Skip to main content

Roles of Cellular Transcription Factors in VZV Replication

  • Chapter
  • First Online:
Varicella-zoster Virus

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 342))

Abstract

Varicella zoster virus (VZV) is the causative agent of chickenpox and shingles. During productive infection the complete VZV proteome consisting of some 68 unique gene products is expressed through interaction of a small number of viral transcriptional activators with the general transcription apparatus of the host cell. Recent work has shown that the major viral transactivator, commonly designated the IE62 protein, interacts with the human Mediator of transcription. This interaction requires direct contact between the MED25 subunit of Mediator and the acidic N-terminal transactivation domain of IE62. A second cellular factor, host cell factor-1, has been shown to be the common element in two mechanisms of activation of the promoter driving expression of the gene encoding IE62. Finally, the ubiquitous cellular transcription factors Sp1, Sp3, and YY1 have been shown to interact with sequences near the VZV origin of DNA replication and in the case of Sp1/Sp3 to influence replication efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams I, Kelso R, Cooley L (2000) The kelch repeat superfamily of proteins: propellers of cell function. Trends Cell Biol 10:17–24

    Article  PubMed  CAS  Google Scholar 

  • Akoulitchev S, Chuikov S, Reinberg D (2000) TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature 407:102–106

    Article  PubMed  CAS  Google Scholar 

  • Ambagala AP, Bosma T, Ali MA, Poustovoitov M, Chen JJ, Gershon MD, Adams PD, Cohen JI (2009) Varicella-zoster virus immediate-early 63 protein interacts with human antisilencing function 1 protein and alters its ability to bind histones h3.1 and h3.3. J Virol 83:200–209

    Article  PubMed  CAS  Google Scholar 

  • Baudoux L, Defechereux P, Schoonbroodt S, Merville MP, Rentier B, Piette J (1995) Mutational analysis of the varicella-zoster virus major immediate early-protein IE62. Nucleic Acids Res 23:1341–1349

    Article  PubMed  CAS  Google Scholar 

  • Baudoux L, Defechereux P, Rentier B, Piette J (2000) Gene activation by varicella-zoster virus IE4 protein requires its dimerization and involves both the arginine-rich sequence, the central part, and the carboxyl-terminal cysteine-rich region. J Biol Chem 275:32822–32831

    Article  PubMed  CAS  Google Scholar 

  • Baumann M, Feederle R, Kremmer E, Hammerschmidt W (1999) Cellular transcription factors recruit viral replication proteins to activate the Epstein-Barr virus origin of lytic DNA replication, oriLyt. EMBO J 18:6095–6105

    Article  PubMed  CAS  Google Scholar 

  • Berarducci B, Sommer M, Zerboni L, Rajamani J, Arvin AM (2007) Cellular and viral factors regulate the varicella-zoster virus gE promoter during viral replication. J Virol 81:10258–10267

    Article  PubMed  CAS  Google Scholar 

  • Besser J, Sommer MH, Zerboni L, Bagowski CP, Ito H, Moffat J, Ku C-C, Arvin AM (2003) Differentiation of varicella zoster virus ORF47 protein kinase and IE62 protein binding domains and their contributions to replication in human skin xenografts in the SCID-hu mouse. J Virol 77:5964–5974

    Article  PubMed  CAS  Google Scholar 

  • Bjorklund S, Gustafsson CM (2004) The mediator complex. Adv Protein Chem 67:43–65

    Article  PubMed  Google Scholar 

  • Bontems S, Valentin D, Baudoux EL, Rentier B, Sadzot-Delvaux C, Piette J (2002) Phosphorylation of varicella zoster virus IE63 protein by casein kinases influences its cellular localization and gene regulation activity. J Biol Chem 277:21050–21060

    Article  PubMed  CAS  Google Scholar 

  • Bouwman P, Philipsen S (2002) Regulation of the activity of Sp1-related transcription factors. Mol Cell Endocrinol 195:27–38

    Article  PubMed  CAS  Google Scholar 

  • Boyer TG, Martin ME, Lees E, Ricciardi RP, Berk AJ (1999) Mammalian Srb/Mediator complex is targeted by adenovirus E1A protein. Nature 399:276–279

