Skip to main content

Mammalian Models for the Study of H7 Virus Pathogenesis and Transmission

  • Chapter
  • First Online:
Influenza Pathogenesis and Control - Volume I

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 385))

Abstract

Mammalian models, most notably the mouse and ferret, have been instrumental in the assessment of avian influenza virus pathogenicity and transmissibility, and have been used widely to characterize the molecular determinants that confer H5N1 virulence in mammals. However, while H7 influenza viruses have typically been associated with conjunctivitis and/or mild respiratory disease in humans, severe disease and death is also possible, as underscored by the recent emergence of H7N9 viruses in China. Despite the public health need to understand the pandemic potential of this virus subtype, H7 virus pathogenesis and transmission has not been as extensively studied. In this review, we discuss the heterogeneity of H7 subtype viruses isolated from humans, and the characterization of mammalian models to study the virulence of H7 subtype viruses associated with human infection, including viruses of both high and low pathogenicity and following multiple inoculation routes. The use of the ferret transmission model to assess the influence of receptor binding preference among contemporary H7 influenza viruses is described. These models have enabled the study of preventative and therapeutic agents, including vaccines and antivirals, to reduce disease burden, and have permitted a greater appreciation that not all highly pathogenic influenza viruses are created equal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • (2007) Avian influenza A/(H7N2) outbreak in the United Kingdom. Euro Surveill 12(5):E070532.1

    Google Scholar 

  • Aamir UB, Naeem K, Ahmed Z, Obert CA, Franks J, Krauss S, Seiler P, Webster RG (2009) Zoonotic potential of highly pathogenic avian H7N3 influenza viruses from Pakistan. Virology 390:212–220

    CAS  PubMed Central  PubMed  Google Scholar 

  • Abbas MA, Spackman E, Swayne DE, Ahmed Z, Sarmento L, Siddique N, Naeem K, Hameed A, Rehmani S (2010) Sequence and phylogenetic analysis of H7N3 avian influenza viruses isolated from poultry in Pakistan 1995-2004. Virol J 7:137

    PubMed Central  PubMed  Google Scholar 

  • Abd El-Rahim IH, Hussein M (2004) An epizootic of equine influenza in Upper Egypt in 2000. Rev Sci Tech 23:921–930

    CAS  PubMed  Google Scholar 

  • Abdel-Ghafar AN, Chotpitayasunondh T, Gao Z, Hayden FG, Nguyen DH, de Jong MD, Naghdaliyev A, Peiris JS, Shindo N, Soeroso S et al (2008) Update on avian influenza A (H5N1) virus infection in humans. N Engl J Med 358:261–273

    CAS  PubMed  Google Scholar 

  • Alexander DJ (2007) Summary of avian influenza activity in Europe, Asia, Africa, and Australasia, 2002–2006. Avian Dis 51:161–166

    PubMed  Google Scholar 

  • Arzey GG, Kirkland PD, Arzey KE, Frost M, Maywood P, Conaty S, Hurt AC, Deng YM, Iannello P, Barr I et al (2012) Influenza virus A (H10N7) in chickens and poultry abattoir workers, Australia. Emerg Infect Dis 18:814–816

    PubMed Central  PubMed  Google Scholar 

  • Bahgat MM, Blazejewska P, Schughart K (2011) Inhibition of lung serine proteases in mice: a potentially new approach to control influenza infection. Virol J 8:27

    CAS  PubMed Central  PubMed  Google Scholar 

  • Banks J, Plowright L (2003) Additional glycosylation at the receptor binding site of the hemagglutinin (HA) for H5 and H7 viruses may be an adaptation to poultry hosts, but does it influence pathogenicity? Avian Dis 47:942–950

    CAS  PubMed  Google Scholar 

  • Banks J, Speidel E, Alexander DJ (1998) Characterisation of an avian influenza A virus isolated from a human—is an intermediate host necessary for the emergence of pandemic influenza viruses? Arch Virol 143:781–787

    CAS  PubMed  Google Scholar 

  • Baranovich T, Burnham AJ, Marathe BM, Armstrong J, Guan Y, Shu Y, Peiris JM, Webby RJ, Webster RG, Govorkova EA (2013) The neuraminidase inhibitor oseltamivir is effective against A/Anhui/1/2013 (H7N9) influenza virus in a mouse model of acute respiratory distress syndrome. J Infect Dis

    Google Scholar 

  • Belser JA, Blixt O, Chen LM, Pappas C, Maines TR, Van Hoeven N, Donis R, Busch J, McBride R, Paulson JC et al (2008) Contemporary North American influenza H7 viruses possess human receptor specificity: Implications for virus transmissibility. Proc Natl Acad Sci USA 105:7558–7563

    CAS  PubMed Central  PubMed  Google Scholar 

  • Belser JA, Bridges CB, Katz JM, Tumpey TM (2009a) Past, present, and possible future human infection with influenza virus A subtype H7. Emerg Infect Dis 15:859–865

    PubMed Central  PubMed  Google Scholar 

  • Belser JA, Davis CT, Balish A, Edwards LE, Zeng H, Maines TR, Gustin KM, Martinez IL, Fasce R, Cox NJ et al (2013a) Pathogenesis, transmissibility, and ocular tropism of a highly pathogenic avian influenza A (H7N3) virus associated with human conjunctivitis. J Virol 87:5746–5754

    CAS  PubMed Central  PubMed  Google Scholar 

  • Belser JA, Gustin KM, Maines TR, Pantin-Jackwood MJ, Katz JM, Tumpey TM (2012a) Influenza virus respiratory infection and transmission following ocular inoculation in ferrets. PLoS Pathog 8:e1002569

