Tanaka T, Tsujimura T, Takeda K, Kawai T, Yoshida N, Nakanishi K, Akira S (1999) Impairment of natural killer cytotoxic activity and interferon gamma production in CCAAT/enhancer binding protein gamma-deficient mice. J Exp Med 190:1573–1582

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kallies A, Carotta S, Huntington ND, Bernard NJ, Tarlinton DM, Smyth MJ, Nutt SL (2011) A role for Blimp1 in the transcriptional network controlling natural killer cell maturation. Blood 117:1869–1879

    Article  PubMed  CAS  Google Scholar 

  • Kamizono S, Duncan GS, Seidel MG, Morimoto A, Hamada K, Grosveld G, Akashi K, Lind EF, Haight JP, Ohashi PS et al (2009) Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J Exp Med 206:2977–2986

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kaplan MH, Sun YL, Hoey T, Grusby MJ (1996) Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 382:174–177

    Article  PubMed  CAS  Google Scholar 

  • Karo JM, Schatz DG, Sun JC (2014) The RAG recombinase dictates functional heterogeneity and cellular fitness in natural killer cells. Cell 159:94–107

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Karube K, Nakagawa M, Tsuzuki S, Takeuchi I, Honma K, Nakashima Y, Shimizu N, Ko YH, Morishima Y, Ohshima K et al (2011) Identification of FOXO3 and PRDM1 as tumor-suppressor gene candidates in NK-cell neoplasms by genomic and functional analyses. Blood 118:3195–3204

    Article  PubMed  CAS  Google Scholar 

  • Kashiwada M, Levy DM, McKeag L, Murray K, Schroder AJ, Canfield SM, Traver G, Rothman PB (2010) IL-4-induced transcription factor NFIL3/E4BP4 controls IgE class switching. Proc Natl Acad Sci USA 107:821–826

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kataoka TR, Komazawa N, Oboki K, Morii E, Nakano T (2005) Reduced expression of IL-12 receptor beta2 and IL-18 receptor alpha genes in natural killer cells and macrophages derived from B6-mi/mi mice. Lab Invest J Tech Methods Pathol 85:146–153

    Article  CAS  Google Scholar 

  • Kee BL (2009) E and ID proteins branch out. Nat Rev Immunol 9:175–184

    Article  PubMed  CAS  Google Scholar 

  • Kijima M, Yamaguchi T, Ishifune C, Maekawa Y, Koyanagi A, Yagita H, Chiba S, Kishihara K, Shimada M, Yasutomo K (2008) Dendritic cell-mediated NK cell activation is controlled by Jagged2-Notch interaction. Proc Natl Acad Sci USA 105:7010–7015

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kim S, Iizuka K, Kang HS, Dokun A, French AR, Greco S, Yokoyama WM (2002) In vivo developmental stages in murine natural killer cell maturation. Nat Immunol 3:523–528

    Article  PubMed  CAS  Google Scholar 

  • Kim MV, Ouyang W, Liao W, Zhang MQ, Li MO (2013) The transcription factor Foxo1 controls central-memory CD8+ T cell responses to infection. Immunity 39:286–297

    Article  PubMed  CAS  Google Scholar 

  • Klemsz MJ, McKercher SR, Celada A, Van Beveren C, Maki RA (1990) The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene. Cell 61:113–124

    Article  PubMed  CAS  Google Scholar 

  • Klose CS, Flach M, Mohle L, Rogell L, Hoyler T, Ebert K, Fabiunke C, Pfeifer D, Sexl V, Fonseca-Pereira D et al (2014) Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157:340–356

    Article  PubMed  CAS  Google Scholar 

  • Klug CA, Morrison SJ, Masek M, Hahm K, Smale ST, Weissman IL (1998) Hematopoietic stem cells and lymphoid progenitors express different Ikaros isoforms, and Ikaros is localized to heterochromatin in immature lymphocytes. Proc Natl Acad Sci USA 95:657–662

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Koizumi H, Horta MF, Youn BS, Fu KC, Kwon BS, Young JD, Liu CC (1993) Identification of a killer cell-specific regulatory element of the mouse perforin gene: an Ets-binding site-homologous motif that interacts with Ets-related proteins. Mol Cell Biol 13:6690–6701

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kondo M, Weissman IL, Akashi K (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91:661–672

    Article  PubMed  CAS  Google Scholar 

  • Kovalovsky D, Uche OU, Eladad S, Hobbs RM, Yi W, Alonzo E, Chua K, Eidson M, Kim HJ, Im JS et al (2008) The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nat Immunol 9:1055–1064

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kucuk C, Iqbal J, Hu X, Gaulard P, De Leval L, Srivastava G, Au WY, McKeithan TW, Chan WC (2011) PRDM1 is a tumor suppressor gene in natural killer cell malignancies. Proc Natl Acad Sci USA 108:20119–20124

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kumano K, Chiba S, Kunisato A, Sata M, Saito T, Nakagami-Yamaguchi E, Yamaguchi T, Masuda S, Shimizu K, Takahashi T et al (2003) Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity 18:699–711

    Article  PubMed  CAS  Google Scholar 

  • Kunz B, Held W (2001) Positive and negative roles of the trans-acting T cell factor-1 for the acquisition of distinct Ly-49 MHC class I receptors by NK cells. J Immunol 166:6181–6187

