Skip to main content

Regulation and Functions of ADAR in Drosophila

  • Chapter
  • First Online:
Adenosine Deaminases Acting on RNA (ADARs) and A-to-I Editing

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 353))

Abstract

Drosophila melanogaster has a single Adar gene encoding a protein related to mammalian ADAR2 that edits transcripts encoding glutamate receptor subunits. We describe the structure of the Drosophila Adar locus and use ModENCODE information to supplement published data on Adar gene transcription, and splicing. We discuss the roles of ADAR in Drosophila in terms of the two main types of RNA molecules edited and roles of ADARs as RNA-binding proteins. Site-specific RNA editing events in transcripts encoding ion channel subunits were initially found serendipitously and subsequent directed searches for editing sites and transcriptome sequencing have now led to 972 edited sites being identified in 597 transcripts. Four percent of D. melanogaster transcripts are site-specifically edited and these encode a wide range of largely membrane-associated proteins expressed particularly in CNS. Electrophysiological studies on the effects of specific RNA editing events on ion channel subunits do not suggest that loss of RNA editing events in ion channels consistently produce a particular outcome such as making Adar mutant neurons more excitable. This possibility would have been consistent with neurodegeneration seen in Adar mutant fly brains. A further set of ADAR targets are dsRNA intermediates in siRNA generation, derived from transposons and from structured RNA loci. Transcripts with convergent overlapping 3′ ends are also edited and the first discovered instance of RNA editing in Drosophila, in the Rnp4F transcript, is an example. There is no evidence yet to show that Adar antagonizes RNA interference in Drosophila. Evidence has been obtained that catalytically inactive ADAR proteins exert effects on microRNA generation and RNA interference. Whether all effects of inactive ADARs are due to RNA-binding or to even further roles of these proteins remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akimaru H, Hou DX, Ishii S (1997) Drosophila CBP is required for dorsal-dependent twist gene expression. Nat Genet 17:211–214

    Article  PubMed  CAS  Google Scholar 

  • Bhalla T, Rosenthal JJ, Holmgren M, Reenan R (2004) Control of human potassium channel inactivation by editing of a small mRNA hairpin. Nat Struct Mol Biol 11:950–956

    Article  PubMed  CAS  Google Scholar 

  • Czech B, Hannon GJ (2011) Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet 12:19–31

    Article  PubMed  CAS  Google Scholar 

  • Czech B, Malone CD, Zhou R, Stark A, Schlingeheyde C, Dus M, Perrimon N, Kellis M, Wohlschlegel JA, Sachidanandam R et al (2008) An endogenous small interfering RNA pathway in Drosophila. Nature 453:798–802

    Article  PubMed  CAS  Google Scholar 

  • Gallo A, Keegan LP, Ring GM, O’Connell MA (2003) An ADAR that edits transcripts encoding ion channel subunits functions as a dimer. Embo J 22:3421–3430

    Article  PubMed  CAS  Google Scholar 

  • Gan Z, Zhao L, Yang L, Huang P, Zhao F, Li W, Liu Y (2006) RNA editing by ADAR2 is metabolically regulated in pancreatic islets and beta-cells. J Biol Chem 281:33386–33394

    Article  PubMed  CAS  Google Scholar 

  • Grauso M, Reenan RA, Culetto E, Sattelle DB (2002) Novel putative nicotinic acetylcholine receptor subunit genes, Dalpha5, Dalpha6 and Dalpha7, in D. melanogaster identify a new and highly conserved target of adenosine deaminase acting on RNA-Mediated A-to-I Pre-mRNA Editing. Genetics 160:1519–1533

    PubMed  CAS  Google Scholar 

  • Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, Yang L, Artieri CG, van Baren MJ, Boley N, Booth BW et al (2011) The developmental transcriptome of Drosophila melanogaster. Nature 471:473–479

    Article  PubMed  CAS  Google Scholar 

  • Hanrahan CJ, Palladino MJ, Ganetzky B, Reenan RA (2000) RNA editing of the Drosophila para Na(+) channel transcript. Evolutionary conservation and developmental regulation. Genetics 155:1149–1160

    PubMed  CAS  Google Scholar 

  • Heale BS, Keegan LP, McGurk L, Michlewski G, Brindle J, Stanton CM, Caceres JF, O’Connell MA (2009a) Editing independent effects of ADARs on the miRNA/siRNA pathways. Embo J 28:3145–3156

    Article  PubMed  CAS  Google Scholar 

  • Heale BS, Keegan LP, O’Connell MA (2009b) ADARs have effects beyond RNA editing. Cell Cycle 8:4011–4012