    CAS  PubMed Central  PubMed  Google Scholar 

  • Belser JA, Gustin KM, Pearce MB, Maines TR, Zeng H, Pappas C, Sun X, Carney PJ, Villanueva JM, Stevens J et al (2013b) Pathogenesis and transmission of avian influenza A (H7N9) virus in ferrets and mice. Nature 501:556–559

    CAS  PubMed  Google Scholar 

  • Belser JA, Lu X, Maines TR, Smith C, Li Y, Donis RO, Katz JM, Tumpey TM (2007) Pathogenesis of avian influenza (H7) virus infection in mice and ferrets: enhanced virulence of Eurasian H7N7 viruses isolated from humans. J Virol 81:11139–11147

    CAS  PubMed Central  PubMed  Google Scholar 

  • Belser JA, Maines TR, Gustin KM, Katz JM, Tumpey TM (2013c) Kinetics of viral replication and induction of host responses in ferrets differs between ocular and intranasal routes of inoculation. Virology 438:56–60

    CAS  PubMed  Google Scholar 

  • Belser JA, Sleeman K, Pearce MB, Katz JM, Gubareva LV, Tumpey TM (2012b) Oseltamivir inhibits H7 influenza virus replication in mice inoculated by the ocular route. Antimicrob Agents Chemother 56:1616–1618

    CAS  PubMed Central  PubMed  Google Scholar 

  • Belser JA, Szretter KJ, Katz JM, Tumpey TM (2009b) Use of animal models to understand the pandemic potential of highly pathogenic avian influenza viruses. Adv Virus Res 73:55–97

    CAS  PubMed  Google Scholar 

  • Belser JA, Tumpey TM (2013) H5N1 pathogenesis studies in mammalian models. Virus Res

    Google Scholar 

  • Belser JA, Wadford DA, Xu J, Katz JM, Tumpey TM (2009c) Ocular infection of mice with influenza A (H7) viruses: a site of primary replication and spread to the respiratory tract. J Virol 83:7075–7084

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berhane Y, Hisanaga T, Kehler H, Neufeld J, Manning L, Argue C, Handel K, Hooper-McGrevy K, Jonas M, Robinson J et al (2009) Highly pathogenic avian influenza virus A (H7N3) in domestic poultry, Saskatchewan, Canada, 2007. Emerg Infect Dis 15:1492–1495

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown IH (2010) Summary of avian influenza activity in Europe, Asia, and Africa, 2006–2009. Avian Dis 54:187–193

    PubMed  Google Scholar 

  • Bulach D, Halpin R, Spiro D, Pomeroy L, Janies D, Boyle DB (2010) Molecular analysis of H7 avian influenza viruses from Australia and New Zealand: genetic diversity and relationships from 1976 to 2007. J Virol 84:9957–9966

    CAS  PubMed Central  PubMed  Google Scholar 

  • CDC (2004) Update: influenza activity—United States, 2003–2004 season. MMWR Morb Mortal Wkly Rep 53:284–287

    Google Scholar 

  • Christensen JP, Doherty PC, Branum KC, Riberdy JM (2000) Profound protection against respiratory challenge with a lethal H7N7 influenza A virus by increasing the magnitude of CD8(+) T-cell memory. J Virol 74:11690–11696

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cowling BJ, Jin L, Lau EH, Liao Q, Wu P, Jiang H, Tsang TK, Zheng J, Fang VJ, Chang Z et al (2013) Comparative epidemiology of human infections with avian influenza A H7N9 and H5N1 viruses in China: a population-based study of laboratory-confirmed cases. Lancet 382:129–137

    PubMed Central  PubMed  Google Scholar 

  • Cox RJ, Major D, Hauge S, Madhun AS, Brokstad KA, Kuhne M, Smith J, Vogel FR, Zambon M, Haaheim LR et al (2009) A cell-based H7N1 split influenza virion vaccine confers protection in mouse and ferret challenge models. Influenza Other Respi Viruses 3:107–117

    CAS  Google Scholar 

  • de Jong RM, Stockhofe-Zurwieden N, Verheij ES, de Boer-Luijtze EA, Ruiter SJ, de Leeuw OS, Cornelissen LA (2013) Rapid emergence of a virulent PB2 E627K variant during adaptation of highly pathogenic avian influenza H7N7 virus to mice. Virol J 10:276

    PubMed Central  PubMed  Google Scholar 

  • de Wit E, Munster VJ, Spronken MI, Bestebroer TM, Baas C, Beyer WE, Rimmelzwaan GF, Osterhaus AD, Fouchier RA (2005) Protection of mice against lethal infection with highly pathogenic H7N7 influenza A virus by using a recombinant low-pathogenicity vaccine strain. J Virol 79:12401–12407

    PubMed Central  PubMed  Google Scholar 

  • de Wit E, Munster VJ, van Riel D, Beyer WE, Rimmelzwaan GF, Kuiken T, Osterhaus AD, Fouchier RA (2010) Molecular determinants of adaptation of highly pathogenic avian influenza H7N7 viruses to efficient replication in the human host. J Virol 84:1597–1606

    PubMed Central  PubMed  Google Scholar 

  • Di Trani L, Porru S, Bonfanti L, Cordioli P, Cesana BM, Boni A, Di Carlo AS, Arici C, Donatelli I, Tomao P et al (2012) Serosurvey against H5 and H7 avian influenza viruses in Italian poultry workers. Avian Dis 56:1068–1071

    PubMed  Google Scholar 

  • Dudley JP (2008) Public health and epidemiological considerations for avian influenza risk mapping and risk assessment. Ecol Soc 13:21

    Google Scholar 

  • Eames KT, Webb C, Thomas K, Smith J, Salmon R, Temple JM (2010) Assessing the role of contact tracing in a suspected H7N2 influenza a outbreak in humans in Wales. BMC Infect Dis 10:141