    Article  PubMed  CAS  Google Scholar 

  • Lacorazza HD, Miyazaki Y, Di Cristofano A, Deblasio A, Hedvat C, Zhang J, Cordon-Cardo C, Mao S, Pandolfi PP, Nimer SD (2002) The ETS protein MEF plays a critical role in perforin gene expression and the development of natural killer and NK-T cells. Immunity 17:437–449

    Article  PubMed  CAS  Google Scholar 

  • Lai CB, Mager DL (2012) Role of runt-related transcription factor 3 (RUNX3) in transcription regulation of natural cytotoxicity receptor 1 (NCR1/NKp46), an activating natural killer (NK) cell receptor. J Biol Chem 287:7324–7334

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lanier LL (2008) Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 9:495–502

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lee CK, Rao DT, Gertner R, Gimeno R, Frey AB, Levy DE (2000) Distinct requirements for IFNs and STAT1 in NK cell function. J Immunol 165:3571–3577

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Cella M, McDonald KG, Garlanda C, Kennedy GD, Nukaya M, Mantovani A, Kopan R, Bradfield CA, Newberry RD et al (2012) AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol 13:144–151

    Article  CAS  Google Scholar 

  • Lehar SM, Dooley J, Farr AG, Bevan MJ (2005) Notch ligands Delta 1 and Jagged1 transmit distinct signals to T-cell precursors. Blood 105:1440–1447

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lehtonen A, Lund R, Lahesmaa R, Julkunen I, Sareneva T, Matikainen S (2003) IFN-alpha and IL-12 activate IFN regulatory factor 1 (IRF-1), IRF-4, and IRF-8 gene expression in human NK and T cells. Cytokine 24:81–90

    Article  PubMed  CAS  Google Scholar 

  • Lekstrom-Himes J, Xanthopoulos KG (1998) Biological role of the CCAAT/enhancer-binding protein family of transcription factors. J Biol Chem 273:28545–28548

    Article  PubMed  CAS  Google Scholar 

  • Leonard WJ, O’Shea JJ (1998) Jaks and STATs: biological implications. Annu Rev Immunol 16:293–322

    Article  PubMed  CAS  Google Scholar 

  • Levanon D, Groner Y (2004) Structure and regulated expression of mammalian RUNX genes. Oncogene 23:4211–4219

    Article  PubMed  CAS  Google Scholar 

  • Levanon D, Negreanu V, Lotem J, Bone KR, Brenner O, Leshkowitz D, Groner Y (2014) Transcription factor Runx3 regulates interleukin-15-dependent natural killer cell activation. Mol Cell Biol 34:1158–1169

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Levy DE, Darnell JE Jr (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3:651–662

    Article  PubMed  CAS  Google Scholar 

  • Lewis MD, Miller SA, Miazgowicz MM, Beima KM, Weinmann AS (2007) T-bet’s ability to regulate individual target genes requires the conserved T-box domain to recruit histone methyltransferase activity and a separate family member-specific transactivation domain. Mol Cell Biol 27:8510–8521

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li L, Leid M, Rothenberg EV (2010a) An early T cell lineage commitment checkpoint dependent on the transcription factor Bcl11b. Science 329:89–93

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li P, Burke S, Wang J, Chen X, Ortiz M, Lee SC, Lu D, Campos L, Goulding D, Ng BL et al (2010b) Reprogramming of T cells to natural killer-like cells upon Bcl11b deletion. Science 329:85–89

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lichtenheld MG, Podack ER (1992) Structure and function of the murine perforin promoter and upstream region. Reciprocal gene activation or silencing in perforin positive and negative cells. J Immunol 149:2619–2626

    PubMed  CAS  Google Scholar 

  • Lin JX, Li P, Liu D, Jin HT, He J, Rasheed AUM, Rochman Y, Wang L, Cui K, Liu C et al (2012) Critical Role of STAT5 transcription factor tetramerization for cytokine responses and normal immune function. Immunity 36:586–599

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lohoff M, Duncan GS, Ferrick D, Mittrucker HW, Bischof S, Prechtl S, Rollinghoff M, Schmitt E, Pahl A, Mak TW (2000) Deficiency in the transcription factor interferon regulatory factor (IRF)-2 leads to severely compromised development of natural killer and T helper type 1 cells. J Exp Med 192:325–336

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lotem J, Levanon D, Negreanu V, Leshkowitz D, Friedlander G, Groner Y (2013) Runx3-mediated transcriptional program in cytotoxic lymphocytes. PLoS ONE 8:e80467

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lucas M, Schachterle W, Oberle K, Aichele P, Diefenbach A (2007) Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity 26:503–517

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ma A, Koka R, Burkett P (2006) Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu Rev Immunol 24:657–679

    Article  PubMed  CAS  Google Scholar 

  • Macian F (2005) NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol 5:472–484

    Article  PubMed  CAS  Google Scholar 

  • Madera S, Sun JC (2015) Cutting edge: stage-specific requirement of IL-18 for antiviral NK cell expansion. J Immunol 194:1408–1412

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Maillard I, Fang T, Pear WS (2005) Regulation of lymphoid development, differentiation, and function by the Notch pathway. Annu Rev Immunol 23:945–974

    Article  PubMed  CAS  Google Scholar 

  • Male V, Nisoli I, Kostrzewski T, Allan DS, Carlyle JR, Lord GM, Wack A, Brady HJ (2014) The transcription factor E4bp4/Nfil3 controls commitment to the NK lineage and directly regulates Eomes and Id2 expression. J Exp Med 211:635–642