    Article  PubMed  CAS  Google Scholar 

  • Bushmeyer S, Park K, Atchison ML (1995) Characterization of functional domains within the multifunctional transcription factor, YY1. J Biol Chem 270:30213–30220

    Article  PubMed  CAS  Google Scholar 

  • Casamassimi A, Napoli C (2007) Mediator complexes and eukaryotic transcription regulation: an overview. Biochimie 89:1439–1446

    Article  PubMed  CAS  Google Scholar 

  • Che X, Zerboni L, Sommer MH, Arvin AM (2006) Varicella-zoster virus open reading frame 10 is a virulence determinant in skin cells but not in T cells in vivo. J Virol 80:3238–3248

    Article  PubMed  CAS  Google Scholar 

  • Che X, Berarducci B, Sommer M, Ruyechan WT, Arvin AM (2007) The ubiquitous cellular transcription factor, USF, targets the varicella-zoster virus ORF10 promoter and determines virulence in human skin xenografts in SCIDhu mice in vivo. J Virol 81:3229–3239

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Olivo PD (1994) Expression of the varicella-zoster virus origin-binding protein and analysis of its site-specific DNA-binding properties. J Virol 68:3841–3849

    PubMed  CAS  Google Scholar 

  • Cheung AK (1989) DNA sequence analysis of the immediate early gene of pseudorabies virus. Nucleic Acids Res 17:4637–4646

    Article  PubMed  CAS  Google Scholar 

  • Cohen JI, Heffel D, Seidel K (1993) The transcriptional activation domain of varicella-zoster virus open reading frame 62 protein is not conserved with its herpes simplex virus homolog. J Virol 67:4246–4251

    PubMed  CAS  Google Scholar 

  • Cohen JI, Straus SE, Arvin AM (2007) Varicella-zoster virus replication, pathogenesis and management. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE (eds) Fields virology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  • Cohrs RJ, Gilden DH, Kinchington PR, Grinfeld E, Kennedy PG (2003) Varicella-zoster virus gene 66 transcription and translation in latently infected human ganglia. J Virol 77:6660–6665

    Article  PubMed  CAS  Google Scholar 

  • Conaway RC, Sato S, Tomomori-Sato C, Yao T, Conaway JW (2005) The mammalian Mediator complex and its role in transcriptional regulation. Trends Biochem Sci 30:250–255

    Article  PubMed  CAS  Google Scholar 

  • Davison AJ, Scott J (1986) The complete sequence of varicella-zoster virus. J Gen Virol 67:1759–1816

    Article  PubMed  CAS  Google Scholar 

  • Defechereux-Thibaut de Maisieres P, Baudoux-Tebache L, Merville M-P, Rentier B, Bours V, Piette J (1998) Activation of the human immunodeficiency virus long terminal repeat by varicella-zoster virus IE4 protein requires nuclear factor-κB and involves both the amino-terminal and the carboxyl-terminal cysteine rich region. J Biol Chem 273:13636–13644

    Article  Google Scholar 

  • Demeret C, Le Moal M, Yaniv M, Thierry F (1995) Control of HPV 18 DNA replication by cellular and viral transcription factors. Nucleic Acids Res 23:4777–4784

    Article  PubMed  CAS  Google Scholar 

  • Eisfeld AJ, Turse SE, Jackson SA, Lerner EC, Kinchington PR (2006) Phosphorylation of the varicella-zoster virus (VZV) major transcriptional regulatory protein IE62 by the VZV open reading frame 66 protein kinase. J Virol 80:1710–1723

    Article  PubMed  CAS  Google Scholar 

  • Elmlund HV, Baraznenok M, Lindahl CO, Samuelsen PJ, Koeck S, Holmberg H, Hebert P, Gustafsson CM (2006) The cyclin-dependent kinase 8 module sterically blocks Mediator interactions with RNA polymerase II. Proc Natl Acad Sci USA 103:15788–15793

    Article  PubMed  CAS  Google Scholar 

  • Fan X, Chou DM, Struhl K (2006) Activator-specific recruitment of Mediator in vivo. Nat Struct Mol Biol 13:117–120