    PubMed Central  PubMed  Google Scholar 

  • Ekiert DC, Friesen RH, Bhabha G, Kwaks T, Jongeneelen M, Yu W, Ophorst C, Cox F, Korse HJ, Brandenburg B et al (2011) A highly conserved neutralizing epitope on group 2 influenza A viruses. Science 333:843–850

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fouchier RA, Schneeberger PM, Rozendaal FW, Broekman JM, Kemink SA, Munster V, Kuiken T, Rimmelzwaan GF, Schutten M, Van Doornum GJ et al (2004) Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci USA 101:1356–1361

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gabbard JD, Dlugolenski D, Van Riel D, Marshall N, Galloway SE, Howerth EW, Campbell PJ, Jones C, Johnson S, Byrd-Leotis L et al (2013) Novel H7N9 influenza virus shows low infectious dose, high growth and efficient contact transmission in the guinea pig model. J Virol

    Google Scholar 

  • Gabriel G, Abram M, Keiner B, Wagner R, Klenk HD, Stech J (2007) Differential polymerase activity in avian and mammalian cells determines host range of influenza virus. J Virol 81:9601–9604

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gabriel G, Dauber B, Wolff T, Planz O, Klenk HD, Stech J (2005) The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci USA 102:18590–18595

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gabriel G, Klingel K, Planz O, Bier K, Herwig A, Sauter M, Klenk HD (2009) Spread of infection and lymphocyte depletion in mice depends on polymerase of influenza virus. Am J Pathol 175:1178–1186

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gabriel G, Nordmann A, Stein DA, Iversen PL, Klenk HD (2008) Morpholino oligomers targeting the PB1 and NP genes enhance the survival of mice infected with highly pathogenic influenza A H7N7 virus. J Gen Virol 89:939–948

    CAS  PubMed  Google Scholar 

  • Gambaryan AS, Matrosovich TY, Philipp J, Munster VJ, Fouchier RA, Cattoli G, Capua I, Krauss SL, Webster RG, Banks J et al (2012) Receptor-binding profiles of H7 subtype influenza viruses in different host species. J Virol 86:4370–4379

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gambaryan AS, Tuzikov AB, Pazynina GV, Desheva JA, Bovin NV, Matrosovich MN, Klimov AI (2008) 6-sulfo sialyl Lewis X is the common receptor determinant recognized by H5, H6, H7 and H9 influenza viruses of terrestrial poultry. Virol J 5:85

    PubMed Central  PubMed  Google Scholar 

  • Gao HN, Lu HZ, Cao B, Du B, Shang H, Gan JH, Lu SH, Yang YD, Fang Q, Shen YZ et al (2013a) Clinical findings in 111 cases of influenza A (H7N9) virus infection. N Engl J Med 368:2277–2285

    CAS  PubMed  Google Scholar 

  • Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, Chen J, Jie Z, Qiu H, Xu K et al (2013b) Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med 368:1888–1897

    CAS  PubMed  Google Scholar 

  • Garcia-Sastre A (2001) Inhibition of interferon-mediated antiviral responses by influenza A viruses and other negative-strand RNA viruses. Virology 279:375–384

    CAS  PubMed  Google Scholar 

  • Gerloff NA, Jones J, Simpson N, Balish A, Elbadry MA, Baghat V, Rusev I, de Mattos CC, de Mattos CA, Zonkle LE et al (2013) A high diversity of eurasian lineage low pathogenicity avian influenza A viruses circulate among wild birds sampled in Egypt. PLoS One 8:e68522

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goff PH, Krammer F, Hai R, Seibert CW, Margine I, Garcia-Sastre A, Palese P (2013) Induction of cross-reactive antibodies to novel H7N9 influenza virus by recombinant Newcastle disease virus expressing a North American lineage H7 subtype hemagglutinin. J Virol 87:8235–8240

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzalez-Reiche AS, Morales-Betoulle ME, Alvarez D, Betoulle JL, Muller ML, Sosa SM, Perez DR (2012) Influenza a viruses from wild birds in Guatemala belong to the North American lineage. PLoS One 7:e32873

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haasbach E, Reiling SJ, Ehrhardt C, Droebner K, Ruckle A, Hrincius ER, Leban J, Strobl S, Vitt D, Ludwig S et al (2013) The NF-kappaB inhibitor SC75741 protects mice against highly pathogenic avian influenza A virus. Antiviral Res 99:336–344

    CAS  PubMed  Google Scholar 

  • Hai R, Schmolke M, Leyva-Grado VH, Thangavel RR, Margine I, Jaffe EL, Krammer F, Solorzano A, Garcia-Sastre A, Palese P et al (2013) Influenza A(H7N9) virus gains neuraminidase inhibitor resistance without loss of in vivo virulence or transmissibility. Nat Commun 4:2854

    PubMed Central  PubMed  Google Scholar 

  • Hatta M, Gao P, Halfmann P, Kawaoka Y (2001) Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293:1840–1842

    CAS  PubMed  Google Scholar 

  • He F, Kumar SR, Syed Khader SM, Tan Y, Prabakaran M, Kwang J (2013) Effective intranasal therapeutics and prophylactics with monoclonal antibody against lethal infection of H7N7 influenza virus. Antiviral Res 100:207–214

    CAS  PubMed  Google Scholar 

  • Hirst M, Astell CR, Griffith M, Coughlin SM, Moksa M, Zeng T, Smailus DE, Holt RA, Jones S, Marra MA et al (2004) Novel avian influenza H7N3 strain outbreak, British Columbia. Emerg Infect Dis 10:2192–2195

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horimoto T, Kawaoka Y (1994) Reverse genetics provides direct evidence for a correlation of hemagglutinin cleavability and virulence of an avian influenza A virus. J Virol 68:3120–3128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horimoto T, Kawaoka Y (2001) Pandemic threat posed by avian influenza A viruses. Clin Microbiol Rev 14:129–149