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Marquardt N, Beziat V, Nystrom S, Hengst J, Ivarsson MA, Kekalainen E, Johansson H, Mjosberg J, Westgren M, Lankisch TO et al (2015) Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells. J Immunol 194:2467–2471

    Article  PubMed  CAS  Google Scholar 

  • Marusina AI, Kim DK, Lieto LD, Borrego F, Coligan JE (2005) GATA-3 is an important transcription factor for regulating human NKG2A gene expression. J Immunol 174:2152–2159

    Article  PubMed  CAS  Google Scholar 

  • Matsuyama T, Kimura T, Kitagawa M, Pfeffer K, Kawakami T, Watanabe N, Kundig TM, Amakawa R, Kishihara K, Wakeham A et al (1993) Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development. Cell 75:83–97

    Article  PubMed  CAS  Google Scholar 

  • McKenna HJ, Stocking KL, Miller RE, Brasel K, De Smedt T, Maraskovsky E, Maliszewski CR, Lynch DH, Smith J, Pulendran B et al (2000) Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95:3489–3497

    PubMed  CAS  Google Scholar 

  • McKercher SR, Torbett BE, Anderson KL, Henkel GW, Vestal DJ, Baribault H, Klemsz M, Feeney AJ, Wu GE, Paige CJ et al (1996) Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J 15:5647–5658

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mielke LA, Groom JR, Rankin LC, Seillet C, Masson F, Putoczki T, Belz GT (2013) TCF-1 controls ILC2 and NKp46+ RORgammat+ innate lymphocyte differentiation and protection in intestinal inflammation. J Immunol 191:4383–4391

    Article  PubMed  CAS  Google Scholar 

  • Miller SA, Huang AC, Miazgowicz MM, Brassil MM, Weinmann AS (2008) Coordinated but physically separable interaction with H3K27-demethylase and H3K4-methyltransferase activities are required for T-box protein-mediated activation of developmental gene expression. Genes Dev 22:2980–2993

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Miyagi T, Gil MP, Wang X, Louten J, Chu WM, Biron CA (2007) High basal STAT4 balanced by STAT1 induction to control type 1 interferon effects in natural killer cells. J Exp Med 204:2383–2396

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68:869–877

    Article  PubMed  CAS  Google Scholar 

  • Moriggl R, Topham DJ, Teglund S, Sexl V, McKay C, Wang D, Hoffmeyer A, van Deursen J, Sangster MY, Bunting KD et al (1999) Stat5 is required for IL-2-induced cell cycle progression of peripheral T cells. Immunity 10:249–259

    Article  PubMed  CAS  Google Scholar 

  • Mullen AC, High FA, Hutchins AS, Lee HW, Villarino AV, Livingston DM, Kung AL, Cereb N, Yao TP, Yang SY et al (2001) Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 292:1907–1910

    Article  PubMed  CAS  Google Scholar 

  • Muller MR, Rao A (2010) NFAT, immunity and cancer: a transcription factor comes of age. Nat Rev Immunol 10:645–656

    Article  PubMed  CAS  Google Scholar 

  • Musikacharoen T, Oguma A, Yoshikai Y, Chiba N, Masuda A, Matsuguchi T (2005) Interleukin-15 induces IL-12 receptor beta1 gene expression through PU.1 and IRF 3 by targeting chromatin remodeling. Blood 105:711–720

    Article  PubMed  CAS  Google Scholar 

  • Naiche LA, Harrelson Z, Kelly RG, Papaioannou VE (2005) T-box genes in vertebrate development. Annu Rev Genet 39:219–239

    Article  PubMed  CAS  Google Scholar 

  • Nakajima H, Liu XW, Wynshaw-Boris A, Rosenthal LA, Imada K, Finbloom DS, Hennighausen L, Leonard WJ (1997) An indirect effect of Stat5a in IL-2-induced proliferation: a critical role for Stat5a in IL-2-mediated IL-2 receptor alpha chain induction. Immunity 7:691–701

    Article  PubMed  CAS  Google Scholar 

  • Narni-Mancinelli E, Jaeger BN, Bernat C, Fenis A, Kung S, De Gassart A, Mahmood S, Gut M, Heath SC, Estelle J et al (2012) Tuning of natural killer cell reactivity by NKp46 and Helios calibrates T cell responses. Science 335:344–348

    Article  PubMed  CAS  Google Scholar 

  • Ng SY, Yoshida T, Zhang J, Georgopoulos K (2009) Genome-wide lineage-specific transcriptional networks underscore Ikaros-dependent lymphoid priming in hematopoietic stem cells. Immunity 30:493–507

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nguyen KB, Cousens LP, Doughty LA, Pien GC, Durbin JE, Biron CA (2000) Interferon alpha/beta-mediated inhibition and promotion of interferon gamma: STAT1 resolves a paradox. Nat Immunol 1:70–76

    Article  PubMed  CAS  Google Scholar 

  • Nguyen KB, Salazar-Mather TP, Dalod MY, Van Deusen JB, Wei XQ, Liew FY, Caligiuri MA, Durbin JE, Biron CA (2002a) Coordinated and distinct roles for IFN-alpha beta, IL-12, and IL-15 regulation of NK cell responses to viral infection. J Immunol 169:4279–4287