    Article  PubMed  CAS  Google Scholar 

  • Ferreira ME, Hermann S, Prochasson P, Workman JL, Berndt KD, Wright AP (2005) Mechanism of transcription factor recruitment by acidic activators. J Biol Chem 280:21779–21784

    Article  PubMed  CAS  Google Scholar 

  • Freiman RN, Herr W (1997) Viral mimicry: common mode of association with HCF by VP16 and the cellular protein LZIP. Genes Dev 11:3122–3127

    Article  PubMed  CAS  Google Scholar 

  • Gold MO, Tassan JP, Nigg EA, Rice AP, Herrmann CH (1996) Viral transactivators E1A and VP16 interact with a large complex that is associated with CTD kinase activity and contains CDK8. Nucleic Acids Res 24:3771–3777

    Article  PubMed  CAS  Google Scholar 

  • Gomi Y, Sunamachi H, Mori Y, Nagaike K, Takahashi M, Yamanishi K (2002) Comparison of the complete DNA sequences of the varicella vaccine and its parental virus. J Virol 76:11447–11459

    Article  PubMed  CAS  Google Scholar 

  • Gruffat HO, Renner D, Pich K, Hammerschmidt W (1995) Cellular proteins bind to the downstream component of the lytic origin of DNA replication of Epstein-Barr virus. J Virol 69:1878–1886

    PubMed  CAS  Google Scholar 

  • Gunther M, Laither M, Brison O (2000) A set of proteins interacting with transcription factor Sp1 identified in a two-hybrid screening. Mol Cell Biochem 210:131–142

    Article  PubMed  CAS  Google Scholar 

  • Guo ZS, DePamphilis ML (1992) Specific transcription factors stimulate simian virus 40 and polyomavirus origins of DNA replication. Mol Cell Biol 12:2514–2524

    PubMed  CAS  Google Scholar 

  • Gwack YH, Baek J, Nakamura H, Lee SH, Meisterernst M, Roeder RG, Jung JU (2003) Principal role of TRAP/mediator and SWI/SNF complexes in Kaposi’s sarcoma-associated herpesvirus RTA-mediated lytic reactivation. Mol Cell Biol 23:2055–2067

    Article  PubMed  CAS  Google Scholar 

  • Hermann S, Berndt KD, Wright AP (2001) How transcriptional activators bind target proteins. J Biol Chem 276:40127–40132

    Article  PubMed  CAS  Google Scholar 

  • Ikeda K, Stuehler T, Meisterernst M (2002) The H1 and H2 regions of the activation domain of herpes simplex virion protein 16 stimulate transcription through distinct molecular mechanisms. Genes Cells 7:49–58

    Article  PubMed  CAS  Google Scholar 

  • Inchuaspe G, Nagpal S, Ostrove JM (1989) Mapping of two varicella-zoster virus encoded genes that activate the expression of viral early and late genes. Virology 173:700–709

    Article  Google Scholar 

  • Ito H, Sommer MH, Zerboni L, He H, Boucaud D, Hay J, Ruyechan W, Arvin AM (2003) Promoter sequences of varicella-zoster virus glycoprotein I targeted by cellular transcription factors Sp1 and USF determine virulence in skin and T cells in SCIDhu mice in vivo. J Virol 77:489–498

    Article  PubMed  CAS  Google Scholar 

  • Jenkins HL, Spencer CA (2001) RNA polymerase II holoenzyme modifications accompany transcription reprogramming in herpes simplex virus type 1-infected cells. J Virol 75:9872–9884

    Article  PubMed  CAS  Google Scholar 

  • Jones JO, Sommer M, Stamatis S, Arvin AM (2006) Mutational analysis of the varicella-zoster virus ORF62/63 intergenic region. J Virol 80:3116–3121

    Article  PubMed  CAS  Google Scholar 

  • Jonker HR, Wechselberger RW, Boelens R, Folkers GE, Kaptein R (2005) Structural properties of the promiscuous VP16 activation domain. Biochemistry 44:827–839

    Article  PubMed  CAS  Google Scholar 

  • Kennedy PGE (2002) Varicella zoster virus in human ganglia. Rev Med Virol 12:327–334