    Article  PubMed  CAS  Google Scholar 

  • Higuchi M, Single FN, Kohler M, Sommer B, Sprengel R, Seeburg PH (1993) RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. Cell 75:1361–1370

    Article  PubMed  CAS  Google Scholar 

  • Hoopengardner B, Bhalla T, Staber C, Reenan R (2003) Nervous system targets of RNA editing identified by comparative genomics. Science 301:832–836

    Article  PubMed  CAS  Google Scholar 

  • Ingleby L, Maloney R, Jepson J, Horn R, Reenan R (2009) Regulated RNA editing and functional epistasis in Shaker potassium channels. J Gen Physiol 133:17–27

    Article  PubMed  CAS  Google Scholar 

  • Jepson JE, Reenan RA (2007) Genetic approaches to studying adenosine-to-inosine RNA editing. Methods Enzymol 424:265–287

    Article  PubMed  CAS  Google Scholar 

  • Jepson JE, Reenan RA (2009) Adenosine-to-inosine genetic recoding is required in the adult stage nervous system for coordinated behavior in Drosophila. J Biol Chem 284:31391–31400

    Article  PubMed  CAS  Google Scholar 

  • Jepson JE, Savva YA, Yokose C, Sugden AU, Sahin A, Reenan RA (2011) Engineered alterations in RNA editing modulate complex behavior in Drosophila: regulatory diversity of adenosine deaminase acting on RNA (ADAR) Targets. J Biol Chem 286:8325–8337

    Article  PubMed  CAS  Google Scholar 

  • Jones AK, Buckingham SD, Papadaki M, Yokota M, Sattelle BM, Matsuda K, Sattelle DB (2009) Splice-variant- and stage-specific RNA editing of the Drosophila GABA receptor modulates agonist potency. J Neurosci 29:4287–4292

    Article  PubMed  CAS  Google Scholar 

  • Kawahara Y, Zinshteyn B, Sethupathy P, Iizasa H, Hatzigeorgiou AG, Nishikura K (2007) Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315:1137–1140

    Article  PubMed  CAS  Google Scholar 

  • Kawahara Y, Megraw M, Kreider E, Iizasa H, Valente L, Hatzigeorgiou AG, Nishikura K (2008) Frequency and fate of microRNA editing in human brain. Nucleic Acids Res 36:5270–5280

    Article  PubMed  CAS  Google Scholar 

  • Kawamura Y, Saito K, Kin T, Ono Y, Asai K, Sunohara T, Okada TN, Siomi MC, Siomi H (2008) Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. Nature 453:793–797

    Article  PubMed  CAS  Google Scholar 

  • Keegan LP, Brindle J, Gallo A, Leroy A, Reenan RA, O’Connell MA (2005) Tuning of RNA editing by ADAR is required in Drosophila. Embo J 24:2183–2193

    Article  PubMed  CAS  Google Scholar 

  • Knight SW, Bass BL (2002) The role of RNA editing by ADARs in RNAi. Mol Cell 10:809–817

    Article  PubMed  CAS  Google Scholar 

  • Kondo T, Suzuki T, Ito S, Kono M, Negoro T, Tomita Y (2008) Dyschromatosis symmetrica hereditaria associated with neurological disorders. J Dermatol 35:662–666

    Article  PubMed  Google Scholar 

  • Li C, Vagin VV, Lee S, Xu J, Ma S, Xi H, Seitz H, Horwich MD, Syrzycka M, Honda BM et al (2009) Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell 137:509–521

    Article  PubMed  CAS  Google Scholar 

  • Ma E, Tucker MC, Chen Q, Haddad GG (2002) Developmental expression and enzymatic activity of pre-mRNA deaminase in Drosophila melanogaster. Brain Res Mol Brain Res 102:100–104

    Article  PubMed  CAS  Google Scholar 

  • Malone CD, Brennecke J, Dus M, Stark A, McCombie WR, Sachidanandam R, Hannon GJ (2009) Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell 137:522–535

    Article  PubMed  CAS  Google Scholar 

  • Marcucci R, Romano M, Feiguin F, O’Connell MA, Baralle FE (2009) Dissecting the splicing mechanism of the Drosophila editing enzyme; dADAR. Nucleic Acids Res 37:1663–1671

    Article  PubMed  CAS  Google Scholar 

  • Palladino MJ, Keegan LP, O’Connell MA, Reenan RA (2000a) dADAR, a Drosophila double-stranded RNA-specific adenosine deaminase is highly developmentally regulated and is itself a target for RNA editing. RNA 6:1004–1018

    Article  PubMed  CAS  Google Scholar 

  • Palladino MJ, Keegan LP, O’Connell MA, Reenan RA (2000b) A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell 102:437–449

