Skip to main content

What Distinguishes Highly Pathogenic Staphylococci from Medium- and Non-pathogenic?

  • Chapter
  • First Online:
Between Pathogenicity and Commensalism

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 358))

Abstract

Members of the genus Staphylococcus are widespread as commensals of humans and animals where they colonize the skin or mucous membranes. While this coexistence remains mostly untroubled, especially for the healthy host, the bacteria may pose a serious threat for the human or animal host when they get access to inner layers of the body through breaches in skin or membranes. Among the members of the genus a wide span exists in the ability to cope with the hostile conditions encountered in the bloodstream of the living host as a scarce supply of certain nutrients, attacks of the immune system, or anti-infective measures undertaken in the clinical field. In this respect, Staphylococcus aureus is by far the most versatile species of the genus. Its equipment with a huge repertoire of different virulence factors and additional supportive gene products that increase the capability to survive within the living host makes S. aureus the leading pathogen not only within the genus but also one of the most threatening microorganisms regarding hospitally and community-acquired infections. Compared with S. aureus, the other virulent species of the genus like S. epidermidis, S. lugdunensis, S. saprophyticus, and S. haemolyticus have a more limited arsenal of virulence factors resulting in a specialized spectrum of diseases and a generally lower degree of pathogenicity. Besides the highly and medium-pathogenic staphylococci, the genus comprises also species like S. carnosus, S. xylosus, and S. equorum that are generally inconspicuous regarding clinical occurrences. Some strains of this group are used in the food industry and can be graded as non-pathogenic. This review aims to work out the differences between the pathogenic properties of highly and medium-pathogenic staphylococcal species and to draw a comparison between the pathogenic species and the food-grade S. carnosus TM300.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahrens P, Andresen LO (2004) Cloning and sequence analysis of genes encoding Staphylococcus hyicus exfoliative toxin types A, B, C, and D. J Bacteriol 186:1833–1837

    Article  PubMed  CAS  Google Scholar 

  • Akineden O, Hassan AA, Schneider E, Usleber E (2011) A coagulase-negative variant of Staphylococcus aureus from bovine mastitis milk. J Dairy Res 78:38–42

    Article  PubMed  CAS  Google Scholar 

  • Albrecht T, Raue S, Rosenstein R, Nieselt K, Götz F (2012) Phylogeny of the staphylococcal major autolysin and its use in genus and species typing. J Bacteriol 194:2630–2636

    Article  PubMed  CAS  Google Scholar 

  • Allignet J, England P, Old I, El Solh N (2002) Several regions of the repeat domain of the Staphylococcus caprae autolysin, AtlC, are involved in fibronectin binding. FEMS Microbiol Lett 213:193–197

    Article  PubMed  CAS  Google Scholar 

  • Antikainen J, Kuparinen V, Lahteenmaki K, Korhonen TK (2007) Enolases from Gram-positive bacterial pathogens and commensal lactobacilli share functional similarity in virulence-associated traits. FEMS Immunol Med Microbiol 51:526–534

    Article  PubMed  CAS  Google Scholar 

  • Appelbaum PC, Bozdogan B (2004) Vancomycin resistance in Staphylococcus aureus. Clin Lab Med 24:381–402

    Article  PubMed  Google Scholar 

  • Aras RA, Kang J, Tschumi AI, Harasaki Y, Blaser MJ (2003) Extensive repetitive DNA facilitates prokaryotic genome plasticity. Proc Natl Acad Sci U S A 100:13579–13584

    Article  PubMed  CAS  Google Scholar 

  • Arrecubieta C, Lee MH, Macey A, Foster TJ, Lowy FD (2007) SdrF, a Staphylococcus epidermidis surface protein, binds type I collagen. J Biol Chem 282:18767–18776

    Article  PubMed  CAS  Google Scholar 

  • Arrecubieta C, Toba FA, von Bayern M, Akashi H, Deng MC, Naka Y, Lowy FD (2009) SdrF, a Staphylococcus epidermidis surface protein, contributes to the initiation of ventricular assist device driveline-related infections. PLoS Path 5:e1000411

    Article  CAS  Google Scholar 

  • Baba T, Takeuchi F, Kuroda M, Yuzawa H, Aoki K, Oguchi A, Nagai Y, Iwama N, Asano K, Naimi T, Kuroda H, Cui L, Yamamoto K, Hiramatsu K (2002) Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359:1819–1827

    Article  PubMed  CAS  Google Scholar 

  • Baba T, Bae T, Schneewind O, Takeuchi F, Hiramatsu K (2008) Genome sequence of Staphylococcus aureus strain Newman and comparative analysis of staphylococcal genomes: polymorphism and evolution of two major pathogenicity islands. J Bacteriol 190:300–310

    Article  PubMed  CAS  Google Scholar 

  • Barber M (1961) Methicillin-resistant staphylococci. J Clin Pathol 14:385–393

    Article  PubMed  CAS  Google Scholar 

  • Barriere C, Leroy-Setrin S, Talon R (2001) Characterization of catalase and superoxide dismutase in Staphylococcus carnosus 833 strain. J Appl Microbiol 91:514–519

    Article  PubMed  CAS  Google Scholar 

  • Bartlett AH, Hulten KG (2010) Staphylococcus aureus pathogenesis: secretion systems, adhesins, and invasins. Pediatr Infect Dis J 29:860–861

    Article  PubMed  Google Scholar 

  • Beenken KE, Dunman PM, McAleese F, Macapagal D, Murphy E, Projan SJ, Blevins JS, Smeltzer MS (2004) Global gene expression in Staphylococcus aureus biofilms. J Bacteriol 186:4665–4684

    Article  PubMed  CAS  Google Scholar 

  • Ben Zakour NL, Guinane CM, Fitzgerald JR (2008) Pathogenomics of the staphylococci: insights into niche adaptation and the emergence of new virulent strains. FEMS Microbiol Lett 289:1–12

    Article  PubMed  CAS  Google Scholar 

  • Ben Zakour NL, Bannoehr J, van den Broek AH, Thoday KL, Fitzgerald JR (2011) Complete genome sequence of the canine pathogen Staphylococcus pseudintermedius. J Bacteriol 193:2363–2364

    Article  PubMed  CAS  Google Scholar 

  • Bentley ML, Gaweska H, Kielec JM, McCafferty DG (2007) Engineering the substrate specificity of Staphylococcus aureus Sortase A. The beta6/beta7 loop from SrtB confers NPQTN recognition to SrtA. J Biol Chem 282:6571–6581

    Article  PubMed  CAS  Google Scholar 

  • Bera A, Herbert S, Jakob A, Vollmer W, Götz F (2005) Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol Microbiol 55:778–787

    Article  PubMed  CAS  Google Scholar 

  • Bera A, Biswas R, Herbert S, Götz F (2006) The presence of peptidoglycan O-acetyltransferase in various staphylococcal species correlates with lysozyme resistance and pathogenicity. Infect Immun 74:4598–4604

    Article  PubMed  CAS  Google Scholar 

  • Bera A, Biswas R, Herbert S, Kulauzovic E, Weidenmaier C, Peschel A, Götz F (2007) Influence of wall teichoic acid on lysozyme resistance in Staphylococcus aureus. J Bacteriol 189:280–283

    Article  PubMed  CAS  Google Scholar 

  • Berends ET, Horswill AR, Haste NM, Monestier M, Nizet V, von Kockritz-Blickwede M (2010) Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J Innate Immun 2:576–586

    Article  PubMed  CAS  Google Scholar 

  • Bestebroer J, Aerts PC, Rooijakkers SH, Pandey MK, Kohl J, van Strijp JA, de Haas CJ (2010) Functional basis for complement evasion by staphylococcal superantigen-like 7. Cell Microbiol 12:1506–1516

    Article  PubMed  CAS  Google Scholar 

  • Bhaya D, Davison M, Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273–297

    Article  PubMed  CAS  Google Scholar 

  • Biswas R, Voggu L, Simon UK, Hentschel P, Thumm G, Götz F (2006) Activity of the major staphylococcal autolysin Atl. FEMS Microbiol Lett 259:260–268

    Article  PubMed  CAS  Google Scholar 

  • Biswas L, Biswas R, Nerz C, Ohlsen K, Schlag M, Schäfer T, Lamkemeyer T, Ziebandt AK, Hantke K, Rosenstein R, Götz F (2009a) Role of the twin-arginine translocation pathway in Staphylococcus. J Bacteriol 191:5921–5929

    Article  PubMed  CAS  Google Scholar 

  • Biswas L, Biswas R, Schlag M, Bertram R, Götz F (2009b) Small-colony variant selection as a survival strategy for Staphylococcus aureus in the presence of Pseudomonas aeruginosa. Appl Environ Microbiol 75:6910–6912

    Article  PubMed  CAS  Google Scholar 

  • Bjerketorp J, Nilsson M, Ljungh A, Flock JI, Jacobsson K, Frykberg L (2002) A novel von Willebrand factor binding protein expressed by Staphylococcus aureus. Microbiology 148:2037–2044

    PubMed  CAS  Google Scholar 

  • Bjerketorp J, Jacobsson K, Frykberg L (2004) The von Willebrand factor-binding protein (vWbp) of Staphylococcus aureus is a coagulase. FEMS Microbiol Lett 234:309–314