    Article  PubMed  CAS  Google Scholar 

  • Nguyen KB, Watford WT, Salomon R, Hofmann SR, Pien GC, Morinobu A, Gadina M, O’Shea JJ, Biron CA (2002b) Critical role for STAT4 activation by type 1 interferons in the interferon-gamma response to viral infection. Science 297:2063–2066

    Article  PubMed  CAS  Google Scholar 

  • Nichogiannopoulou A, Trevisan M, Neben S, Friedrich C, Georgopoulos K (1999) Defects in hemopoietic stem cell activity in Ikaros mutant mice. J Exp Med 190:1201–1214

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nutt SL, Kee BL (2007) The transcriptional regulation of B cell lineage commitment. Immunity 26:715–725

    Article  PubMed  CAS  Google Scholar 

  • Nutt SL, Metcalf D, D’Amico A, Polli M, Wu L (2005) Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. J Exp Med 201:221–231

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nutt SL, Fairfax KA, Kallies A (2007) BLIMP1 guides the fate of effector B and T cells. Nat Rev Immunol 7:923–927

    Article  PubMed  CAS  Google Scholar 

  • Oestreich KJ, Weinmann AS (2012) Transcriptional mechanisms that regulate T helper 1 cell differentiation. Curr Opin Immunol 24:191–195

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ogasawara K, Hida S, Azimi N, Tagaya Y, Sato T, Yokochi-Fukuda T, Waldmann TA, Taniguchi T, Taki S (1998) Requirement for IRF-1 in the microenvironment supporting development of natural killer cells. Nature 391:700–703

    Article  PubMed  CAS  Google Scholar 

  • Ohno S, Sato T, Kohu K, Takeda K, Okumura K, Satake M, Habu S (2008) Runx proteins are involved in regulation of CD122, Ly49 family and IFN-gamma expression during NK cell differentiation. Int Immunol 20:71–79

    Article  PubMed  CAS  Google Scholar 

  • Ohteki T, Yoshida H, Matsuyama T, Duncan GS, Mak TW, Ohashi PS (1998) The transcription factor interferon regulatory factor 1 (IRF-1) is important during the maturation of natural killer 1.1+ T cell receptor-alpha/beta+ (NK1+T) cells, natural killer cells, and intestinal intraepithelial T cells. J Exp Med 187:967–972

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Orange JS, Biron CA (1996a) An absolute and restricted requirement for IL-12 in natural killer cell IFN-gamma production and antiviral defense. Studies of natural killer and T cell responses in contrasting viral infections. J Immunol 156:1138–1142

    PubMed  CAS  Google Scholar 

  • Orange JS, Biron CA (1996b) Characterization of early IL-12, IFN-alphabeta, and TNF effects on antiviral state and NK cell responses during murine cytomegalovirus infection. J Immunol 156:4746–4756

    PubMed  CAS  Google Scholar 

  • Orange JS, Wang B, Terhorst C, Biron CA (1995) Requirement for natural killer cell-produced interferon gamma in defense against murine cytomegalovirus infection and enhancement of this defense pathway by interleukin 12 administration. J Exp Med 182:1045–1056

    Article  PubMed  CAS  Google Scholar 

  • Orr MT, Lanier LL (2010) Natural killer cell education and tolerance. Cell 142:847–856

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • O’Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A (2015) The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med 66:311–328

    Article  PubMed  CAS  Google Scholar 

  • Ouyang W, Beckett O, Flavell RA, Li MO (2009) An essential role of the Forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance. Immunity 30:358–371

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ouyang W, Beckett O, Ma Q, Paik JH, DePinho RA, Li MO (2010) Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nat Immunol 11:618–627

    Article  PubMed  CAS  Google Scholar 

  • Ouyang W, Liao W, Luo CT, Yin N, Huse M, Kim MV, Peng M, Chan P, Ma Q, Mo Y et al (2012) Novel Foxo1-dependent transcriptional programs control T(reg) cell function. Nature 491:554–559

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Papathanasiou P, Attema JL, Karsunky H, Hosen N, Sontani Y, Hoyne GF, Tunningley R, Smale ST, Weissman IL (2009) Self-renewal of the long-term reconstituting subset of hematopoietic stem cells is regulated by Ikaros. Stem Cells 27:3082–3092

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pearce EL, Mullen AC, Martins GA, Krawczyk CM, Hutchins AS, Zediak VP, Banica M, DiCioccio CB, Gross DA, Mao CA et al (2003) Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science 302:1041–1043

    Article  PubMed  CAS  Google Scholar 

  • Peng H, Jiang X, Chen Y, Sojka DK, Wei H, Gao X, Sun R, Yokoyama WM, Tian Z (2013) Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J Clin Invest 123:1444–1456

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Petrovick MS, Hiebert SW, Friedman AD, Hetherington CJ, Tenen DG, Zhang DE (1998) Multiple functional domains of AML1: PU.1 and C/EBPalpha synergize with different regions of AML1. Mol Cell Biol 18:3915–3925

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Possot C, Schmutz S, Chea S, Boucontet L, Louise A, Cumano A, Golub R (2011) Notch signaling is necessary for adult, but not fetal, development of RORgammat(+) innate lymphoid cells. Nat Immunol 12:949–958