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hovden AO, Brokstad KA, Major D, Wood J, Haaheim LR, Cox RJ (2009) A pilot study of the immune response to whole inactivated avian influenza H7N1 virus vaccine in mice. Influenza Other Respi Viruses 3:21–28

    CAS  PubMed Central  Google Scholar 

  • Ilyushina NA, Govorkova EA, Russell CJ, Hoffmann E, Webster RG (2007) Contribution of H7 haemagglutinin to amantadine resistance and infectivity of influenza virus. J Gen Virol 88:1266–1274

    CAS  PubMed  Google Scholar 

  • Jadhao SJ, Achenbach J, Swayne DE, Donis R, Cox N, Matsuoka Y (2008) Development of Eurasian H7N7/PR8 high growth reassortant virus for clinical evaluation as an inactivated pandemic influenza vaccine. Vaccine 26:1742–1750

    CAS  PubMed  Google Scholar 

  • Jones YL, Swayne DE (2004) Comparative pathobiology of low and high pathogenicity H7N3 Chilean avian influenza viruses in chickens. Avian Dis 48:119–128

    PubMed  Google Scholar 

  • Jonges M, Bataille A, Enserink R, Meijer A, Fouchier RA, Stegeman A, Koch G, Koopmans M (2011) Comparative analysis of avian influenza virus diversity in poultry and humans during a highly pathogenic avian influenza A (H7N7) virus outbreak. J Virol 85:10598–10604

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joseph T, McAuliffe J, Lu B, Jin H, Kemble G, Subbarao K (2007) Evaluation of replication and pathogenicity of avian influenza a H7 subtype viruses in a mouse model. J Virol 81:10558–10566

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joseph T, McAuliffe J, Lu B, Vogel L, Swayne D, Jin H, Kemble G, Subbarao K (2008) A live attenuated cold-adapted influenza A H7N3 virus vaccine provides protection against homologous and heterologous H7 viruses in mice and ferrets. Virology 378:123–132

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaminski MM, Ohnemus A, Cornitescu M, Staeheli P (2012) Plasmacytoid dendritic cells and Toll-like receptor 7-dependent signalling promote efficient protection of mice against highly virulent influenza A virus. J Gen Virol 93:555–559

    CAS  PubMed  Google Scholar 

  • Kapczynski DR, Pantin-Jackwood M, Guzman SG, Ricardez Y, Spackman E, Bertran K, Suarez DL, Swayne DE (2013) Characterization of the 2012 highly pathogenic avian influenza H7N3 virus isolated from poultry in an outbreak in Mexico: pathobiology and vaccine protection. J Virol 87:9086–9096

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kawaoka Y (1991) Equine H7N7 influenza A viruses are highly pathogenic in mice without adaptation: potential use as an animal model. J Virol 65:3891–3894

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kochs G, Koerner I, Thiel L, Kothlow S, Kaspers B, Ruggli N, Summerfield A, Pavlovic J, Stech J, Staeheli P (2007) Properties of H7N7 influenza A virus strain SC35M lacking interferon antagonist NS1 in mice and chickens. J Gen Virol 88:1403–1409

    CAS  PubMed  Google Scholar 

  • Koerner I, Kochs G, Kalinke U, Weiss S, Staeheli P (2007) Protective role of beta interferon in host defense against influenza A virus. J Virol 81:2025–2030

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koopmans M, Wilbrink B, Conyn M, Natrop G, van der Nat H, Vennema H, Meijer A, van Steenbergen J, Fouchier R, Osterhaus A et al (2004) Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet 363:587–593

    PubMed  Google Scholar 

  • Krammer F, Cox RJ (2013) The emergence of H7N9 viruses: a chance to redefine correlates of protection for influenza virus vaccines. Expert Rev Vaccines 12:1369–1372

    CAS  PubMed  Google Scholar 

  • Krammer F, Margine I, Hai R, Flood A, Hirsh A, Tsvetnitsky V, Chen D, Palese P (2013) H3 stalk-based chimeric hemagglutinin influenza virus constructs protect mice from H7N9 challenge. J Virol

    Google Scholar 

  • Kreijtz JH, Kroeze EJ, Stittelaar KJ, de Waal L, van Amerongen G, van Trierum S, van Run P, Bestebroer T, Kuiken T, Fouchier RA, et al (2013) Low pathogenic avian influenza A(H7N9) virus causes high mortality in ferrets upon intratracheal challenge: A model to study intervention strategies. Vaccine

    Google Scholar 

  • Kurtz J, Manvell RJ, Banks J (1996) Avian influenza virus isolated from a woman with conjunctivitis. Lancet 348:901–902

    CAS  PubMed  Google Scholar 

  • Lam WY, Yeung AC, Chan PK (2011) Apoptosis, cytokine and chemokine induction by non-structural 1 (NS1) proteins encoded by different influenza subtypes. Virol J 8:554

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lang G, Gagnon A, Geraci JR (1981) Isolation of an influenza A virus from seals. Arch Virol 68:189–195

    CAS  PubMed  Google Scholar 

  • Lee CW, Lee YJ, Senne DA, Suarez DL (2006) Pathogenic potential of North American H7N2 avian influenza virus: a mutagenesis study using reverse genetics. Virology 353:388–395

    CAS  PubMed  Google Scholar 

  • Legastelois I, Garcia-Sastre A, Palese P, Tumpey TM, Maines TR, Katz JM, Vogel FR, Moste C (2007) Preparation of genetically engineered A/H5N1 and A/H7N1 pandemic vaccine viruses by reverse genetics in a mixture of Vero and chicken embryo cells. Influenza Other Respi Viruses 1:95–104