    Article  PubMed  CAS  Google Scholar 

  • Bowden MG, Visai L, Longshaw CM, Holland KT, Speziale P, Hook M (2002) Is the GehD lipase from Staphylococcus epidermidis a collagen binding adhesin? J Biol Chem 277:43017–43023

    Article  PubMed  CAS  Google Scholar 

  • Bowden MG, Chen W, Singvall J, Xu Y, Peacock SJ, Valtulina V, Speziale P, Hook M (2005) Identification and preliminary characterization of cell-wall-anchored proteins of Staphylococcus epidermidis. Microbiology 151:1453–1464

    Article  PubMed  CAS  Google Scholar 

  • Bronner S, Monteil H, Prevost G (2004) Regulation of virulence determinants in Staphylococcus aureus: complexity and applications. FEMS Microbiol Rev 28:183–200

    Article  PubMed  CAS  Google Scholar 

  • Brosnahan AJ, Schlievert PM (2011) Gram-positive bacterial superantigen outside-in signaling causes toxic shock syndrome. FEBS J 278:4649–4667

    Article  PubMed  CAS  Google Scholar 

  • Brückner R (1997) Gene replacement in Staphylococcus carnosus and Staphylococcus xylosus. FEMS Microbiol Lett 151:1–8

    Article  PubMed  Google Scholar 

  • Brückner R, Wagner E, Götz F (1993) Characterization of a sucrase gene from Staphylococcus xylosus. J Bacteriol 175:851–857

    PubMed  Google Scholar 

  • Cameron DR, Howden BP, Peleg AY (2011) The interface between antibiotic resistance and virulence in Staphylococcus aureus and its impact upon clinical outcomes. Clin Infect Dis 53:576–582

    Article  PubMed  Google Scholar 

  • Carneiro CR, Postol E, Nomizo R, Reis LF, Brentani RR (2004) Identification of enolase as a laminin-binding protein on the surface of Staphylococcus aureus. Microb Infect 6:604–608

    Article  CAS  Google Scholar 

  • Carnio MC, Holtzel A, Rudolf M, Henle T, Jung G, Scherer S (2000) The macrocyclic peptide antibiotic micrococcin P(1) is secreted by the food-borne bacterium Staphylococcus equorum WS 2733 and inhibits Listeria monocytogenes on soft cheese. Appl Environ Microbiol 66:2378–2384

    Article  PubMed  CAS  Google Scholar 

  • Carnio MC, Stachelhaus T, Francis KP, Scherer S (2001) Pyridinyl polythiazole class peptide antibiotic micrococcin P1, secreted by foodborne Staphylococcus equorum WS2733, is biosynthesized nonribosomally. Eur J Biochem 268:6390–6401

    Article  PubMed  CAS  Google Scholar 

  • Celard M, Lelievre H, Obadia JF, Chevalier P, Forey F, Vandenesch F, Etienne J (1997) Long-standing bacteremia and endocarditis caused by Staphylococcus lugdunensis in a patient with an implantable cardioverter defibrillator. Clin Microbiol Infect 3:387–388

    Article  PubMed  Google Scholar 

  • Chavakis T, Wiechmann K, Preissner KT, Herrmann M (2005) Staphylococcus aureus interactions with the endothelium: the role of bacterial “secretable expanded repertoire adhesive molecules” (SERAM) in disturbing host defense systems. Thromb Haemost 94:278–285

    PubMed  CAS  Google Scholar 

  • Cheng AG, McAdow M, Kim HK, Bae T, Missiakas DM, Schneewind O (2010) Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS Path 6:e1001036

    Article  CAS  Google Scholar 

  • Cheung AI, Projan SJ, Edelstein RE, Fischetti VA (1995) Cloning, expression, and nucleotide sequence of a Staphylococcus aureus gene (fbpA) encoding a fibrinogen-binding protein. Infect Immun 63:1914–1920

    PubMed  CAS  Google Scholar 

  • Cheung GY, Rigby K, Wang R, Queck SY, Braughton KR, Whitney AR, Teintze M, DeLeo FR, Otto M (2010) Staphylococcus epidermidis strategies to avoid killing by human neutrophils. PLoS Path 6:e1001133

    Article  CAS  Google Scholar 

  • Chhatwal GS (2002) Anchorless adhesins and invasins of Gram-positive bacteria: a new class of virulence factors. Trends Microbiol 10:205–208

    Article  PubMed  CAS  Google Scholar 

  • Christner M, Franke GC, Schommer NN, Wendt U, Wegert K, Pehle P, Kroll G, Schulze C, Buck F, Mack D, Aepfelbacher M, Rohde H (2010) The giant extracellular matrix-binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. Mol Microbiol 75:187–207

    Article  PubMed  CAS  Google Scholar 

  • Chua K, Seemann T, Harrison PF, Davies JK, Coutts SJ, Chen H, Haring V, Moore R, Howden BP, Stinear TP (2010) Complete genome sequence of Staphylococcus aureus strain JKD6159, a unique Australian clone of ST93-IV community methicillin-resistant Staphylococcus aureus. J Bacteriol 192:5556–5557

    Article  PubMed  CAS  Google Scholar 

  • Clarke SR, Wiltshire MD, Foster SJ (2004) IsdA of Staphylococcus aureus is a broad spectrum, iron-regulated adhesin. Mol Microbiol 51:1509–1519

    Article  PubMed  CAS  Google Scholar 

  • Clauditz A, Resch A, Wieland KP, Peschel A, Götz F (2006) Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect Immun 74:4950–4953

    Article  PubMed  CAS  Google Scholar 

  • Corrigan RM, Rigby D, Handley P, Foster TJ (2007) The role of Staphylococcus aureus surface protein SasG in adherence and biofilm formation. Microbiology 153:2435–2446

    Article  PubMed  CAS  Google Scholar 

  • Corrigan RM, Miajlovic H, Foster TJ (2009) Surface proteins that promote adherence of Staphylococcus aureus to human desquamated nasal epithelial cells. BMC Microbiol 9:22

    Article  PubMed  CAS  Google Scholar 

  • Cramton SE, Gerke C, Schnell NF, Nichols WW, Götz F (1999) The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67:5427–5433

    PubMed  CAS  Google Scholar 

  • Cramton SE, Schnell NF, Götz F, Brückner R (2000) Identification of a new repetitive element in Staphylococcus aureus. Infect Immun 68:2344–2348

    Article  PubMed  CAS  Google Scholar 

  • Cucarella C, Solano C, Valle J, Amorena B, Lasa I, Penades JR (2001) Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183:2888–2896

    Article  PubMed  CAS  Google Scholar 

  • Cui L, Neoh HM, Iwamoto A, Hiramatsu K (2012) Coordinated phenotype switching with large-scale chromosome flip-flop inversion observed in bacteria. Proc Natl Acad Sci USA 109:E1647–1656

    Article  PubMed  CAS  Google Scholar 

  • Degnan BA, Palmer JM, Robson T, Jones CE, Fischer M, Glanville M, Mellor GD, Diamond AG, Kehoe MA, Goodacre JA (1998) Inhibition of human peripheral blood mononuclear cell proliferation by Streptococcus pyogenes cell extract is associated with arginine deiminase activity. Infect Immun 66:3050–3058

    PubMed  CAS  Google Scholar 

  • Devriese LA, Schleifer KH, Adegoke GO (1985) Identification of coagulase-negative staphylococci from farm animals. J Appl Bacteriol 58:45–55

    Article  PubMed  CAS  Google Scholar 

  • Diep BA, Gill SR, Chang RF, Phan TH, Chen JH, Davidson MG, Lin F, Lin J, Carleton HA, Mongodin EF, Sensabaugh GF, Perdreau-Remington F (2006) Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet 367:731–739

    Article  PubMed  CAS  Google Scholar 

  • Dinges MM, Orwin PM, Schlievert PM (2000) Exotoxins of Staphylococcus aureus. Clin Microbiol Rev 13:16–34

    Article  PubMed  CAS  Google Scholar 

  • Donvito B, Etienne J, Denoroy L, Greenland T, Benito Y, Vandenesch F (1997) Synergistic hemolytic activity of Staphylococcus lugdunensis is mediated by three peptides encoded by a non-agr genetic locus. Infect Immun 65:95–100

    PubMed  CAS  Google Scholar 

  • Downer R, Roche F, Park PW, Mecham RP, Foster TJ (2002) The elastin-binding protein of Staphylococcus aureus (EbpS) is expressed at the cell surface as an integral membrane protein and not as a cell wall-associated protein. J Biol Chem 277:243–250

    Article  PubMed  CAS  Google Scholar 

  • Dziewanowska K, Carson AR, Patti JM, Deobald CF, Bayles KW, Bohach GA (2000) Staphylococcal fibronectin binding protein interacts with heat shock protein 60 and integrins: role in internalization by epithelial cells. Infect Immun 68:6321–6328

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Chen CJ, Su LH, Hu S, Yu J, Chiu CH (2008) Evolution and pathogenesis of Staphylococcus aureus: lessons learned from genotyping and comparative genomics. FEMS Microbiol Rev 32:23–37

    Article  PubMed  CAS  Google Scholar 

  • Fiegler H, Bassias J, Jankovic I, Brückner R (1999) Identification of a gene in Staphylococcus xylosus encoding a novel glucose uptake protein. J Bacteriol 181:4929–4936

    PubMed  CAS  Google Scholar 

  • Fischetti VA, Pancholi V, Schneewind O (1990) Conservation of a hexapeptide sequence in the anchor region of surface proteins from gram-positive cocci. Mol Microbiol 4:1603–1605