    Article  PubMed  CAS  Google Scholar 

  • Putz EM, Gotthardt D, Hoermann G, Csiszar A, Wirth S, Berger A, Straka E, Rigler D, Wallner B, Jamieson AM et al (2013) CDK8-mediated STAT1-S727 phosphorylation restrains NK cell cytotoxicity and tumor surveillance. Cell Rep 4:437–444

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Quong MW, Romanow WJ, Murre C (2002) E protein function in lymphocyte development. Annu Rev Immunol 20:301–322

    Article  PubMed  CAS  Google Scholar 

  • Ramirez K, Chandler KJ, Spaulding C, Zandi S, Sigvardsson M, Graves BJ, Kee BL (2012) Gene deregulation and chronic activation in natural killer cells deficient in the transcription factor ETS1. Immunity 36:921–932

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rankin LC, Groom JR, Chopin M, Herold MJ, Walker JA, Mielke LA, McKenzie AN, Carotta S, Nutt SL, Belz GT (2013) The transcription factor T-bet is essential for the development of NKp46+ innate lymphocytes via the Notch pathway. Nat Immunol 14:389–395

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Robbins SH, Tessmer MS, Van Kaer L, Brossay L (2005) Direct effects of T-bet and MHC class I expression, but not STAT1, on peripheral NK cell maturation. Eur J Immunol 35:757–765

    Article  PubMed  CAS  Google Scholar 

  • Robinette ML, Fuchs A, Cortez VS, Lee JS, Wang Y, Durum SK, Gilfillan S, Colonna M, Immunological Genome C (2015) Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat Immunol 16:306–317

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rochman Y, Spolski R, Leonard WJ (2009) New insights into the regulation of T cells by gamma(c) family cytokines. Nat Rev Immunol 9:480–490

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Saleh A, Davies GE, Pascal V, Wright PW, Hodge DL, Cho EH, Lockett SJ, Abshari M, Anderson SK (2004) Identification of probabilistic transcriptional switches in the Ly49 gene cluster: a eukaryotic mechanism for selective gene activation. Immunity 21:55–66

    Article  PubMed  CAS  Google Scholar 

  • Samson SI, Richard O, Tavian M, Ranson T, Vosshenrich CA, Colucci F, Buer J, Grosveld F, Godin I, Di Santo JP (2003) GATA-3 promotes maturation, IFN-gamma production, and liver-specific homing of NK cells. Immunity 19:701–711

    Article  PubMed  CAS  Google Scholar 

  • Sanchez MJ, Muench MO, Roncarolo MG, Lanier LL, Phillips JH (1994) Identification of a common T/natural killer cell progenitor in human fetal thymus. J Exp Med 180:569–576

    Article  PubMed  CAS  Google Scholar 

  • Savage AK, Constantinides MG, Han J, Picard D, Martin E, Li B, Lantz O, Bendelac A (2008) The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 29:391–403

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schlissel M, Voronova A, Baltimore D (1991) Helix-loop-helix transcription factor E47 activates germ-line immunoglobulin heavy-chain gene transcription and rearrangement in a pre-T-cell line. Genes Dev 5:1367–1376

    Article  PubMed  CAS  Google Scholar 

  • Schmitt TM, Ciofani M, Petrie HT, Zuniga-Pflucker JC (2004) Maintenance of T cell specification and differentiation requires recurrent notch receptor-ligand interactions. J Exp Med 200:469–479

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schoenborn JR, Dorschner MO, Sekimata M, Santer DM, Shnyreva M, Fitzpatrick DR, Stamatoyannopoulos JA, Wilson CB (2007) Comprehensive epigenetic profiling identifies multiple distal regulatory elements directing transcription of the gene encoding interferon-gamma. Nat Immunol 8:732–742

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schotte R, Dontje W, Nagasawa M, Yasuda Y, Bakker AQ, Spits H, Blom B (2010) Synergy between IL-15 and Id2 promotes the expansion of human NK progenitor cells, which can be counteracted by the E protein HEB required to drive T cell development. J Immunol 184:6670–6679

    Article  PubMed  CAS  Google Scholar 

  • Scott EW, Simon MC, Anastasi J, Singh H (1994) Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265:1573–1577

    Article  PubMed  CAS  Google Scholar 

  • Seaman WE, Gindhart TD, Greenspan JS, Blackman MA, Talal N (1979) Natural killer cells, bone, and the bone marrow: studies in estrogen-treated mice and in congenitally osteopetrotic (mi/mi) mice. J Immunol 122:2541–2547

    PubMed  CAS  Google Scholar 

  • Seehus CR, Aliahmad P, de la Torre B, Iliev ID, Spurka L, Funari VA, Kaye J (2015) The development of innate lymphoid cells requires TOX-dependent generation of a common innate lymphoid cell progenitor. Nat Immunol 16:599–608

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Seillet C, Huntington ND, Gangatirkar P, Axelsson E, Minnich M, Brady HJ, Busslinger M, Smyth MJ, Belz GT, Carotta S (2014a) Differential requirement for Nfil3 during NK cell development. J Immunol 192:2667–2676

    Article  PubMed  CAS  Google Scholar 

  • Seillet C, Rankin LC, Groom JR, Mielke LA, Tellier J, Chopin M, Huntington ND, Belz GT, Carotta S (2014b) Nfil3 is required for the development of all innate lymphoid cell subsets. J Exp Med 211:1733–1740