    CAS  Google Scholar 

  • Li Q, Zhou L, Zhou M, Chen Z, Li F, Wu H, Xiang N, Chen E, Tang F, Wang D, et al (2013) Preliminary report: epidemiology of the avian influenza a (H7N9) outbreak in China. N Engl J Med

    Google Scholar 

  • Li Y, Li C, Liu L, Wang H, Wang C, Tian G, Webster RG, Yu K, Chen H (2006) Characterization of an avian influenza virus of subtype H7N2 isolated from chickens in northern China. Virus Genes 33:117–122

    CAS  PubMed  Google Scholar 

  • Lopez-Martinez I, Balish A, Barrera-Badillo G, Jones J, Nunez-Garcia TE, Jang Y, Aparicio-Antonio R, Azziz-Baumgartner E, Belser JA, Ramirez-Gonzalez JE, et al (2013) Highly pathogenic avian influenza A(H7N3) virus in poultry workers, Mexico, 2012. Emerg Infect Dis 19

    Google Scholar 

  • Lv H, Han J, Zhang P, Lu Y, Wen D, Cai J, Liu S, Sun J, Yu Z, Zhang H, et al (2013) Mild illness in avian influenza A(H7N9) virus-infected poultry worker, Huzhou, China, April 2013. Emerg Infect Dis 19

    Google Scholar 

  • Maines TR, Chen LM, Matsuoka Y, Chen H, Rowe T, Ortin J, Falcon A, Nguyen TH, le Mai Q, Sedyaningsih ER et al (2006) Lack of transmission of H5N1 avian-human reassortant influenza viruses in a ferret model. Proc Natl Acad Sci U S A 103:12121–12126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maines TR, Chen LM, Van Hoeven N, Tumpey TM, Blixt O, Belser JA, Gustin KM, Pearce MB, Pappas C, Stevens J et al (2011) Effect of receptor binding domain mutations on receptor binding and transmissibility of avian influenza H5N1 viruses. Virology 413:139–147

    CAS  PubMed  Google Scholar 

  • Maines TR, Jayaraman A, Belser JA, Wadford DA, Pappas C, Zeng H, Gustin KM, Pearce MB, Viswanathan K, Shriver ZH et al (2009) Transmission and pathogenesis of swine-origin 2009 A(H1N1) influenza viruses in ferrets and mice. Science 325:484–487

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maines TR, Lu XH, Erb SM, Edwards L, Guarner J, Greer PW, Nguyen DC, Szretter KJ, Chen LM, Thawatsupha P et al (2005) Avian influenza (H5N1) viruses isolated from humans in Asia in 2004 exhibit increased virulence in mammals. J Virol 79:11788–11800

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mancini DA, Mendonca RM, Pereira AS, Kawamoto AH, Vannucchi CI, Pinto JR, Mori E, Mancini Filho J (2012) Influenza viruses in adult dogs raised in rural and urban areas in the state of Sao Paulo, Brazil. Rev Inst Med Trop Sao Paulo 54:311–314

    PubMed  Google Scholar 

  • Manz B, Gotz V, Wunderlich K, Eisel J, Kirchmair J, Stech J, Stech O, Chase G, Frank R, Schwemmle M (2011) Disruption of the viral polymerase complex assembly as a novel approach to attenuate influenza A virus. J Biol Chem 286:8414–8424

    PubMed Central  PubMed  Google Scholar 

  • Margine I, Krammer F, Hai R, Heaton NS, Tan GS, Andrews SA, Runstadler JA, Wilson PC, Albrecht RA, Garcia-Sastre A et al (2013) Hemagglutinin Stalk-Based Universal Vaccine Constructs Protect against Group 2 Influenza A Viruses. J Virol 87:10435–10446

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matrosovich M, Tuzikov A, Bovin N, Gambaryan A, Klimov A, Castrucci MR, Donatelli I, Kawaoka Y (2000) Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J Virol 74:8502–8512

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maurer-Stroh S, Lee RT, Gunalan V, Eisenhaber F (2013) The highly pathogenic H7N3 avian influenza strain from July 2012 in Mexico acquired an extended cleavage site through recombination with host 28S rRNA. Virol J 10:139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Max V, Herrera J, Moreira R, Rojas H (2007) Avian influenza in Chile: a successful experience. Avian Dis 51:363–365

    PubMed  Google Scholar 

  • Min JY, Vogel L, Matsuoka Y, Lu B, Swayne D, Jin H, Kemble G, Subbarao K (2010) A live attenuated H7N7 candidate vaccine virus induces neutralizing antibody that confers protection from challenge in mice, ferrets, and monkeys. J Virol 84:11950–11960

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mok CK, Lee HH, Chan MC, Sia SF, Lestra M, Nicholls JM, Zhu H, Guan Y, Peiris JM (2013) Pathogenicity of the novel A/H7N9 influenza virus in mice. MBio 4

    Google Scholar 

  • Mok CK, Lee HH, Lestra M, Nicholls JM, Chan CW, Sia SF, Zhu H, Poon LL, Guan Y, Peiris JM (2014) Amino-acid substitutions in polymerase basic protein 2 gene contributes to the pathogenicity of the novel A/H7N9 influenza virus in mammalian hosts. J Virol

    Google Scholar 

  • Morgan O, Kuhne M, Nair P, Verlander NQ, Preece R, McDougal M, Zambon M, Reacher M (2009) Personal protective equipment and risk for avian influenza (H7N3). Emerg Infect Dis 15:59–62

    PubMed Central  PubMed  Google Scholar 

  • Munster VJ, de Wit E, van Riel D, Beyer WE, Rimmelzwaan GF, Osterhaus AD, Kuiken T, Fouchier RA (2007) The molecular basis of the pathogenicity of the Dutch highly pathogenic human influenza A H7N7 viruses. J Infect Dis 196:258–265