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald JR, Reid SD, Ruotsalainen E, Tripp TJ, Liu M, Cole R, Kuusela P, Schlievert PM, Jarvinen A, Musser JM (2003) Genome diversification in Staphylococcus aureus: Molecular evolution of a highly variable chromosomal region encoding the Staphylococcal exotoxin-like family of proteins. Infect Immun 71:2827–2838

    Article  PubMed  CAS  Google Scholar 

  • Foster TJ (2005) Immune evasion by staphylococci. Nat Rev Microbiol 3:948–958

    Article  PubMed  CAS  Google Scholar 

  • Foster TJ (2009) Colonization and infection of the human host by staphylococci: adhesion, survival and immune evasion. Vet Dermatol 20:456–470

    Article  PubMed  Google Scholar 

  • Foster TJ, Hook M (1998) Surface protein adhesins of Staphylococcus aureus. Trends Microbiol 6:484–488

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Alvarez L, Holden MT, Lindsay H, Webb CR, Brown DF, Curran MD, Walpole E, Brooks K, Pickard DJ, Teale C, Parkhill J, Bentley SD, Edwards GF, Girvan EK, Kearns AM, Pichon B, Hill RL, Larsen AR, Skov RL, Peacock SJ, Maskell DJ, Holmes MA (2011) Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis 11:595–603

    Article  PubMed  CAS  Google Scholar 

  • Gardete S, Wu SW, Gill S, Tomasz A (2006) Role of VraSR in antibiotic resistance and antibiotic-induced stress response in Staphylococcus aureus. Antimicrob Agents Chemother 50:3424–3434

    Article  PubMed  CAS  Google Scholar 

  • Garza-Gonzalez E, Morfin-Otero R, Llaca-Diaz JM, Rodriguez-Noriega E (2010) Staphylococcal cassette chromosome mec (SCC mec) in methicillin-resistant coagulase-negative staphylococci. A review and the experience in a tertiary-care setting. Epidemiol Infect 138:645–654

    Article  PubMed  CAS  Google Scholar 

  • Gatermann S, John J, Marre R (1989) Staphylococcus saprophyticus urease: characterization and contribution to uropathogenicity in unobstructed urinary tract infection of rats. Infect Immun 57:110–116

    PubMed  CAS  Google Scholar 

  • Geissler S, Götz F, Kupke T (1996) Serine protease EpiP from Staphylococcus epidermidis catalyzes the processing of the epidermin precursor peptide. J Bacteriol 178:284–288

    PubMed  CAS  Google Scholar 

  • Geoghegan JA, Corrigan RM, Gruszka DT, Speziale P, O’Gara JP, Potts JR, Foster TJ (2010) Role of surface protein SasG in biofilm formation by Staphylococcus aureus. J Bacteriol 192:5663–5673

    Article  PubMed  CAS  Google Scholar 

  • Giese B, Glowinski F, Paprotka K, Dittmann S, Steiner T, Sinha B, Fraunholz MJ (2011) Expression of delta-toxin by Staphylococcus aureus mediates escape from phago-endosomes of human epithelial and endothelial cells in the presence of beta-toxin. Cell Microbiol 13:316–329

    Article  PubMed  CAS  Google Scholar 

  • Gill SR (2009) Genomics of the staphylococci. In: Crossley KB et al (eds) Staphylococci in human disease, 2nd edn. Wiley-Blackwell, Chicester

    Google Scholar 

  • Gill SR, Fouts DE, Archer GL, Mongodin EF, Deboy RT, Ravel J, Paulsen IT, Kolonay JF, Brinkac L, Beanan M, Dodson RJ, Daugherty SC, Madupu R, Angiuoli SV, Durkin AS, Haft DH, Vamathevan J, Khouri H, Utterback T, Lee C, Dimitrov G, Jiang L, Qin H, Weidman J, Tran K, Kang K, Hance IR, Nelson KE, Fraser CM (2005) Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol 187:2426–2438

    Article  PubMed  CAS  Google Scholar 

  • Golding GR, Bryden L, Levett PN, McDonald RR, Wong A, Wylie J, Graham MR, Tyler S, Van Domselaar G, Simor AE, Gravel D, Mulvey MR (2010) Livestock-associated methicillin-resistant Staphylococcus aureus sequence type 398 in humans, Canada. Emerg Infect Dis 16:587–594

    Article  PubMed  CAS  Google Scholar 

  • Götz F (1990) Staphylococcus carnosus: a new host organism for gene cloning and protein production. Soc Appl Bacteriol Symp Ser 19:49–53

    Article  Google Scholar 

  • Götz F (2002) Staphylococcus and biofilms. Mol Microbiol 43:1367–1378

    Article  PubMed  Google Scholar 

  • Götz F, Peters G (2000) Colonization of medical devices by coagulase-negative staphylococci. In: Waldvogel FA, Bisno AL (eds) Infections associated with indwelling medical devices, 3rd edn. ASM, Washington, pp 55–58

    Google Scholar 

  • Götz F, Zabielski J, Philipson L, Lindberg M (1983) DNA homology between the arsenate resistance plasmid pSX267 from Staphylococcus xylosus and the penicillinase plasmid pI258 from Staphylococcus aureus. Plasmid 9:126–137

    Article  PubMed  Google Scholar 

  • Götz F, Bannerman T, Schleifer K-H (2006) The genera staphylococcus and macrococcus. In: Dworkin M et al (eds) The prokaryotes, 3rd edn. Springer Science-Business Media, LLC, New York

    Google Scholar 

  • Greene C, McDevitt D, Francois P, Vaudaux PE, Lew DP, Foster TJ (1995) Adhesion properties of mutants of Staphylococcus aureus defective in fibronectin-binding proteins and studies on the expression of fnb genes. Mol Microbiol 17:1143–1152

    Article  PubMed  CAS  Google Scholar 

  • Gribbon EM, Cunliffe WJ, Holland KT (1993) Interaction of Propionibacterium acnes with skin lipids in vitro. J Gen Microbiol 139:1745–1751

    PubMed  CAS  Google Scholar 

  • Grissa I, Vergnaud G, Pourcel C (2007) The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinform 8:172

    Article  CAS  Google Scholar 

  • Guggenberger C, Wolz C, Morrissey JA, Heesemann J (2012) Two distinct coagulase-dependent barriers protect Staphylococcus aureus from neutrophils in a three dimensional in vitro infection model. PLoS Path 8:e1002434

    Article  CAS  Google Scholar 

  • Guinane CM, Ben Zakour NL, Tormo-Mas MA, Weinert LA, Lowder BV, Cartwright RA, Smyth DS, Smyth CJ, Lindsay JA, Gould KA, Witney A, Hinds J, Bollback JP, Rambaut A, Penades JR, Fitzgerald JR (2010) Evolutionary genomics of Staphylococcus aureus reveals insights into the origin and molecular basis of ruminant host adaptation. Genome Biol Evol 2:454–466

    Article  PubMed  CAS  Google Scholar 

  • Hair PS, Ward MD, Semmes OJ, Foster TJ, Cunnion KM (2008) Staphylococcus aureus clumping factor a binds to complement regulator factor I and increases factor I cleavage of C3b. J Infect Dis 198:125–133

    Article  PubMed  CAS  Google Scholar 

  • Hartford O, O’Brien L, Schofield K, Wells J, Foster TJ (2001) The fbe (SdrG) protein of Staphylococcus epidermidis HB promotes bacterial adherence to fibrinogen. Microbiology 147:2545–2552

    PubMed  CAS  Google Scholar 

  • Hartleib J, Kohler N, Dickinson RB, Chhatwal GS, Sixma JJ, Hartford OM, Foster TJ, Peters G, Kehrel BE, Herrmann M (2000) Protein A is the von Willebrand factor binding protein on Staphylococcus aureus. Blood 96:2149–2156

    PubMed  CAS  Google Scholar 

  • Heilbronner S, Holden MT, van Tonder A, Geoghegan JA, Foster TJ, Parkhill J, Bentley SD (2011) Genome sequence of Staphylococcus lugdunensis N920143 allows identification of putative colonization and virulence factors. FEMS Microbiol Lett 322:60–67

    Article  PubMed  CAS  Google Scholar 

  • Heilmann C, Gerke C, Perdreau-Remington F, Götz F (1996a) Characterization of Tn917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect Immun 64:277–282

    PubMed  CAS  Google Scholar 

  • Heilmann C, Schweitzer O, Gerke C, Vanittanakom N, Mack D, Götz F (1996b) Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol 20:1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Heilmann C, Hussain M, Peters G, Götz F (1997) Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24:1013–1024

    Article  PubMed  CAS  Google Scholar 

  • Heilmann C, Thumm G, Chhatwal GS, Hartleib J, Uekotter A, Peters G (2003) Identification and characterization of a novel autolysin (Aae) with adhesive properties from Staphylococcus epidermidis. Microbiology 149:2769–2778

    Article  PubMed  CAS  Google Scholar 

  • Heilmann C, Hartleib J, Hussain MS, Peters G (2005) The multifunctional Staphylococcus aureus autolysin aaa mediates adherence to immobilized fibrinogen and fibronectin. Infect Immun 73:4793–4802

    Article  PubMed  CAS  Google Scholar 

  • Hell W, Meyer HG, Gatermann SG (1998) Cloning of aas, a gene encoding a Staphylococcus saprophyticus surface protein with adhesive and autolytic properties. Mol Microbiol 29:871–881