    Article  PubMed  CAS  Google Scholar 

  • Khalil MI, Hay J, Ruyechan WT (2008) The cellular transcription factors Sp1 and Sp3 suppress varicella zoster virus origin-dependent DNA replication. J Virol 82:11723–11733

    Article  PubMed  CAS  Google Scholar 

  • Kinchington PR, Cohen JI (2000) Viral proteins. In: Arvin AM, Gershon AA (eds) Varicella zoster virus: virology and clinical management. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Kinchington PR, Hougland JK, Arvin AM, Ruyechan WT, Hay J (1992) The varicella-zoster virus immediate early protein IE62 is a major component of virus particles. J Virol 66:359–366

    PubMed  CAS  Google Scholar 

  • Kinchington PR, Fite K, Turse SE (2000) Nuclear accumulation of IE62, the varicella-zoster virus (VZV) major transcriptional regulatory protein, is inhibited by phosphorylation mediated by the VZV open reading frame 66 protein kinase. J Virol 74:2265–2277

    Article  PubMed  CAS  Google Scholar 

  • Kornberg RD (2005) Mediator and the mechanism of transcriptional activation. Trends Biochem Sci 30:235–239

    Article  PubMed  CAS  Google Scholar 

  • Kost RG, Kupinsky H, Straus SE (1995) Varicella-zoster virus gene 63: transcript mapping and regulatory activity. Virology 209:218–224

    Article  PubMed  CAS  Google Scholar 

  • Kristie TM, Vogel JL, Sears AE (1999) Nuclear localization of the C1 factor in sensory neurons correlates with initiation of reactivation of HSV from latency. Proc Natl Acad Sci USA 96:1229–1233

    Article  PubMed  CAS  Google Scholar 

  • Kristie TM, Liang Y, Vogel JL (2009) Control of alpha-herpesvirus IE gene expression by HCF-1 coupled chromatin modification activities. Biochim Biophys Acta. doi:10.1016/j.bbagrm.2009.08.003

    Google Scholar 

  • Ku C-C, Besser J, Abendroth A, Grose C, Arvin AM (2005) Varicella zoster virus pathogenesis and immunobiology: new concepts emerging from investigations with the SCIDhu mouse model. J Virol 79:2651–2658

    Article  PubMed  CAS  Google Scholar 

  • Lee T-C, Shi Y, Schwartz RJ (1992) Displacement of BrdUrd-induced YY1 by serum response factor activates skeletal α-actin transcription in embryonic myoblasts. Proc Natl Acad Sci USA 89:9814–9818

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Galvin KM, Shi Y (1993) Evidence for physical interaction between the zinc-finger transcription factors YY1 and Sp1. Proc Natl Acad Sci USA 90:6145–6149

    Article  PubMed  CAS  Google Scholar 

  • Lee K-Y, Broker TR, Chow LT (1998) Transcription factor YY1 represses cell-free replication from human papillomavirus origins. J Virol 72:4911–4917

    PubMed  CAS  Google Scholar 

  • Li L, He S, Sun JM, Davie JR (2004) Gene regulation by Sp1 and Sp3. Biochem Cell Biol 82:460–471

    Article  PubMed  CAS  Google Scholar 

  • Lukonis CJ, Weller SK (1997) Formation of herpes simplex virus type 1 replication compartments by transfection: requirements and localization to nuclear domain 10. J Virol 71:2390–2399

    PubMed  CAS  Google Scholar 

  • Lynch JM, Kenyon TK, Grose C, Hay J, Ruyechan WT (2002) Physical and functional interaction between the varicella zoster virus IE63 and IE62 proteins. Virology 302:71–82

    Article  PubMed  CAS  Google Scholar 

  • Malik S, Roeder RG (2005) Dynamic regulation of pol II transcription by the mammalian Mediator complex. Trends Biochem Sci 30:256–263

    Article  PubMed  CAS  Google Scholar 

  • Meier JL, Luo X, Sawadogo M, Straus SE (1994) The cellular transcription factor USF cooperates with varicella-zoster virus immediate-early protein 62 to symmetrically activate a bi-directional viral promoter. Mol Cell Biol 14:6896–6906