    CAS  PubMed  Google Scholar 

  • Myers KP, Setterquist SF, Capuano AW, Gray GC (2007) Infection due to 3 avian influenza subtypes in United States veterinarians. Clin Infect Dis 45:4–9

    PubMed Central  PubMed  Google Scholar 

  • Nacken W, Ehrhardt C, Ludwig S (2012) Small molecule inhibitors of the c-Jun N-terminal kinase (JNK) possess antiviral activity against highly pathogenic avian and human pandemic influenza A viruses. Biol Chem 393:525–534

    CAS  PubMed  Google Scholar 

  • Nguyen-Van-Tam JS, Nair P, Acheson P, Baker A, Barker M, Bracebridge S, Croft J, Ellis J, Gelletlie R, Gent N et al (2006) Outbreak of low pathogenicity H7N3 avian influenza in UK, including associated case of human conjunctivitis. Euro Surveill 11(E060504):2

    PubMed  Google Scholar 

  • Ostrowsky B, Huang A, Terry W, Anton D, Brunagel B, Traynor L, Abid S, Johnson G, Kacica M, Katz J et al (2012) Low pathogenic avian influenza A (H7N2) virus infection in immunocompromised adult, New York, USA, 2003. Emerg Infect Dis 18:1128–1131

    PubMed Central  PubMed  Google Scholar 

  • Pappas C, Matsuoka Y, Swayne DE, Donis RO (2007) Development and evaluation of an Influenza virus subtype H7N2 vaccine candidate for pandemic preparedness. Clin Vaccine Immunol 14:1425–1432

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pasick J, Berhane Y, Hisanaga T, Kehler H, Hooper-McGrevy K, Handel K, Neufeld J, Argue C, Leighton F (2010) Diagnostic test results and pathology associated with the 2007 Canadian H7N3 highly pathogenic avian influenza outbreak. Avian Dis 54:213–219

    CAS  PubMed  Google Scholar 

  • Pasick J, Handel K, Robinson J, Copps J, Ridd D, Hills K, Kehler H, Cottam-Birt C, Neufeld J, Berhane Y et al (2005) Intersegmental recombination between the haemagglutinin and matrix genes was responsible for the emergence of a highly pathogenic H7N3 avian influenza virus in British Columbia. J Gen Virol 86:727–731

    CAS  PubMed  Google Scholar 

  • Pasick J, Pedersen J, Hernandez MS (2012) Avian influenza in North America, 2009-2011. Avian Dis 56:845–848

    PubMed  Google Scholar 

  • Peiris M, Yuen KY, Leung CW, Chan KH, Ip PL, Lai RW, Orr WK, Shortridge KF (1999) Human infection with influenza H9N2. Lancet 354:916–917

    CAS  PubMed  Google Scholar 

  • Perez-Ramirez E, Gerrikagoitia X, Barral M, Hofle U (2010) Detection of low pathogenic avian influenza viruses in wild birds in Castilla-La Mancha (south central Spain). Vet Microbiol 146:200–208

    PubMed  Google Scholar 

  • ProMED-mail (2013) Avian Influenza (90): ITALY (EMILIA-ROMAGNA) Poultry, HPAI H7N7, Human, Public health. ProMED mail

    Google Scholar 

  • Puzelli S, Di Trani L, Fabiani C, Campitelli L, De Marco MA, Capua I, Aguilera JF, Zambon M, Donatelli I (2005) Serological analysis of serum samples from humans exposed to avian H7 influenza viruses in Italy between 1999 and 2003. J Infect Dis 192:1318–1322

    PubMed  Google Scholar 

  • Qi X, Qian YH, Bao CJ, Guo XL, Cui LB, Tang FY, Ji H, Huang Y, Cai PQ, Lu B et al (2013) Probable person to person transmission of novel avian influenza A (H7N9) virus in Eastern China, 2013: epidemiological investigation. BMJ 347:f4752

    PubMed Central  PubMed  Google Scholar 

  • Rajesh Kumar S, Syed Khader SM, Kiener TK, Szyporta M, Kwang J (2013) Intranasal immunization of baculovirus displayed hemagglutinin confers complete protection against mouse adapted highly pathogenic H7N7 reassortant influenza virus. PLoS One 8:e63856

    PubMed Central  PubMed  Google Scholar 

  • Richard M, Schrauwen EJ, de Graaf M, Bestebroer TM, Spronken MI, van Boheemen S, de Meulder D, Lexmond P, Linster M, Herfst S et al (2013) Limited airborne transmission of H7N9 influenza A virus between ferrets. Nature 501:560–563

    CAS  PubMed  Google Scholar 

  • Rigoni M, Shinya K, Toffan A, Milani A, Bettini F, Kawaoka Y, Cattoli G, Capua I (2007) Pneumo- and neurotropism of avian origin Italian highly pathogenic avian influenza H7N1 isolates in experimentally infected mice. Virology 364:28–35

    CAS  PubMed  Google Scholar 

  • Rigoni M, Toffan A, Viale E, Mancin M, Cilloni F, Bertoli E, Salomoni A, Marciano S, Milani A, Zecchin B et al (2010) The mouse model is suitable for the study of viral factors governing transmission and pathogenesis of highly pathogenic avian influenza (HPAI) viruses in mammals. Vet Res 41:66

    PubMed Central  PubMed  Google Scholar 

  • Salomon R, Franks J, Govorkova EA, Ilyushina NA, Yen HL, Hulse-Post DJ, Humberd J, Trichet M, Rehg JE, Webby RJ et al (2006) The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04. J Exp Med 203:689–697

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scheiblauer H, Kendal AP, Rott R (1995) Pathogenicity of influenza A/Seal/Mass/1/80 virus mutants for mammalian species. Arch Virol 140:341–348