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson H, Lawrence JG (2007) Mutational bias suggests that replication termination occurs near the dif site, not at Ter sites. Mol Microbiol 64:42–56

    Article  PubMed  CAS  Google Scholar 

  • Hennig S, Nyunt Wai S, Ziebuhr W (2007) Spontaneous switch to PIA-independent biofilm formation in an ica-positive Staphylococcus epidermidis isolate. Int J Med Microbiol 297:117–122

    Article  PubMed  CAS  Google Scholar 

  • Herbert S, Bera A, Nerz C, Kraus D, Peschel A, Goerke C, Meehl M, Cheung A, Götz F (2007) Molecular basis of resistance to muramidase and cationic antimicrobial peptide activity of lysozyme in staphylococci. PLoS Pathog 3:e102

    Article  PubMed  CAS  Google Scholar 

  • Herron LL, Chakravarty R, Dwan C, Fitzgerald JR, Musser JM, Retzel E, Kapur V (2002) Genome sequence survey identifies unique sequences and key virulence genes with unusual rates of amino acid substitution in bovine Staphylococcus aureus. Infect Immun 70:3978–3981

    Article  PubMed  CAS  Google Scholar 

  • Highlander SK, Hulten KG, Qin X, Jiang H, Yerrapragada S, Mason EO Jr, Shang Y, Williams TM, Fortunov RM, Liu Y, Igboeli O, Petrosino J, Tirumalai M, Uzman A, Fox GE, Cardenas AM, Muzny DM, Hemphill L, Ding Y, Dugan S, Blyth PR, Buhay CJ, Dinh HH, Hawes AC, Holder M, Kovar CL, Lee SL, Liu W, Nazareth LV, Wang Q, Zhou J, Kaplan SL, Weinstock GM (2007) Subtle genetic changes enhance virulence of methicillin resistant and sensitive Staphylococcus aureus. BMC Microbiol 7:99

    Article  PubMed  CAS  Google Scholar 

  • Hirschhausen N, Schlesier T, Schmidt MA, Götz F, Peters G, Heilmann C (2010) A novel staphylococcal internalization mechanism involves the major autolysin Atl and heat shock cognate protein Hsc70 as host cell receptor. Cell Microbiol 12:1746–1764

    Google Scholar 

  • Holden MT, Feil EJ, Lindsay JA, Peacock SJ, Day NP, Enright MC, Foster TJ, Moore CE, Hurst L, Atkin R, Barron A, Bason N, Bentley SD, Chillingworth C, Chillingworth T, Churcher C, Clark L, Corton C, Cronin A, Doggett J, Dowd L, Feltwell T, Hance Z, Harris B, Hauser H, Holroyd S, Jagels K, James KD, Lennard N, Line A, Mayes R, Moule S, Mungall K, Ormond D, Quail MA, Rabbinowitsch E, Rutherford K, Sanders M, Sharp S, Simmonds M, Stevens K, Whitehead S, Barrell BG, Spratt BG, Parkhill J (2004) Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc Natl Acad Sci U S A 101:9786–9791

    Article  PubMed  CAS  Google Scholar 

  • Holden MT, Lindsay JA, Corton C, Quail MA, Cockfield JD, Pathak S, Batra R, Parkhill J, Bentley SD, Edgeworth JD (2010) Genome sequence of a recently emerged, highly transmissible, multi-antibiotic- and antiseptic-resistant variant of methicillin-resistant Staphylococcus aureus, sequence type 239 (TW). J Bacteriol 192:888–892

    Article  PubMed  CAS  Google Scholar 

  • Holt DC, Holden MT, Tong SY, Castillo-Ramirez S, Clarke L, Quail MA, Currie BJ, Parkhill J, Bentley SD, Feil EJ, Giffard PM (2011) A very early-branching Staphylococcus aureus lineage lacking the carotenoid pigment staphyloxanthin. Genome Biol Evolut 3:881–895

    Article  CAS  Google Scholar 

  • Hoppe-Seyler TS, Jaeger B, Bockelmann W, Noordman WH, Geis A, Heller KJ (2004) Molecular identification and differentiation of Staphylococcus species and strains of cheese origin. Syst Appl Microbiol 27:211–218

    Article  PubMed  CAS  Google Scholar 

  • Houston P, Rowe SE, Pozzi C, Waters EM, O’Gara JP (2011) Essential role for the major autolysin in the fibronectin-binding protein-mediated Staphylococcus aureus biofilm phenotype. Infect Immun 79:1153–1165

    Article  PubMed  CAS  Google Scholar 

  • Howden BP, Seemann T, Harrison PF, McEvoy CR, Stanton JA, Rand CJ, Mason CW, Jensen SO, Firth N, Davies JK, Johnson PD, Stinear TP (2010) Complete genome sequence of Staphylococcus aureus strain JKD6008, an ST239 clone of methicillin-resistant Staphylococcus aureus with intermediate-level vancomycin resistance. J Bacteriol 192:5848–5849

    Article  PubMed  CAS  Google Scholar 

  • Huang TW, Chen FJ, Miu WC, Liao TL, Lin AC, Huang IW, Wu KM, Tsai SF, Chen YT, Lauderdale TL (2012) Complete genome sequence of Staphylococcus aureus M013, a pvl-positive, ST59-SCCmec type V strain isolated in Taiwan. J Bacteriol 194:1256–1257

    Article  PubMed  CAS  Google Scholar 

  • Hussain M, Herrmann M, von Eiff C, Perdreau-Remington F, Peters G (1997) A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect Immun 65:519–524

    PubMed  CAS  Google Scholar 

  • Hussain M, Becker K, von Eiff C, Schrenzel J, Peters G, Herrmann M (2001) Identification and characterization of a novel 38.5-kilodalton cell surface protein of Staphylococcus aureus with extended-spectrum binding activity for extracellular matrix and plasma proteins. J Bacteriol 183:6778–6786

    Article  PubMed  CAS  Google Scholar 

  • Izano EA, Amarante MA, Kher WB, Kaplan JB (2008) Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol 74:470–476

    Article  PubMed  CAS  Google Scholar 

  • Jankovic I, Brückner R (2002) Carbon catabolite repression by the catabolite control protein CcpA in Staphylococcus xylosus. J Mol Microbiol Biotechnol 4:309–314

    PubMed  CAS  Google Scholar 

  • Jankovic I, Brückner R (2007) Carbon catabolite repression of sucrose utilization in Staphylococcus xylosus: catabolite control protein CcpA ensures glucose preference and autoregulatory limitation of sucrose utilization. J Mol Microbiol Biotechnol 12:114–120

    Article  PubMed  CAS  Google Scholar 

  • Jankovic I, Egeter O, Brückner R (2001) Analysis of catabolite control protein A-dependent repression in Staphylococcus xylosus by a genomic reporter gene system. J Bacteriol 183:580–586

    Article  PubMed  CAS  Google Scholar 

  • Janzon L, Arvidson S (1990) The role of the delta-lysin gene (hld) in the regulation of virulence genes by the accessory gene regulator (agr) in Staphylococcus aureus. EMBO J 9:1391–1399

    PubMed  CAS  Google Scholar 

  • Jin T, Bokarewa M, Foster T, Mitchell J, Higgins J, Tarkowski A (2004) Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol 172:1169–1176

    PubMed  CAS  Google Scholar 

  • Jongerius I, Garcia BL, Geisbrecht BV, van Strijp JA, Rooijakkers SH (2010) Convertase inhibitory properties of Staphylococcal extracellular complement-binding protein. J Biol Chem 285:14973–14979

    Article  PubMed  CAS  Google Scholar 

  • Josefsson E, McCrea KW, Ni Eidhin D, O’Connell D, Cox J, Hook M, Foster TJ (1998) Three new members of the serine-aspartate repeat protein multigene family of Staphylococcus aureus. Microbiology 144(Pt 12):3387–3395

    Article  PubMed  CAS  Google Scholar 

  • Katayama Y, Ito T, Hiramatsu K (2000) A new class of genetic element, Staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 44:1549–1555

    Article  PubMed  CAS  Google Scholar 

  • Khalil H, Williams RJ, Stenbeck G, Henderson B, Meghji S, Nair SP (2007) Invasion of bone cells by Staphylococcus epidermidis. Microb Infect 9:460–465

    Article  CAS  Google Scholar 

  • Kiedrowski MR, Kavanaugh JS, Malone CL, Mootz JM, Voyich JM, Smeltzer MS, Bayles KW, Horswill AR (2011) Nuclease modulates biofilm formation in community-associated methicillin-resistant Staphylococcus aureus. PloS One 6:e26714

    Article  PubMed  CAS  Google Scholar 

  • King NP, Sakinc T, Ben Zakour NL, Totsika M, Heras B, Simerska P, Shepherd M, Gatermann SG, Beatson SA, Schembri MA (2012) Characterisation of a cell wall-anchored protein of Staphylococcus saprophyticus associated with linoleic acid resistance. BMC Microbiol 12:8

    Article  PubMed  CAS  Google Scholar 

  • Kleeman KT, Bannerman TL, Kloos WE (1993) Species distribution of coagulase-negative staphylococcal isolates at a community hospital and implications for selection of staphylococcal identification procedures. J Clin Microbiol 31:1318–1321