    PubMed  CAS  Google Scholar 

  • Michael E, Kuck K, Kinchington PR (1998) Anatomy of the varicella zoster virus open reading frame 4 promoter. J Infect Dis 178:S27–S33

    Article  PubMed  CAS  Google Scholar 

  • Mitchell BM, Bloom DC, Cohrs RJ, Gilden DH, Kennedy PGH (2003) Herpes simplex virus-1 and varicella-zoster virus latency in ganglia. J Neurovirol 9:194–204

    PubMed  CAS  Google Scholar 

  • Mittler G, Stuhler T, Santolin L, Uhlmann T, Kremmer E, Lottspeich F, Berti L, Meisterernst M (2003) A novel docking site on Mediator is critical for activation by VP16 in mammalian cells. EMBO J 22:6494–6504

    Article  PubMed  CAS  Google Scholar 

  • Moriuchi M, Moriuchi H, Straus SE, Cohen JI (1994) Varicella zoster virus (VZV) virion associated transactivator open reading frame 62 protein enhances the infectivity of VZV DNA. Virology 200:297–300

    Article  PubMed  CAS  Google Scholar 

  • Moriuchi H, Moriuchi M, Cohen JI (1995) Proteins and cis-acting elements associated with transactivation of the varicella zoster virus immediate-early gene 62 promoter by VZV open reading frame 10 protein. J Virol 69:4693–4701

    PubMed  CAS  Google Scholar 

  • Mueller NH, Gilden DH, Cohrs RJ, Mahalingam R, Nagel MA (2008) Varicella zoster virus infection: clinical features, molecular pathogenesis of disease, and latency. Neurol Clin 26:675–697

    Article  PubMed  Google Scholar 

  • Narayanan A, Nogueira ML, Ruyechan WT, Kristie TM (2005) Combinatorial transcription of the HSV and VZV IE genes is strictly determined by the cellular coactivator HCF-1. J Biol Chem 280:1369–1375

    Article  PubMed  CAS  Google Scholar 

  • Narayanan A, Ruyechan WT, Kristie TM (2007) The coactivator host cell factor-1 mediates Set1 and MLL H3K4 trimethylation at herpesvirus immediate early promoters for initiation of infection. Proc Natl Acad Sci USA 104:10835–10840

    Article  PubMed  CAS  Google Scholar 

  • Nguyen-Huynh AT, Schaffer PA (1998) Cellular transcription factors enhance herpes simplex virus type 1 oriS-dependent DNA replication. J Virol 72:3635–3645

    PubMed  CAS  Google Scholar 

  • Noguiera ML, Wang VE, Tantin D, Sharp PA, Kristie TM (2004) Herpes simplex virus infections are arrested in OCT-1 deficient cells. Proc Natl Acad Sci USA 101:1473–1478

    Article  CAS  Google Scholar 

  • Pajunk HS, May C, Pfister H, Fuchs PG (1997) Regulatory interactions of transcription factor YY1 with control sequences of the E6 promoter of human papillomavirus type 8. J Gen Virol 78:3287–3295

    PubMed  CAS  Google Scholar 

  • Peng H, He H, Hay J, Ruyechan WT (2003) Interaction between the varicella zoster virus IE62 major transactivator and cellular transcription factor Sp1. J Biol Chem 278:38068–38075

    Article  PubMed  CAS  Google Scholar 

  • Perera LP (2000) The TATA motif specifies the differential activation of minimal promoters by varicella zoster virus immediate-early regulatory protein IE62. J Biol Chem 275:487–496

    Article  PubMed  CAS  Google Scholar 

  • Perera LP, Mosca J, Ruyechan WT, Hay J (1992a) Regulation of varicella zoster virus gene expression in human T-lymphocytes. J Virol 66:2468–2477

    Google Scholar 

  • Perera LP, Mosca JD, Sadeghi-Zadeh M, Ruyechan WT, Hay J (1992b) The varicella-zoster virus immediate early protein, IE62, can positively regulate its cognate promoter. Virology 191:346–354