    CAS  PubMed  Google Scholar 

  • Senne DA (2007) Avian influenza in North and South America, 2002–2005. Avian Dis 51:167–173

    PubMed  Google Scholar 

  • Senne DA (2010) Avian influenza in North and South America, the Caribbean, and Australia, 2006–2008. Avian Dis 54:179–186

    PubMed  Google Scholar 

  • Senne DA, Panigrahy B, Kawaoka Y, Pearson JE, Suss J, Lipkind M, Kida H, Webster RG (1996) Survey of the hemagglutinin (HA) cleavage site sequence of H5 and H7 avian influenza viruses: amino acid sequence at the HA cleavage site as a marker of pathogenicity potential. Avian Dis 40:425–437

    CAS  PubMed  Google Scholar 

  • Senne DA, Suarez DL, Pedersen JC, Panigrahy B (2003) Molecular and biological characteristics of H5 and H7 avian influenza viruses in live-bird markets of the northeastern United States, 1994–2001. Avian Dis 47:898–904

    CAS  PubMed  Google Scholar 

  • Shinya K, Suto A, Kawakami M, Sakamoto H, Umemura T, Kawaoka Y, Kasai N, Ito T (2005) Neurovirulence of H7N7 influenza A virus: brain stem encephalitis accompanied with aspiration pneumonia in mice. Arch Virol 150:1653–1660

    CAS  PubMed  Google Scholar 

  • Shinya K, Watanabe S, Ito T, Kasai N, Kawaoka Y (2007) Adaptation of an H7N7 equine influenza A virus in mice. J Gen Virol 88:547–553

    CAS  PubMed  Google Scholar 

  • Sleeman K, Guo Z, Barnes J, Shaw M, Stevens J, Gubareva LV (2013) R292K substitution and drug susceptibility of influenza A(H7N9) viruses. Emerg Infect Dis 19:1521–1524

    PubMed Central  PubMed  Google Scholar 

  • Smith GE, Flyer DC, Raghunandan R, Liu Y, Wei Z, Wu Y, Kpamegan E, Courbron D, Fries LF 3rd, Glenn GM (2013) Development of influenza H7N9 virus like particle (VLP) vaccine: Homologous A/Anhui/1/2013 (H7N9) protection and heterologous A/chicken/Jalisco/CPA1/2012 (H7N3) cross-protection in vaccinated mice challenged with H7N9 virus. Vaccine 31:4305–4313

    CAS  PubMed  Google Scholar 

  • Song H, Wan H, Araya Y, Perez DR (2009) Partial direct contact transmission in ferrets of a mallard H7N3 influenza virus with typical avian-like receptor specificity. Virol J 6:126

    PubMed Central  PubMed  Google Scholar 

  • Srivastava B, Blazejewska P, Hessmann M, Bruder D, Geffers R, Mauel S, Gruber AD, Schughart K (2009) Host genetic background strongly influences the response to influenza a virus infections. PLoS One 4:e4857

    PubMed Central  PubMed  Google Scholar 

  • Suarez DL, Senne DA, Banks J, Brown IH, Essen SC, Lee CW, Manvell RJ, Mathieu-Benson C, Moreno V, Pedersen JC et al (2004) Recombination resulting in virulence shift in avian influenza outbreak, Chile. Emerg Infect Dis 10:693–699

    CAS  PubMed Central  PubMed  Google Scholar 

  • Subbarao EK, London W, Murphy BR (1993) A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol 67:1761–1764

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suguitan AL Jr, Matsuoka Y, Lau YF, Santos CP, Vogel L, Cheng LI, Orandle M, Subbarao K (2012) The multibasic cleavage site of the hemagglutinin of highly pathogenic A/Vietnam/1203/2004 (H5N1) avian influenza virus acts as a virulence factor in a host-specific manner in mammals. J Virol 86:2706–2714

    CAS  PubMed Central  PubMed  Google Scholar 

  • Szecsi J, Boson B, Johnsson P, Dupeyrot-Lacas P, Matrosovich M, Klenk HD, Klatzmann D, Volchkov V, Cosset FL (2006) Induction of neutralising antibodies by virus-like particles harbouring surface proteins from highly pathogenic H5N1 and H7N1 influenza viruses. Virol J 3:70

    PubMed Central  PubMed  Google Scholar 

  • Talaat KR, Karron RA, Callahan KA, Luke CJ, DiLorenzo SC, Chen GL, Lamirande EW, Jin H, Coelingh KL, Murphy BR et al (2009) A live attenuated H7N3 influenza virus vaccine is well tolerated and immunogenic in a Phase I trial in healthy adults. Vaccine 27:3744–3753

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tharakaraman K, Jayaraman A, Raman R, Viswanathan K, Stebbins NW, Johnson D, Shriver Z, Sasisekharan V, Sasisekharan R (2013) Glycan receptor binding of the influenza A virus H7N9 hemagglutinin. Cell 153:1486–1493

    CAS  PubMed Central  PubMed  Google Scholar 

  • Timoney PJ (1996) Equine influenza. Comp Immunol Microbiol Infect Dis 19:205–211

    CAS  PubMed  Google Scholar 

  • Tretyakova I, Pearce MB, Florese R, Tumpey TM, Pushko P (2013) Intranasal vaccination with H5, H7 and H9 hemagglutinins co-localized in a virus-like particle protects ferrets from multiple avian influenza viruses. Virology 442:67–73

    CAS  PubMed  Google Scholar 

  • Tumpey TM, Szretter KJ, Van Hoeven N, Katz JM, Kochs G, Haller O, Garcia-Sastre A, Staeheli P (2007) The Mx1 gene protects mice against the pandemic 1918 and highly lethal human H5N1 influenza viruses. J Virol 81:10818–10821