    PubMed  CAS  Google Scholar 

  • Kline KA, Ingersoll MA, Nielsen HV, Sakinc T, Henriques-Normark B, Gatermann S, Caparon MG, Hultgren SJ (2010) Characterization of a novel murine model of Staphylococcus saprophyticus urinary tract infection reveals roles for Ssp and SdrI in virulence. Infect Immun 78:1943–1951

    Article  PubMed  CAS  Google Scholar 

  • Kloos WE, Musselwhite MS (1975) Distribution and persistence of Staphylococcus and Micrococcus species and other aerobic bacteria on human skin. Appl Microbiol 30:381–385

    PubMed  CAS  Google Scholar 

  • Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, Cui L, Oguchi A, Aoki K, Nagai Y, Lian J, Ito T, Kanamori M, Matsumaru H, Maruyama A, Murakami H, Hosoyama A, Mizutani-Ui Y, Takahashi NK, Sawano T, Inoue R, Kaito C, Sekimizu K, Hirakawa H, Kuhara S, Goto S, Yabuzaki J, Kanehisa M, Yamashita A, Oshima K, Furuya K, Yoshino C, Shiba T, Hattori M, Ogasawara N, Hayashi H, Hiramatsu K (2001) Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357:1225–1240

    Article  PubMed  CAS  Google Scholar 

  • Kuroda M, Yamashita A, Hirakawa H, Kumano M, Morikawa K, Higashide M, Maruyama A, Inose Y, Matoba K, Toh H, Kuhara S, Hattori M, Ohta T (2005) Whole genome sequence of Staphylococcus saprophyticus reveals the pathogenesis of uncomplicated urinary tract infection. Proc Natl Acad Sci USA 102:13272–13277

    Article  PubMed  CAS  Google Scholar 

  • Labandeira-Rey M, Couzon F, Boisset S, Brown EL, Bes M, Benito Y, Barbu EM, Vazquez V, Hook M, Etienne J, Vandenesch F, Bowden MG (2007) Staphylococcus aureus Panton-Valentine leukocidin causes necrotizing pneumonia. Science 315:1130–1133

    Article  PubMed  CAS  Google Scholar 

  • Lagace-Wiens PR, Alfa MJ, Manickam K, Karlowsky JA (2007) Thermostable DNase is superior to tube coagulase for direct detection of Staphylococcus aureus in positive blood cultures. J Clin Microbiol 45:3478–3479

    Article  PubMed  Google Scholar 

  • Lasa I, Penades JR (2006) Bap: a family of surface proteins involved in biofilm formation. Res Microbiol 157:99–107

    Article  PubMed  CAS  Google Scholar 

  • Lee LY, Liang X, Hook M, Brown EL (2004) Identification and characterization of the C3 binding domain of the Staphylococcus aureus extracellular fibrinogen-binding protein (Efb). J Biol Chem 279:50710–50716

    Article  PubMed  CAS  Google Scholar 

  • Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5:48–56

    Article  PubMed  CAS  Google Scholar 

  • Li M, Cha DJ, Lai Y, Villaruz AE, Sturdevant DE, Otto M (2007) The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Mol Microbiol 66:1136–1147

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Cao B, Zhang Y, Zhou J, Yang B, Wang L (2011) Complete genome sequence of Staphylococcus aureus T0131, an ST239-MRSA-SCCmec type III clone isolated in China. J Bacteriol 193:3411–3412

    Article  PubMed  CAS  Google Scholar 

  • Lina G, Piemont Y, Godail-Gamot F, Bes M, Peter MO, Gauduchon V, Vandenesch F, Etienne J (1999) Involvement of panton-valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis 29:1128–1132

    Article  PubMed  CAS  Google Scholar 

  • Lina G, Bohach GA, Nair SP, Hiramatsu K, Jouvin-Marche E, Mariuzza R (2004) Standard nomenclature for the superantigens expressed by Staphylococcus. J Infect Dis 189:2334–2336

    Article  PubMed  Google Scholar 

  • Lindqvist M, Isaksson B, Grub C, Jonassen TO, Hallgren A (2012) Detection and characterisation of SCCmec remnants in multiresistant methicillin-susceptible Staphylococcus aureus causing a clonal outbreak in a Swedish county. Eur J Clin Microbiol 31:141–147

    Article  CAS  Google Scholar 

  • Lindsay JA, Holden MT (2006) Understanding the rise of the superbug: investigation of the evolution and genomic variation of Staphylococcus aureus. Funct Integr Genomics 6:186–201

    Article  PubMed  CAS  Google Scholar 

  • Lindsay JA, Moore CE, Day NP, Peacock SJ, Witney AA, Stabler RA, Husain SE, Butcher PD, Hinds J (2006) Microarrays reveal that each of the ten dominant lineages of Staphylococcus aureus has a unique combination of surface-associated and regulatory genes. J Bacteriol 188:669–676

    Article  PubMed  CAS  Google Scholar 

  • Loffler B, Hussain M, Grundmeier M, Bruck M, Holzinger D, Varga G, Roth J, Kahl BC, Proctor RA, Peters G (2010) Staphylococcus aureus panton-valentine leukocidin is a very potent cytotoxic factor for human neutrophils. PLoS Path 6:e1000715

    Article  CAS  Google Scholar 

  • Longshaw CM, Farrell AM, Wright JD, Holland KT (2000) Identification of a second lipase gene, gehD, in Staphylococcus epidermidis: comparison of sequence with those of other staphylococcal lipases. Microbiology 146(Pt 6):1419–1427

    PubMed  CAS  Google Scholar 

  • Lowder BV, Guinane CM, Ben Zakour NL, Weinert LA, Conway-Morris A, Cartwright RA, Simpson AJ, Rambaut A, Nubel U, Fitzgerald JR (2009) Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus. Proc Natl Acad Sci USA 106:19545–19550

    Article  PubMed  CAS  Google Scholar 

  • Lowy FD (1998) Staphylococcus aureus infections. New Engl J Med 339:520–532

    Article  PubMed  CAS  Google Scholar 

  • Macintosh RL, Brittan JL, Bhattacharya R, Jenkinson HF, Derrick J, Upton M, Handley PS (2009) The terminal A domain of the fibrillar accumulation-associated protein (Aap) of Staphylococcus epidermidis mediates adhesion to human corneocytes. J Bacteriol 191:7007–7016

    Article  PubMed  CAS  Google Scholar 

  • Mack D, Fischer W, Krokotsch A, Leopold K, Hartmann R, Egge H, Laufs R (1996) The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 178:175–183

    PubMed  CAS  Google Scholar 

  • Madhusoodanan J, Seo KS, Remortel B, Park JY, Hwang SY, Fox LK, Park YH, Deobald CF, Wang D, Liu S, Daugherty SC, Gill AL, Bohach GA, Gill SR (2011) An enterotoxin-bearing pathogenicity island in Staphylococcus epidermidis. J Bacteriol 193:1854–1862

    Article  PubMed  CAS  Google Scholar 

  • Maiques E, Ubeda C, Tormo MA, Ferrer MD, Lasa I, Novick RP, Penades JR (2007) Role of staphylococcal phage and SaPI integrase in intra- and interspecies SaPI transfer. J Bacteriol 189:5608–5616

    Article  PubMed  CAS  Google Scholar 

  • Malachowa N, DeLeo FR (2010) Mobile genetic elements of Staphylococcus aureus. Cell Mol Life Sci 67:3057–3071

    Article  PubMed  CAS  Google Scholar 

  • Marchesini B, Bruttin A, Romailler N, Moreton RS, Stucchi C, Sozzi T (1992) Microbiological events during commercial meat fermentations. J Appl Bacteriol 73:203–209

    Article  PubMed  CAS  Google Scholar 

  • Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843–1845

    Article  PubMed  CAS  Google Scholar 

  • Marshall JH, Wilmoth GJ (1981) Pigments of Staphylococcus aureus, a series of triterpenoid carotenoids. J Bacteriol 147:900–913

    PubMed  CAS  Google Scholar 

  • Marti M, Trotonda MP, Tormo-Mas MA, Vergara-Irigaray M, Cheung AL, Lasa I, Penades JR (2010) Extracellular proteases inhibit protein-dependent biofilm formation in Staphylococcus aureus. Microb Infect 12:55–64

    Article  CAS  Google Scholar 

  • Mazmanian SK, Liu G, Jensen ER, Lenoy E, Schneewind O (2000) Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. Proc Natl Acad Sci USA 97:5510–5515

    Article  PubMed  CAS  Google Scholar 

  • Mazmanian SK, Skaar EP, Gaspar AH, Humayun M, Gornicki P, Jelenska J, Joachmiak A, Missiakas DM, Schneewind O (2003) Passage of heme-iron across the envelope of Staphylococcus aureus. Science 299:906–909

    Article  PubMed  CAS  Google Scholar 

  • McCrea KW, Hartford O, Davis S, Eidhin DN, Lina G, Speziale P, Foster TJ, Hook M (2000) The serine-aspartate repeat (Sdr) protein family in Staphylococcus epidermidis. Microbiology 146(Pt 7):1535–1546

    PubMed  CAS  Google Scholar 

  • McDevitt D, Francois P, Vaudaux P, Foster TJ (1994) Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus. Mol Microbiol 11:237–248

    Article  PubMed  CAS  Google Scholar 

  • Meehl M, Herbert S, Götz F, Cheung A (2007) Interaction of the GraRS two-component system with the VraFG ABC transporter to support vancomycin-intermediate resistance in Staphylococcus aureus. Antimicrob Agents Chemother 51:2679–2689