    Article  PubMed  CAS  Google Scholar 

  • Perera LP, Mosca JD, Ruyechan WT, Hayward GS, Straus SE, Hay J (1993) A major transactivator of varicella-zoster virus, the immediate-early protein IE62, contains a potent N-terminal activation domain. J Virol 67:4474–4483

    PubMed  CAS  Google Scholar 

  • Philipsen S, Suske G (1999) A tale of three fingers: the family of mammalian Sp/XKLF transcription factors. Nucleic Acids Res 27:2991–3000

    Article  PubMed  CAS  Google Scholar 

  • Rahaus M, Wolff MH (2003) Reciprocal effects of varicella zoster virus (VZV) and Ap1: activation of Jun, Fos, and ATF-2 after VZV infection and their importance for the regulation of viral genes. Virus Res 92:9–21

    Article  PubMed  CAS  Google Scholar 

  • Rahaus M, Desloges N, Yang M, Ruyechan WT, Wolff MH (2003) Transcription factor USF, expressed during the entire phase of VZV infection, interacts physically with the major viral transactivator IE62 and plays a significant role in virus replication. J Gen Virol 84:2957–2967

    Article  PubMed  CAS  Google Scholar 

  • Regier JL, Shen F, Triezenberg SJ (1993) Pattern of aromatic and hydrophobic amino acids critical for one of two subdomains of the VP16 transcriptional activator. Proc Natl Acad Sci USA 90:883–887

    Article  PubMed  CAS  Google Scholar 

  • Rice SA, Long MC, Lam V, Spencer CA (1994) RNA polymerase II is aberrantly phosphorylated and localized to viral replication compartments following herpes simplex virus infection. J Virol 68:988–1001

    PubMed  CAS  Google Scholar 

  • Ruyechan WT (2004) Mechanism(s) of activation of varicella zoster virus promoters by the VZV IE62 protein. Rec Res Dev Virol 6:145–172

    CAS  Google Scholar 

  • Ruyechan WT (2006) Varicella zoster virus transcriptional regulation and the roles of VZV IE proteins. In: Sandri-Goldin RM (ed) Alpha herpesviruses: molecular and cellular biology. Horizon Scientific, Norwich

    Google Scholar 

  • Ruyechan WT, Peng H, Yang M, Hay J (2003) Cellular factors and IE62 activation of VZV promoters. J Med Virol 70:S90–S94

    Article  PubMed  CAS  Google Scholar 

  • Sato B, Ito H, Hinchliffe S, Sommer MH, Zerboni L, Arvin AM (2003) Mutational analysis of open reading frames 62 and 71, encoding the varicella zoster virus immediate early transactivating protein, IE62, and effects on replication in vitro and in skin xenografts in the SCID-hu mouse in vivo. J Virol 77:5607–5620

    Article  PubMed  CAS  Google Scholar 

  • Sato SC, Tomomori-Sato TJ, Parmely L, Florens B, Zybailov SK, Swanson CA, Banks J, Jin Y, Cai MP, Washburn JW, Conaway J, Conaway RC (2004) A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology. Mol Cell 14:685–691

    Article  PubMed  CAS  Google Scholar 

  • Schmitz ML, dos Santos Silva MA, Altmann H, Czisch M, Holak TA, Baeuerle PA (1994) Structural and functional analysis of the NF-kappa B p65 C terminus. An acidic and modular transactivation domain with the potential to adopt an alpha-helical conformation. J Biol Chem 269:25613–25620

    PubMed  CAS  Google Scholar 

  • Seto E, Lewis B, Shenk T (1993) Interaction between transcription factors Sp1 and YY1. Nature 365:462–464

    Article  PubMed  CAS  Google Scholar 

  • Shepard AA, Imbalzano AN, DeLuca NA (1989) Separation of primary structural components conferring autoregulation, transactivation, and DNA-binding properties to the herpes simplex virus transcriptional regulatory protein ICP4. J Virol 63:3714–3728

    PubMed  CAS  Google Scholar 

  • Silverstein S, Straus SE (2000) Pathogenesis of latency and reactivation. In: Arvin AM, Gershon AA (eds) Varicella zoster virus: virology and clinical management. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Smale ST, Kadonaga JT (2003) The RNA polymerase II core promoter. Annu Rev Biochem 72:449–479