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tweed SA, Skowronski DM, David ST, Larder A, Petric M, Lees W, Li Y, Katz J, Krajden M, Tellier R et al (2004) Human illness from avian influenza H7N3, British Columbia. Emerg Infect Dis 10:2196–2199

    PubMed Central  PubMed  Google Scholar 

  • Watanabe T, Kiso M, Fukuyama S, Nakajima N, Imai M, Yamada S, Murakami S, Yamayoshi S, Iwatsuki-Horimoto K, Sakoda Y et al (2013) Characterization of H7N9 influenza A viruses isolated from humans. Nature 501:551–555

    CAS  PubMed Central  PubMed  Google Scholar 

  • Webster RG (1993) Are equine 1 influenza viruses still present in horses? Equine Vet J 25:537–538

    CAS  PubMed  Google Scholar 

  • Webster RG, Geraci J, Petursson G, Skirnisson K (1981) Conjunctivitis in human beings caused by influenza A virus of seals. N Engl J Med 304:911

    CAS  PubMed  Google Scholar 

  • Whiteley A, Major D, Legastelois I, Campitelli L, Donatelli I, Thompson CI, Zambon MC, Wood JM, Barclay WS (2007) Generation of candidate human influenza vaccine strains in cell culture—rehearsing the European response to an H7N1 pandemic threat. Influenza Other Respi Viruses 1:157–166

    CAS  Google Scholar 

  • WHO (2013) Avian influenza A (H10N8)

    Google Scholar 

  • Xiong X, Martin SR, Haire LF, Wharton SA, Daniels RS, Bennett MS, McCauley JW, Collins PJ, Walker PA, Skehel JJ et al (2013) Receptor binding by an H7N9 influenza virus from humans. Nature 499:496–499

    CAS  PubMed  Google Scholar 

  • Xu L, Bao L, Deng W, Dong L, Zhu H, Chen T, Lv Q, Li F, Yuan J, Xiang Z, et al (2013a) Novel avian-origin human influenza A(H7N9) can be transmitted between ferrets via respiratory droplets. J Infect Dis

    Google Scholar 

  • Xu L, Bao L, Deng W, Zhu H, Chen T, Lv Q, Li F, Yuan J, Xiang Z, Gao K et al (2013b) The mouse and ferret models for studying the novel avian-origin human influenza A (H7N9) virus. Virol J 10:253

    PubMed Central  PubMed  Google Scholar 

  • Xu Q, Chen Z, Cheng X, Xu L, Jin H (2013c) Evaluation of Live Attenuated H7N3 and H7N7 Vaccine Viruses for Their Receptor Binding Preferences, Immunogenicity in Ferrets and Cross Reactivity to the Novel H7N9 Virus. PLoS One 8:e76884

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamayoshi S, Yamada S, Fukuyama S, Murakami S, Zhao D, Uraki R, Watanabe T, Tomita Y, Macken C, Neumann G, et al (2013) Virulence-Affecting Amino Acid Changes in the PA Protein of H7N9 Influenza A Viruses. J Virol

    Google Scholar 

  • Yang H, Carney PJ, Donis RO, Stevens J (2012) Structure and receptor complexes of the hemagglutinin from a highly pathogenic H7N7 influenza virus. J Virol 86:8645–8652

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang H, Chen LM, Carney PJ, Donis RO, Stevens J (2010) Structures of receptor complexes of a North American H7N2 influenza hemagglutinin with a loop deletion in the receptor binding site. PLoS Pathog 6:e1001081

    PubMed Central  PubMed  Google Scholar 

  • Yuan J, Zhang L, Kan X, Jiang L, Yang J, Guo Z, Ren Q (2013) Origin and molecular characteristics of a novel 2013 avian influenza A(H6N1) virus causing human infection in Taiwan. Clin Infect Dis 57:1367–1368

    CAS  PubMed  Google Scholar 

  • Zhang H, Li X, Guo J, Li L, Chang C, Li Y, Bian C, Xu K, Chen H, Sun B (2014) The PB2 E627K mutation contributes to the high polymerase activity and enhanced replication of H7N9 influenza virus. J Gen Virol

    Google Scholar 

  • Zhang Q, Shi J, Deng G, Guo J, Zeng X, He X, Kong H, Gu C, Li X, Liu J et al (2013) H7N9 influenza viruses are transmissible in ferrets by respiratory droplet. Science 341:410–414

    CAS  PubMed  Google Scholar 

  • Zhong W, Liu F, Dong L, Lu X, Hancock K, Reinherz EL, Katz JM, Sambhara S (2010) Significant impact of sequence variations in the nucleoprotein on CD8 T cell-mediated cross-protection against influenza A virus infections. PLoS One 5:e10583

    PubMed Central  PubMed  Google Scholar 

  • Zhou B, Zhong N, Guan Y (2007) Treatment with convalescent plasma for influenza A (H5N1) infection. N Engl J Med 357:1450–1451

    CAS  PubMed  Google Scholar 

  • Zhu H, Wang D, Kelvin DJ, Li L, Zheng Z, Yoon SW, Wong SS, Farooqui A, Wang J, Banner D et al (2013) Infectivity, transmission, and pathology of human-isolated H7N9 influenza virus in ferrets and pigs. Science 341:183–186

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Alissa Eckert for graphical assistance. The findings and conclusions in this report are those of the authors and do not necessarily reflect the views of the funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terrence M. Tumpey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Belser, J.A., Tumpey, T.M. (2014). Mammalian Models for the Study of H7 Virus Pathogenesis and Transmission. In: Compans, R., Oldstone, M. (eds) Influenza Pathogenesis and Control - Volume I. Current Topics in Microbiology and Immunology, vol 385. Springer, Cham. https://doi.org/10.1007/82_2014_383

Download citation

Publish with us

Policies and ethics