    Article  PubMed  CAS  Google Scholar 

  • Mehlin C, Headley CM, Klebanoff SJ (1999) An inflammatory polypeptide complex from Staphylococcus epidermidis: isolation and characterization. J Exp Med 189:907–918

    Article  PubMed  CAS  Google Scholar 

  • Merino N, Toledo-Arana A, Vergara-Irigaray M, Valle J, Solano C, Calvo E, Lopez JA, Foster TJ, Penades JR, Lasa I (2009) Protein A-mediated multicellular behavior in Staphylococcus aureus. J Bacteriol 191:832–843

    Article  PubMed  CAS  Google Scholar 

  • Molkanen T, Tyynela J, Helin J, Kalkkinen N, Kuusela P (2002) Enhanced activation of bound plasminogen on Staphylococcus aureus by staphylokinase. FEBS Lett 517:72–78

    Article  PubMed  CAS  Google Scholar 

  • Mwangi MM, Wu SW, Zhou Y, Sieradzki K, de Lencastre H, Richardson P, Bruce D, Rubin E, Myers E, Siggia ED, Tomasz A (2007) Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc Natl Acad Sci USA 104:9451–9456

    Article  PubMed  CAS  Google Scholar 

  • Neoh HM, Cui L, Yuzawa H, Takeuchi F, Matsuo M, Hiramatsu K (2008) Mutated response regulator graR is responsible for phenotypic conversion of Staphylococcus aureus from heterogeneous vancomycin-intermediate resistance to vancomycin-intermediate resistance. Antimicrob Agents Chemother 52:45–53

    Article  PubMed  CAS  Google Scholar 

  • Neubauer H, Götz F (1996) Physiology and interaction of nitrate and nitrite reduction in Staphylococcus carnosus. J Bacteriol 178:2005–2009

    PubMed  CAS  Google Scholar 

  • Neubauer H, Pantel I, Götz F (1999) Molecular characterization of the nitrite-reducing system of Staphylococcus carnosus. J Bacteriol 181:1481–1488

    PubMed  CAS  Google Scholar 

  • Niinivaara FP, Pohja MS (1956) Über die Reifung der Rohwurst. I. Mitt: Die Veränderung der Bakterienflora während der Reifung. Z Lebensm Unters Forsch 104:413–422

    Google Scholar 

  • Nilsson M, Bjerketorp J, Wiebensjo A, Ljungh A, Frykberg L, Guss B (2004) A von Willebrand factor-binding protein from Staphylococcus lugdunensis. FEMS Microbiol Lett 234:155–161

    Article  PubMed  CAS  Google Scholar 

  • Novick RP (2003) Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48:1429–1449

    Article  PubMed  CAS  Google Scholar 

  • Novick RP, Geisinger E (2008) Quorum sensing in staphylococci. Annu Rev Genet 42:541–564

    Article  PubMed  CAS  Google Scholar 

  • Novick RP, Subedi A (2007) The SaPIs: mobile pathogenicity islands of Staphylococcus. Chem Immunol Allergy 93:42–57

    Article  PubMed  CAS  Google Scholar 

  • Novick RP, Christie GE, Penades JR (2010) The phage-related chromosomal islands of gram-positive bacteria. Nat Rev Microbiol 8:541–551

    Article  PubMed  CAS  Google Scholar 

  • Nubel U, Dordel J, Kurt K, Strommenger B, Westh H, Shukla SK, Zemlickova H, Leblois R, Wirth T, Jombart T, Balloux F, Witte W (2010) A timescale for evolution, population expansion, and spatial spread of an emerging clone of methicillin-resistant Staphylococcus aureus. PLoS Path 6:e1000855

    Article  CAS  Google Scholar 

  • Otto M (2010a) Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annu Rev Microbiol 64:143–162

    Article  PubMed  CAS  Google Scholar 

  • Otto M (2010b) Staphylococcus colonization of the skin and antimicrobial peptides. Expert Rev Dermatol 5:183–195

    Article  PubMed  CAS  Google Scholar 

  • Otto M (2012) Molecular basis of Staphylococcus epidermidis infections. Semin Immunopathol 34:201–214

    Article  PubMed  Google Scholar 

  • Otto M, O’Mahoney DS, Guina T, Klebanoff SJ (2004) Activity of Staphylococcus epidermidis phenol-soluble modulin peptides expressed in Staphylococcus carnosus. J Infect Dis 190:748–755

    Article  PubMed  CAS  Google Scholar 

  • Palma M, Shannon O, Quezada HC, Berg A, Flock JI (2001) Extracellular fibrinogen-binding protein, Efb, from Staphylococcus aureus blocks platelet aggregation due to its binding to the alpha-chain. J Biol Chem 276:31691–31697

    Article  PubMed  CAS  Google Scholar 

  • Park PW, Rosenbloom J, Abrams WR, Mecham RP (1996) Molecular cloning and expression of the gene for elastin-binding protein (ebpS) in Staphylococcus aureus. J Biol Chem 271:15803–15809

    Article  PubMed  CAS  Google Scholar 

  • Pelz A, Wieland KP, Putzbach K, Hentschel P, Albert K, Götz F (2005) Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus. J Biol Chem 280:32493–32498

    Article  PubMed  CAS  Google Scholar 

  • Place RB, Hiestand D, Gallmann HR, Teuber M (2003) Staphylococcus equorum subsp. linens, subsp. nov., a starter culture component for surface ripened semi-hard cheeses. Syst Appl Microbiol 26:30–37

    Article  PubMed  CAS  Google Scholar 

  • Postma B, Poppelier MJ, van Galen JC, Prossnitz ER, van Strijp JA, de Haas CJ, van Kessel KP (2004) Chemotaxis inhibitory protein of Staphylococcus aureus binds specifically to the C5a and formylated peptide receptor. J Immunol 172:6994–7001

    PubMed  CAS  Google Scholar 

  • Proctor RA, von Eiff C, Kahl BC, Becker K, McNamara P, Herrmann M, Peters G (2006) Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 4:295–305

    Article  PubMed  CAS  Google Scholar 

  • Qin Z, Ou Y, Yang L, Zhu Y, Tolker-Nielsen T, Molin S, Qu D (2007) Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology 153:2083–2092

    Article  PubMed  CAS  Google Scholar 

  • Rahimpour R, Mitchell G, Khandaker MH, Kong C, Singh B, Xu L, Ochi A, Feldman RD, Pickering JG, Gill BM, Kelvin DJ (1999) Bacterial superantigens induce down-modulation of CC chemokine responsiveness in human monocytes via an alternative chemokine ligand-independent mechanism. J Immunol 162:2299–2307

    PubMed  CAS  Google Scholar 

  • Rainard P (2007) Staphylococcus aureus leucotoxin LukM/F’ is secreted and stimulates neutralising antibody response in the course of intramammary infection. Vet Res 38:685–696

    Article  PubMed  Google Scholar 

  • Rautenberg M, Joo HS, Otto M, Peschel A (2011) Neutrophil responses to staphylococcal pathogens and commensals via the formyl peptide receptor 2 relates to phenol-soluble modulin release and virulence. FASEB J 25:1254–1263

    Article  PubMed  CAS  Google Scholar 

  • Rehm SJ, Tice A (2010) Staphylococcus aureus: methicillin-susceptible S. aureus to methicillin-resistant S. aureus and vancomycin-resistant S. aureus. Clin Infect Dis 51 Suppl 2:S176–182

    Google Scholar 

  • Resch A, Rosenstein R, Nerz C, Götz F (2005) Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Appl Environ Microbiol 71:2663–2676

    Article  PubMed  CAS  Google Scholar 

  • Resch A, Leicht S, Saric M, Pasztor L, Jakob A, Götz F, Nordheim A (2006) Comparative proteome analysis of Staphylococcus aureus biofilm and planktonic cells and correlation with transcriptome profiling. Proteomics 6:1867–1877

    Article  PubMed  CAS  Google Scholar 

  • Roche FM, Massey R, Peacock SJ, Day NP, Visai L, Speziale P, Lam A, Pallen M, Foster TJ (2003a) Characterization of novel LPXTG-containing proteins of Staphylococcus aureus identified from genome sequences. Microbiology 149:643–654

    Article  PubMed  CAS  Google Scholar 

  • Roche FM, Meehan M, Foster TJ (2003b) The Staphylococcus aureus surface protein SasG and its homologues promote bacterial adherence to human desquamated nasal epithelial cells. Microbiology 149:2759–2767

    Article  PubMed  CAS  Google Scholar 

  • Rohde H, Burdelski C, Bartscht K, Hussain M, Buck F, Horstkotte MA, Knobloch JK, Heilmann C, Herrmann M, Mack D (2005) Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol Microbiol 55:1883–1895

    Article  PubMed  CAS  Google Scholar 

  • Rohde H, Burandt EC, Siemssen N, Frommelt L, Burdelski C, Wurster S, Scherpe S, Davies AP, Harris LG, Horstkotte MA, Knobloch JK, Ragunath C, Kaplan JB, Mack D (2007) Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials 28:1711–1720

    Article  PubMed  CAS  Google Scholar 

  • Rooijakkers SH, Ruyken M, Roos A, Daha MR, Presanis JS, Sim RB, van Wamel WJ, van Kessel KP, van Strijp JA (2005a) Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat Immunol 6:920–927