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sekimata M, Perez-Melgosa M, Miller SA, Weinmann AS, Sabo PJ, Sandstrom R, Dorschner MO, Stamatoyannopoulos JA, Wilson CB (2009) CCCTC-binding factor and the transcription factor T-bet orchestrate T helper 1 cell-specific structure and function at the interferon-gamma locus. Immunity 31:551–564

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Serafini N, Vosshenrich CA, Di Santo JP (2015) Transcriptional regulation of innate lymphoid cell fate. Nat Rev Immunol 15(7):415−428

    Google Scholar 

  • Shevach EM, Thornton AM (2014) tTregs, pTregs, and iTregs: similarities and differences. Immunol Rev 259:88–102

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shin JH, Zhang L, Murillo-Sauca O, Kim J, Kohrt HE, Bui JD, Sunwoo JB (2013) Modulation of natural killer cell antitumor activity by the aryl hydrocarbon receptor. Proc Natl Acad Sci USA 110:12391–12396

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shinkai Y, Rathbun G, Lam KP, Oltz EM, Stewart V, Mendelsohn M, Charron J, Datta M, Young F, Stall AM et al (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68:855–867

    Article  PubMed  CAS  Google Scholar 

  • Sica A, Dorman L, Viggiano V, Cippitelli M, Ghosh P, Rice N, Young HA (1997) Interaction of NF-kappaB and NFAT with the interferon-gamma promoter. J Biol Chem 272:30412–30420

    Article  PubMed  CAS  Google Scholar 

  • Sitrin J, Ring A, Garcia KC, Benoist C, Mathis D (2013) Regulatory T cells control NK cells in an insulitic lesion by depriving them of IL-2. J Exp Med 210(6):1153−1165

    Google Scholar 

  • Smith MA, Maurin M, Cho HI, Becknell B, Freud AG, Yu J, Wei S, Djeu J, Celis E, Caligiuri MA et al (2010) PRDM1/Blimp-1 controls effector cytokine production in human NK cells. J Immunol 185:6058–6067

    Article  PubMed  CAS  Google Scholar 

  • Sojka DK, Plougastel-Douglas B, Yang L, Pak-Wittel MA, Artyomov MN, Ivanova Y, Zhong C, Chase JM, Rothman PB, Yu J et al (2014) Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. eLife 3:e01659

    Google Scholar 

  • Spinner MA, Sanchez LA, Hsu AP, Shaw PA, Zerbe CS, Calvo KR, Arthur DC, Gu W, Gould CM, Brewer CC et al (2014) GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood 123:809–821

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Spits H, Cupedo T (2012) Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu Rev Immunol 30:647–675

    Article  PubMed  CAS  Google Scholar 

  • Spits H, Blom B, Jaleco AC, Weijer K, Verschuren MC, van Dongen JJ, Heemskerk MH, Res PC (1998) Early stages in the development of human T, natural killer and thymic dendritic cells. Immunol Rev 165:75–86

    Article  PubMed  CAS  Google Scholar 

  • Stark GR, Darnell JE Jr (2012) The JAK-STAT pathway at twenty. Immunity 36:503–514

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Staron MM, Gray SM, Marshall HD, Parish IA, Chen JH, Perry CJ, Cui G, Li MO, Kaech SM (2014) The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8(+) T cells during chronic infection. Immunity 41:802–814

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stockinger B, Di Meglio P, Gialitakis M, Duarte JH (2014) The aryl hydrocarbon receptor: multitasking in the immune system. Annu Rev Immunol 32:403–432

    Article  PubMed  CAS  Google Scholar 

  • Sun XH (1994) Constitutive expression of the Id1 gene impairs mouse B cell development. Cell 79:893–900

    Article  PubMed  CAS  Google Scholar 

  • Sun JC (2010) Re-educating natural killer cells. J Exp Med 207:2049–2052

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sun JC, Lanier LL (2011a) Natural Killer cell response against viruses. In: Kaufmann S, Rouse B, Sacks D (eds) The immune response to infection. ASM Press, Washington, D.C., pp 197–207

    Chapter  Google Scholar 

  • Sun JC, Lanier LL (2011b) NK cell development, homeostasis and function: parallels with CD8(+) T cells. Nat Rev Immunol 11:645–657

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sun JC, Ma A, Lanier LL (2009) Cutting edge: IL-15-independent NK cell response to mouse cytomegalovirus infection. J Immunol 183:2911–2914

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sun JC, Madera S, Bezman NA, Beilke JN, Kaplan MH, Lanier LL (2012) Proinflammatory cytokine signaling required for the generation of natural killer cell memory. J Exp Med 209:947–954

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100:655–669

    Article  PubMed  CAS  Google Scholar 

  • Szabo SJ, Sullivan BM, Stemmann C, Satoskar AR, Sleckman BP, Glimcher LH (2002) Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells. Science 295:338–342

    Article  PubMed  CAS  Google Scholar 

  • Takeda K, Cretney E, Hayakawa Y, Ota T, Akiba H, Ogasawara K, Yagita H, Kinoshita K, Okumura K, Smyth MJ (2005) TRAIL identifies immature natural killer cells in newborn mice and adult mouse liver. Blood 105:2082–2089