    Article  PubMed  CAS  Google Scholar 

  • Peng PL, Zhong X, Tu W, Soundarapandian MM, Molner P, Zhu D, Lau L, Liu S, Liu F, Lu Y (2006) ADAR2-dependent RNA editing of AMPA receptor subunit GluR2 determines vulnerability of neurons in forebrain ischemia. Neuron 49:719–733

    Article  PubMed  CAS  Google Scholar 

  • Peters NT, Rohrbach JA, Zalewski BA, Byrkett CM, Vaughn JC (2003) RNA editing and regulation of Drosophila 4f-rnp expression by sas-10 antisense readthrough mRNA transcripts. RNA 9:698–710

    Article  PubMed  CAS  Google Scholar 

  • Petschek JP, Mermer MJ, Scheckelhoff MR, Simone AA, Vaughn JC (1996) RNA editing in Drosophila 4f-rnp gene nuclear transcripts by multiple A-to-G conversions. J Mol Biol 259:885–890

    Article  PubMed  CAS  Google Scholar 

  • Reenan RA (2005) Molecular determinants and guided evolution of species-specific RNA editing. Nature 434:409–413

    Article  PubMed  CAS  Google Scholar 

  • Roy S, Ernst J, Kharchenko PV, Kheradpour P, Negre N, Eaton ML, Landolin JM, Bristow CA, Ma L, Lin MF et al (2010) Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330:1787–1797

    Article  PubMed  CAS  Google Scholar 

  • Ryan MY, Maloney R, Reenan R, Horn R (2008) Characterization of five RNA editing sites in Shab potassium channels. Channels (Austin) 2:202–209

    Google Scholar 

  • Scadden AD (2005) The RISC subunit Tudor-SN binds to hyper-edited double-stranded RNA and promotes its cleavage. Nat Struct Mol Biol 12:489–496

    Article  PubMed  CAS  Google Scholar 

  • Scadden AD, Smith CW (2001) RNAi is antagonized by A → I hyper-editing. EMBO Rep 2:1107–1111

    Article  PubMed  CAS  Google Scholar 

  • Semenov EP, Pak WL (1999) Diversification of Drosophila chloride channel gene by multiple posttranscriptional mRNA modifications. J Neurochem 72:66–72

    Article  PubMed  CAS  Google Scholar 

  • Smith LA, Wang XJ, Peixoto AA, Neumann EK, Hall LM, Hall JC (1996) A Drosophila calcium channel α1 subunit gene maps to a genetic locus associated with behavioural and visual defects. J Neurosci 16:7868–7879

    PubMed  CAS  Google Scholar 

  • Stapleton M, Carlson JW, Celniker SE (2006) RNA editing in Drosophila melanogaster: new targets and functional consequences. RNA 12:1922–1932

    Article  PubMed  CAS  Google Scholar 

  • Stefl R, Oberstrass FC, Hood JL, Jourdan M, Zimmermann M, Skrisovska L, Maris C, Peng L, Hofr C, Emeson RB, Allain FH (2010) The solution structure of the ADAR2 dsRBM-RNA complex reveals a sequence-specific readout of the minor groove. Cell 143:225–237

    Article  PubMed  CAS  Google Scholar 

  • Tian N, Wu X, Zhang Y, Jin Y (2008) A-to-I editing sites are a genomically encoded G: implications for the evolutionary significance and identification of novel editing sites. RNA 14:211–216

    Article  PubMed  CAS  Google Scholar 

  • Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F et al (2009) ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457:854–858

    Article  PubMed  CAS  Google Scholar 

  • Vo N, Goodman RH (2001) CREB-binding protein and p300 in transcriptional regulation. J Biol Chem 276:13505–13508

    PubMed  CAS  Google Scholar 

  • Yang W, Wang Q, Howell KL, Lee JT, Cho DS, Murray JM, Nishikura K (2005) ADAR1 RNA deaminase limits short interfering RNA efficacy in mammalian cells. J Biol Chem 280:3946–3953

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Lv J, Gui B, Yin H, Wu X, Zhang Y, Jin Y (2008) A-to-I RNA editing alters less-conserved residues of highly conserved coding regions: implications for dual functions in evolution. RNA 14:1516–1525

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liam P. Keegan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paro, S., Li, X., O’Connell, M.A., Keegan, L.P. (2011). Regulation and Functions of ADAR in Drosophila . In: Samuel, C. (eds) Adenosine Deaminases Acting on RNA (ADARs) and A-to-I Editing. Current Topics in Microbiology and Immunology, vol 353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2011_152

Download citation

Publish with us

Policies and ethics