    Article  PubMed  CAS  Google Scholar 

  • Rooijakkers SH, van Wamel WJ, Ruyken M, van Kessel KP, van Strijp JA (2005b) Anti-opsonic properties of staphylokinase. Microb Infect 7:476–484

    Article  CAS  Google Scholar 

  • Rosenstein R, Götz F (2000) Staphylococcal lipases: biochemical and molecular characterization. Biochimie 82:1005–1014

    Article  PubMed  CAS  Google Scholar 

  • Rosenstein R, Götz F (2010) Genomic differences between the food-grade Staphylococcus carnosus and pathogenic staphylococcal species. Int J Med Microbiol 300:104–108

    Article  PubMed  CAS  Google Scholar 

  • Rosenstein R, Nerz C, Biswas L, Resch A, Raddatz G, Schuster SC, Götz F (2009) Genome analysis of the meat starter culture bacterium Staphylococcus carnosus TM300. Appl Environ Microbiol 75:811–822

    Article  PubMed  CAS  Google Scholar 

  • Sakinc T, Kleine B, Gatermann SG (2006) SdrI, a serine-aspartate repeat protein identified in Staphylococcus saprophyticus strain 7108, is a collagen-binding protein. Infect Immun 74:4615–4623

    Article  PubMed  CAS  Google Scholar 

  • Sakinc T, Kleine B, Gatermann SG (2007) Biochemical characterization of the surface-associated lipase of Staphylococcus saprophyticus. FEMS Microbiol Lett 274:335–341

    Article  PubMed  CAS  Google Scholar 

  • Sakinc T, Kleine B, Michalski N, Kaase M, Gatermann SG (2009a) SdrI of Staphylococcus saprophyticus is a multifunctional protein: localization of the fibronectin-binding site. FEMS Microbiol Lett 301:28–34

    Article  PubMed  CAS  Google Scholar 

  • Sakinc T, Michalski N, Kleine B, Gatermann SG (2009b) The uropathogenic species Staphylococcus saprophyticus tolerates a high concentration of d-serine. FEMS Microbiol Lett 299:60–64

    Article  PubMed  CAS  Google Scholar 

  • Sass P, Berscheid A, Jansen A, Oedenkoven M, Szekat C, Strittmatter A, Gottschalk G, Bierbaum G (2012) Genome sequence of Staphylococcus aureus VC40, a vancomycin- and daptomycin-resistant strain, to study the genetics of development of resistance to currently applied last-resort antibiotics. J Bacteriol 194:2107–2108

    Article  PubMed  CAS  Google Scholar 

  • Savolainen K, Paulin L, Westerlund-Wikstrom B, Foster TJ, Korhonen TK, Kuusela P (2001) Expression of pls, a gene closely associated with the mecA gene of methicillin-resistant Staphylococcus aureus, prevents bacterial adhesion in vitro. Infect Immun 69:3013–3020

    Article  PubMed  CAS  Google Scholar 

  • Schijffelen MJ, Boel CH, van Strijp JA, Fluit AC (2010) Whole genome analysis of a livestock-associated methicillin-resistant Staphylococcus aureus ST398 isolate from a case of human endocarditis. BMC Genomics 11:376

    Article  PubMed  CAS  Google Scholar 

  • Schlag M, Biswas R, Krismer B, Köhler T, Zoll S, Yu W, Schwarz H, Peschel A, Götz F (2010) Role of staphylococcal wall teichoic acid in targeting the major autolysin Atl. Mol Microbiol 75:864–873

    Article  PubMed  CAS  Google Scholar 

  • Schleifer KH, Fischer U (1982) Description of a new species of the genus Staphylococcus: Staphylococcus carnosus. Int J Syst Bacteriol 32:153–156

    Article  CAS  Google Scholar 

  • Schlievert PM, McCormick JK, Bohach GA, Ohlendorf DH (2009) Exotoxins. In: Crossley KB et al (eds) Staphylococci in human disease, 2nd edn. Blackwell-Wiley, Chicester

    Google Scholar 

  • Schneewind O, Model P, Fischetti VA (1992) Sorting of protein A to the staphylococcal cell wall. Cell 70:267–281

    Article  PubMed  CAS  Google Scholar 

  • Schroeder K, Jularic M, Horsburgh SM, Hirschhausen N, Neumann C, Bertling A, Schulte A, Foster S, Kehrel BE, Peters G, Heilmann C (2009) Molecular characterization of a novel Staphylococcus aureus surface protein (SasC) involved in cell aggregation and biofilm accumulation. PloS One 4:e7567

    Article  PubMed  CAS  Google Scholar 

  • Schumacher-Perdreau F, Heilmann C, Peters G, Götz F, Pulverer G (1994) Comparative analysis of a biofilm-forming Staphylococcus epidermidis strain and its adhesion-positive, accumulation-negative mutant M7. FEMS Microbiol Lett 117:71–78

    Article  PubMed  CAS  Google Scholar 

  • Seitter M, Nerz C, Rosenstein R, Götz F, Hertel C (2011) DNA microarray based detection of genes involved in safety and technologically relevant properties of food associated coagulase-negative staphylococci. Int J Food Microbiol 145:449–458

    Article  PubMed  CAS  Google Scholar 

  • Sellman BR, Howell AP, Kelly-Boyd C, Baker SM (2005) Identification of immunogenic and serum binding proteins of Staphylococcus epidermidis. Infect Immun 73:6591–6600

    Article  PubMed  CAS  Google Scholar 

  • Sharp JA, Echague CG, Hair PS, Ward MD, Nyalwidhe JO, Geoghegan JA, Foster TJ, Cunnion KM (2012) Staphylococcus aureus surface protein SdrE binds complement regulator factor H as an immune evasion tactic. PloS One 7:e38407

    Article  PubMed  CAS  Google Scholar 

  • Shore AC, Rossney AS, Brennan OM, Kinnevey PM, Humphreys H, Sullivan DJ, Goering RV, Ehricht R, Monecke S, Coleman DC (2011) Characterization of a novel arginine catabolic mobile element (ACME) and staphylococcal chromosomal cassette mec composite island with significant homology to Staphylococcus epidermidis ACME type II in methicillin-resistant Staphylococcus aureus genotype ST22-MRSA-IV. Antimicrob Agents Chemother 55:1896–1905

    Google Scholar 

  • Sinha B, Francois PP, Nusse O, Foti M, Hartford OM, Vaudaux P, Foster TJ, Lew DP, Herrmann M, Krause KH (1999) Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin alpha5beta1. Cell Microbiol 1:101–117

    Article  PubMed  CAS  Google Scholar 

  • Skaar EP, Humayun M, Bae T, DeBord KL, Schneewind O (2004) Iron-source preference of Staphylococcus aureus infections. Science 305:1626–1628

    Article  PubMed  CAS  Google Scholar 

  • Sloot N, Thomas M, Marre R, Gatermann S (1992) Purification and characterisation of elastase from Staphylococcus epidermidis. J Med Microbiol 37:201–205

    Article  PubMed  CAS  Google Scholar 

  • Smeltzer MS, Lee CY, Harik N, Hart ME (2009) Molecular basis of pathogenicity. In: Crossley KB et al (eds) Staphylococci in human disease, 2nd edn. Blackwell-Wiley, Chichester

    Google Scholar 

  • Stegger M, Price LB, Larsen AR, Gillece JD, Waters AE, Skov R, Andersen PS (2012) Genome sequence of Staphylococcus aureus strain 11819–97, an ST80-IV European community-acquired methicillin-resistant isolate. J Bacteriol 194:1625–1626

    Article  PubMed  CAS  Google Scholar 

  • Szabados F, Kleine B, Anders A, Kaase M, Sakinc T, Schmitz I, Gatermann S (2008) Staphylococcus saprophyticus ATCC 15305 is internalized into human urinary bladder carcinoma cell line 5637. FEMS Microbiol Lett 285:163–169

    Article  PubMed  CAS  Google Scholar 

  • Szmigielski S, Prevost G, Monteil H, Colin DA, Jeljaszewicz J (1999) Leukocidal toxins of staphylococci. Zentralbl Bakteriol Int J Med Mikrobiol 289:185–201

    Google Scholar 

  • Takeuchi F, Watanabe S, Baba T, Yuzawa H, Ito T, Morimoto Y, Kuroda M, Cui L, Takahashi M, Ankai A, Baba S, Fukui S, Lee JC, Hiramatsu K (2005) Whole-genome sequencing of Staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species. J Bacteriol 187:7292–7308

    Article  PubMed  CAS  Google Scholar 

  • Teufel P, Götz F (1993) Characterization of an extracellular metalloprotease with elastase activity from Staphylococcus epidermidis. J Bacteriol 175:4218–4224

    PubMed  CAS  Google Scholar 

  • Thomas D, Chou S, Dauwalder O, Lina G (2007) Diversity in Staphylococcus aureus enterotoxins. Chem Immunol Allergy 93:24–41

    Article  PubMed  CAS  Google Scholar 

  • Tormo MA, Knecht E, Götz F, Lasa I, Penades JR (2005) Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer? Microbiology 151:2465–2475

    Article  PubMed  CAS  Google Scholar 

  • Tormo MA, Ubeda C, Marti M, Maiques E, Cucarella C, Valle J, Foster TJ, Lasa I, Penades JR (2007) Phase-variable expression of the biofilm-associated protein (Bap) in Staphylococcus aureus. Microbiology 153:1702–1710