    Article  PubMed  CAS  Google Scholar 

  • Taki S, Sato T, Ogasawara K, Fukuda T, Sato M, Hida S, Suzuki G, Mitsuyama M, Shin EH, Kojima S et al (1997) Multistage regulation of Th1-type immune responses by the transcription factor IRF-1. Immunity 6:673–679

    Article  PubMed  CAS  Google Scholar 

  • Taki S, Nakajima S, Ichikawa E, Saito T, Hida S (2005) IFN regulatory factor-2 deficiency revealed a novel checkpoint critical for the generation of peripheral NK cells. J Immunol 174:6005–6012

    Article  PubMed  CAS  Google Scholar 

  • Tamura T, Yanai H, Savitsky D, Taniguchi T (2008) The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol 26:535–584

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi T, Ogasawara K, Takaoka A, Tanaka N (2001) IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 19:623–655

    Article  PubMed  CAS  Google Scholar 

  • Taniuchi I, Osato M, Egawa T, Sunshine MJ, Bae SC, Komori T, Ito Y, Littman DR (2002) Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 111:621–633

    Article  PubMed  CAS  Google Scholar 

  • Teglund S, McKay C, Schuetz E, van Deursen JM, Stravopodis D, Wang D, Brown M, Bodner S, Grosveld G, Ihle JN (1998) Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93:841–850

    Article  PubMed  CAS  Google Scholar 

  • Thierfelder WE, van Deursen JM, Yamamoto K, Tripp RA, Sarawar SR, Carson RT, Sangster MY, Vignali DA, Doherty PC, Grosveld GC et al (1996) Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature 382:171–174

    Article  PubMed  CAS  Google Scholar 

  • Thieu VT, Yu Q, Chang HC, Yeh N, Nguyen ET, Sehra S, Kaplan MH (2008) Signal transducer and activator of transcription 4 is required for the transcription factor T-bet to promote T helper 1 cell-fate determination. Immunity 29:679–690

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tindemans I, Serafini N, Di Santo JP, Hendriks RW (2014) GATA-3 function in innate and adaptive immunity. Immunity 41:191–206

    Article  PubMed  CAS  Google Scholar 

  • Togher S, Larange A, Schoenberger SP, Feau S (2015) FoxO3 is a negative regulator of primary CD8+ T-cell expansion but not of memory formation. Immunol Cell Biol 93:120–125

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Townsend MJ, Weinmann AS, Matsuda JL, Salomon R, Farnham PJ, Biron CA, Gapin L, Glimcher LH (2004) T-bet regulates the terminal maturation and homeostasis of NK and Valpha14i NKT cells. Immunity 20:477–494

    Article  PubMed  CAS  Google Scholar 

  • Trompeter HI, Gomez-Lozano N, Santourlidis S, Eisermann B, Wernet P, Vilches C, Uhrberg M (2005) Three structurally and functionally divergent kinds of promoters regulate expression of clonally distributed killer cell Ig-like receptors (KIR), of KIR2DL4, and of KIR3DL3. J Immunol 174:4135–4143

    Article  PubMed  CAS  Google Scholar 

  • Tsai FY, Keller G, Kuo FC, Weiss M, Chen J, Rosenblatt M, Alt FW, Orkin SH (1994) An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371:221–226

    Article  PubMed  CAS  Google Scholar 

  • Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331:44–49

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vong QP, Leung WH, Houston J, Li Y, Rooney B, Holladay M, Oostendorp RA, Leung W (2014) TOX2 regulates human natural killer cell development by controlling T-BET expression. Blood 124:3905–3913

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vosshenrich CA, Garcia-Ojeda ME, Samson-Villeger SI, Pasqualetto V, Enault L, Richard-Le Goff O, Corcuff E, Guy-Grand D, Rocha B, Cumano A et al (2006) A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nat Immunol 7:1217–1224

    Article  PubMed  CAS  Google Scholar 

  • Wagage S, John B, Krock BL, Hall AO, Randall LM, Karp CL, Simon MC, Hunter CA (2014) The aryl hydrocarbon receptor promotes IL-10 production by NK cells. J Immunol 192:1661–1670

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Walzer T, Chiossone L, Chaix J, Calver A, Carozzo C, Garrigue-Antar L, Jacques Y, Baratin M, Tomasello E, Vivier E (2007) Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nat Immunol 8:1337–1344

    Article  PubMed  CAS  Google Scholar 

  • Wang JH, Nichogiannopoulou A, Wu L, Sun L, Sharpe AH, Bigby M, Georgopoulos K (1996) Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 5:537–549

    Article  PubMed  CAS  Google Scholar 

  • Wang JH, Avitahl N, Cariappa A, Friedrich C, Ikeda T, Renold A, Andrikopoulos K, Liang L, Pillai S, Morgan BA et al (1998) Aiolos regulates B cell activation and maturation to effector state. Immunity 9:543–553

    Article  PubMed  CAS  Google Scholar 

  • Weber BN, Chi AW, Chavez A, Yashiro-Ohtani Y, Yang Q, Shestova O, Bhandoola A (2011) A critical role for TCF-1 in T-lineage specification and differentiation. Nature 476:63–68

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Werneck MB, Lugo-Villarino G, Hwang ES, Cantor H, Glimcher LH (2008) T-bet plays a key role in NK-mediated control of melanoma metastatic disease. J Immunol 180:8004–8010

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wheeler JC, Shigesada K, Gergen JP, Ito Y (2000) Mechanisms of transcriptional regulation by Runt domain proteins. Semin Cell Dev Biol 11:369–375