    Article  PubMed  CAS  Google Scholar 

  • Tse H, Tsoi HW, Leung SP, Lau SK, Woo PC, Yuen KY (2010) Complete genome sequence of Staphylococcus lugdunensis strain HKU09-01. J Bacteriol 192:1471–1472

    Article  PubMed  CAS  Google Scholar 

  • Tse H, Tsoi HW, Leung SP, Urquhart IJ, Lau SK, Woo PC, Yuen KY (2011) Complete genome sequence of the veterinary pathogen Staphylococcus pseudintermedius strain HKU10-03, isolated in a case of canine pyoderma. J Bacteriol 193:1783–1784

    Article  PubMed  CAS  Google Scholar 

  • Tung H, Guss B, Hellman U, Persson L, Rubin K, Ryden C (2000) A bone sialoprotein-binding protein from Staphylococcus aureus: a member of the staphylococcal Sdr family. Biochem J 345(Pt 3):611–619

    Article  PubMed  CAS  Google Scholar 

  • Turlej A, Hryniewicz W, Empel J (2011) Staphylococcal cassette chromosome mec (Sccmec) classification and typing methods: an overview. Pol J Microbiol 60:95–103

    PubMed  Google Scholar 

  • Ubeda C, Tormo MA, Cucarella C, Trotonda P, Foster TJ, Lasa I, Penades JR (2003) Sip, an integrase protein with excision, circularization and integration activities, defines a new family of mobile Staphylococcus aureus pathogenicity islands. Mol Microbiol 49:193–210

    Article  PubMed  CAS  Google Scholar 

  • Uhlemann AC, Porcella SF, Trivedi S, Sullivan SB, Hafer C, Kennedy AD, Barbian KD, McCarthy AJ, Street C, Hirschberg DL, Lipkin WI, Lindsay JA, DeLeo FR, Lowy FD (2012) Identification of a highly transmissible animal-independent Staphylococcus aureus ST398 clone with distinct genomic and cell adhesion properties. mBio 3:e00027–12

    Google Scholar 

  • Valentin-Weigand P, Timmis KN, Chhatwal GS (1993) Role of fibronectin in staphylococcal colonisation of fibrin thrombi and plastic surfaces. J Med Microbiol 38:90–95

    Article  PubMed  CAS  Google Scholar 

  • van de Guchte M, Penaud S, Grimaldi C, Barbe V, Bryson K, Nicolas P, Robert C, Oztas S, Mangenot S, Couloux A, Loux V, Dervyn R, Bossy R, Bolotin A, Batto JM, Walunas T, Gibrat JF, Bessieres P, Weissenbach J, Ehrlich SD, Maguin E (2006) The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci USA 103:9274–9279

    Article  PubMed  CAS  Google Scholar 

  • van Wamel WJ, Rooijakkers SH, Ruyken M, van Kessel KP, van Strijp JA (2006) The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J Bacteriol 188:1310–1315

    Article  PubMed  CAS  Google Scholar 

  • Vandenesch F, Etienne J, Reverdy ME, Eykyn SJ (1993) Endocarditis due to Staphylococcus lugdunensis: report of 11 cases and review. Clin Infect Dis 17:871–876

    Article  PubMed  CAS  Google Scholar 

  • Vazquez V, Liang X, Horndahl JK, Ganesh VK, Smeds E, Foster TJ, Hook M (2011) Fibrinogen is a ligand for the Staphylococcus aureus microbial surface components recognizing adhesive matrix molecules (MSCRAMM) bone sialoprotein-binding protein (Bbp). J Biol Chem 286:29797–29805

    Article  PubMed  CAS  Google Scholar 

  • Voggu L, Schlag S, Biswas R, Rosenstein R, Rausch C, Götz F (2006) Microevolution of cytochrome bd oxidase in staphylococci and its implication in resistance to respiratory toxins released by Pseudomonas. J Bacteriol 188:8079–8086

    Article  PubMed  CAS  Google Scholar 

  • von Eiff C, Heilmann C, Proctor RA, Woltz C, Peters G, Götz F (1997) A site-directed Staphylococcus aureus hemB mutant is a small-colony variant which persists intracellularly. J Bacteriol 179:4706–4712

    Google Scholar 

  • von Eiff C, Peters G, Heilmann C (2002) Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis 2:677–685

    Article  Google Scholar 

  • Wagner E, Götz F, Brückner R (1993) Cloning and characterization of the scrA gene encoding the sucrose-specific enzyme II of the phosphotransferase system from Staphylococcus xylosus. Mol Gen Genet 241:33–41

    Article  PubMed  CAS  Google Scholar 

  • Wagner E, Doskar J, Götz F (1998) Physical and genetic map of the genome of Staphylococcus carnosus TM300. Microbiology 144(Pt 2):509–517

    Article  PubMed  CAS  Google Scholar 

  • Wallmark G, Arremark I, Telander B (1978) Staphylococcus saprophyticus: a frequent cause of acute urinary tract infection among female outpatients. J Infect Dis 138:791–797

    Article  PubMed  CAS  Google Scholar 

  • Walsh EJ, O’Brien LM, Liang X, Hook M, Foster TJ (2004) Clumping factor B, a fibrinogen-binding MSCRAMM (microbial surface components recognizing adhesive matrix molecules) adhesin of Staphylococcus aureus, also binds to the tail region of type I cytokeratin 10. J Biol Chem 279:50691–50699

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Braughton KR, Kretschmer D, Bach TH, Queck SY, Li M, Kennedy AD, Dorward DW, Klebanoff SJ, Peschel A, DeLeo FR, Otto M (2007) Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med 13:1510–1514

    Article  PubMed  CAS  Google Scholar 

  • Wann ER, Gurusiddappa S, Hook M (2000) The fibronectin-binding MSCRAMM FnbpA of Staphylococcus aureus is a bifunctional protein that also binds to fibrinogen. J Biol Chem 275:13863–13871

    Article  PubMed  CAS  Google Scholar 

  • Weinstein MP, Mirrett S, Van Pelt L, McKinnon M, Zimmer BL, Kloos W, Reller LB (1998) Clinical importance of identifying coagulase-negative staphylococci isolated from blood cultures: evaluation of MicroScan Rapid and Dried Overnight Gram-Positive panels versus a conventional reference method. J Clin Microbiol 36:2089–2092

    PubMed  CAS  Google Scholar 

  • Wertheim HF, Vos MC, Ott A, van Belkum A, Voss A, Kluytmans JA, van Keulen PH, Vandenbroucke-Grauls CM, Meester MH, Verbrugh HA (2004) Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers. Lancet 364:703–705

    Article  PubMed  Google Scholar 

  • Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, Nouwen JL (2005) The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 5:751–762

    Article  PubMed  Google Scholar 

  • Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338

    Article  PubMed  CAS  Google Scholar 

  • Wieland B, Feil C, Gloria-Maercker E, Thumm G, Lechner M, Bravo JM, Poralla K, Götz F (1994) Genetic and biochemical analyses of the biosynthesis of the yellow carotenoid 4,4’-diaponeurosporene of Staphylococcus aureus. J Bacteriol 176:7719–7726

    PubMed  CAS  Google Scholar 

  • Williams RJ, Henderson B, Sharp LJ, Nair SP (2002) Identification of a fibronectin-binding protein from Staphylococcus epidermidis. Infect Immun 70:6805–6810

    Article  PubMed  CAS  Google Scholar 

  • Wright JA, Nair SP (2012) The lipoprotein components of the Isd and Hts transport systems are dispensable for acquisition of heme by Staphylococcus aureus. FEMS Microbiol Lett 329:177–185

    Article  PubMed  CAS  Google Scholar 

  • Zell C, Resch M, Rosenstein R, Albrecht T, Hertel C, Götz F (2008) Characterization of toxin production of coagulase-negative staphylococci isolated from food and starter cultures. Int J Food Microbiol 127:246–251

    Article  PubMed  CAS  Google Scholar 

  • Zhang YQ, Ren SX, Li HL, Wang YX, Fu G, Yang J, Qin ZQ, Miao YG, Wang WY, Chen RS, Shen Y, Chen Z, Yuan ZH, Zhao GP, Qu D, Danchin A, Wen YM (2003) Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228). Mol Microbiol 49:1577–1593

    Article  PubMed  CAS  Google Scholar 

  • Ziebuhr W, Krimmer V, Rachid S, Lossner I, Götz F, Hacker J (1999) A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol Microbiol 32:345–356

    Article  PubMed  CAS  Google Scholar 

  • Zoll S, Patzold B, Schlag M, Götz F, Kalbacher H, Stehle T (2010) Structural basis of cell wall cleavage by a staphylococcal autolysin. PLoS Pathog 6:e1000807

    Article  PubMed  CAS  Google Scholar 

  • Zoll S, Schlag M, Shkumatov AV, Rautenberg M, Svergun DI, Götz F, Stehle T (2012) Ligand-binding properties and conformational dynamics of autolysin repeat domains in staphylococcal cell wall recognition. J Bacteriol 194:3789–3802

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Götz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rosenstein, R., Götz, F. (2012). What Distinguishes Highly Pathogenic Staphylococci from Medium- and Non-pathogenic?. In: Dobrindt, U., Hacker, J., Svanborg, C. (eds) Between Pathogenicity and Commensalism. Current Topics in Microbiology and Immunology, vol 358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2012_286

Download citation

Publish with us

Policies and ethics