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson B, Chen JY, Han P, Rufner KM, Goularte OD, Kaye J (2002) TOX: an HMG box protein implicated in the regulation of thymocyte selection. Nat Immunol 3:272–280

    Article  PubMed  CAS  Google Scholar 

  • Wong SH, Walker JA, Jolin HE, Drynan LF, Hams E, Camelo A, Barlow JL, Neill DR, Panova V, Koch U et al (2012) Transcription factor RORalpha is critical for nuocyte development. Nat Immunol 13:229–236

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Woolf E, Xiao C, Fainaru O, Lotem J, Rosen D, Negreanu V, Bernstein Y, Goldenberg D, Brenner O, Berke G et al (2003) Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proc Natl Acad Sci USA 100:7731–7736

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xu W, Domingues RG, Fonseca-Pereira D, Ferreira M, Ribeiro H, Lopez-Lastra S, Motomura Y, Moreira-Santos L, Bihl F, Braud V et al (2015) NFIL3 orchestrates the emergence of common helper innate lymphoid cell precursors. Cell Rep 10:2043–2054

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K, Shibata F, Miyasaka N, Miura O (2002) The human perforin gene is a direct target of STAT4 activated by IL-12 in NK cells. Biochem Biophys Res Commun 297:1245–1252

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, Monticelli LA, Saenz SA, Chi AW, Sonnenberg GF, Tang J, De Obaldia ME, Bailis W, Bryson JL, Toscano K et al (2013) T cell factor 1 is required for group 2 innate lymphoid cell generation. Immunity 38:694–704

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yang M, Li D, Chang Z, Yang Z, Tian Z, Dong Z (2015) PDK1 orchestrates early NK cell development through induction of E4BP4 expression and maintenance of IL-15 responsiveness. J Exp Med 212:253–265

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yao Z, Cui Y, Watford WT, Bream JH, Yamaoka K, Hissong BD, Li D, Durum SK, Jiang Q, Bhandoola A et al (2006) Stat5a/b are essential for normal lymphoid development and differentiation. Proc Natl Acad Sci USA 103:1000–1005

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yokota Y, Mansouri A, Mori S, Sugawara S, Adachi S, Nishikawa S, Gruss P (1999) Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397:702–706

    Article  PubMed  CAS  Google Scholar 

  • Yokota T, Kouro T, Hirose J, Igarashi H, Garrett KP, Gregory SC, Sakaguchi N, Owen JJ, Kincade PW (2003) Unique properties of fetal lymphoid progenitors identified according to RAG1 gene expression. Immunity 19:365–375

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama WM, Kim S, French AR (2004) The dynamic life of natural killer cells. Annu Rev Immunol 22:405–429

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Ng SY, Zuniga-Pflucker JC, Georgopoulos K (2006) Early hematopoietic lineage restrictions directed by Ikaros. Nat Immunol 7:382–391

    Article  PubMed  CAS  Google Scholar 

  • Yu CR, Ortaldo JR, Curiel RE, Young HA, Anderson SK, Gosselin P (1999) Role of a STAT binding site in the regulation of the human perforin promoter. J Immunol 162:2785–2790

    PubMed  CAS  Google Scholar 

  • Yu X, Wang Y, Deng M, Li Y, Ruhn KA, Zhang CC, Hooper LV (2014) The basic leucine zipper transcription factor NFIL3 directs the development of a common innate lymphoid cell precursor. eLife 3:e04406

    Google Scholar 

  • Yun S, Lee SH, Yoon SR, Kim MS, Piao ZH, Myung PK, Kim TD, Jung H, Choi I (2011) TOX regulates the differentiation of human natural killer cells from hematopoietic stem cells in vitro. Immunol Lett 136:29–36

    Article  PubMed  CAS  Google Scholar 

  • Zawislak CL, Beaulieu AM, Loeb GB, Karo J, Canner D, Bezman NA, Lanier LL, Rudensky AY, Sun JC (2013) Stage-specific regulation of natural killer cell homeostasis and response against viral infection by microRNA-155. Proc Natl Acad Sci USA 110:6967–6972

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang F, Boothby M (2006) T helper type 1-specific Brg1 recruitment and remodeling of nucleosomes positioned at the IFN-gamma promoter are Stat4 dependent. J Exp Med 203:1493–1505

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang Y, Lichtenheld MG (1997) Non-killer cell-specific transcription factors silence the perforin promoter. J Immunol 158:1734–1741

    PubMed  CAS  Google Scholar 

  • Zhuang Y, Soriano P, Weintraub H (1994) The helix-loop-helix gene E2A is required for B cell formation. Cell 79:875–884

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I am grateful for the critical discussions (at times lengthy) with colleagues in the field. Due to length restrictions (or my careless oversight), I apologize to colleagues for their work that may not have been cited or discussed. I would especially like to thank Lewis Lanier, Eric Vivier, Tim O’Sullivan, Steve Reiner, Thierry Walzer, and Barbara Kee for reading sections of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph C. Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sun, J.C. (2015). Transcriptional Control of NK Cells. In: Vivier, E., Di Santo, J., Moretta, A. (eds) Natural Killer Cells. Current Topics in Microbiology and Immunology, vol 395. Springer, Cham. https://doi.org/10.1007/82_2015_452

Download citation

Publish with us

Policies and ethics