    Article  PubMed  CAS  Google Scholar 

  • Smith RH, Zhao Y, O’Callaghan DJ (1994) The equine herpesvirus type 1 immediate-early gene product contains an acidic transcriptional activation domain. Virology 202:760–770

    Article  PubMed  CAS  Google Scholar 

  • Spengler ML, Ruyechan WT, Hay J (2000) Physical interaction between two varicella zoster gene regulatory proteins, IE4 and IE62. Virology 272:375–381

    Article  PubMed  CAS  Google Scholar 

  • Stevens JL, Cantin GT, Wang G, Shevchenko A, Shevchenko A, Berk AJ (2002) Transcription control by E1A and MAP kinase pathway via the Sur2 mediator subunit. Science 296:755–758

    Article  PubMed  CAS  Google Scholar 

  • Stow ND, Davison AJ (1986) Identification of a varicella-zoster virus origin of DNA replication and its activation by herpes simplex virus type 1 gene products. J Gen Virol 67:1613–1623

    Article  PubMed  CAS  Google Scholar 

  • Stow ND, McMonagle EC (1983) Characterization of the TRS/IRS origin of DNA replication of herpes simplex virus type 1. Virology 130:427–438

    Article  PubMed  CAS  Google Scholar 

  • Stow ND, Weir HM, Stow EC (1990) Analysis of the binding sites for the varicella-zoster virus gene 51 product within the viral origin of DNA replication. Virology 177:570–577

    Article  PubMed  CAS  Google Scholar 

  • Tyler JK, Everett RD (1993) The DNA-binding domain of the varicella zoster virus gene 62 protein interacts with multiple sequences which are similar to the binding site of the related protein of herpes simplex virus type 1. Nucleic Acids Res 21:513–522

    Article  PubMed  CAS  Google Scholar 

  • Tyler JK, Everett RD (1994) The DNA-binding domains of the varicella zoster virus gene 62 and herpes simplex virus type 1 ICP4 heterodimerize and bind to DNA. Nucleic Acids Res 22:711–721

    Article  PubMed  CAS  Google Scholar 

  • Tyler JK, Allen KE, Everett RD (1994) Mutation of a single lysine residue severely impairs the DNA recognition and regulatory functions of the VZV gene 62 transactivator protein. Nucleic Acids Res 22:27–278

    Google Scholar 

  • Uesugi M, Nyanguile O, Lu H, Levine AJ, Verdine GL (1997) Induced alpha helix in the VP16 activation domain upon binding to a human TAF. Science 277:1310–1313

    Article  PubMed  CAS  Google Scholar 

  • Uhlmann T, Boeing S, Lehmbacher M, Meisterernst M (2007) The VP16 activation domain establishes an active mediator lacking CDK8 in vivo. J Biol Chem 282:2163–2173

    Article  PubMed  CAS  Google Scholar 

  • Vogel JL, Kristie TM (2000) The novel coactivator C1 (HCF) coordinates multiprotein enhancer formation and mediates transcription activation by GABP. EMBO J 19:683–690

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Sommer M, Rajamani J, Arvin AM (2009) Regulation of the ORF61 promoter and ORF61 functions in varicella-zoster virus replication and pathogenesis. J Virol 83:7560–7752

    Article  PubMed  CAS  Google Scholar 

  • Weir HM, Stow ND (1990) Two binding sites for the herpes simplex virus type 1 UL9 protein are required for efficient activity of the oriS replication origin. J Gen Virol 71:1379–1385

    Article  PubMed  CAS  Google Scholar 

  • Whitlow Z, Kristie TM (2009) Recruitment of the transcriptional coactivator HCF-1 to viral immediate-early promoters during initiation of reactivation from latency of herpes simplex virus type 1. J Virol 83:9591–9595

    Article  PubMed  CAS  Google Scholar 

  • Wu C-L, Wilcox KW (1991) The conserved DNA-binding domains encoded by the herpes simplex virus type 1 ICP4, Pseudorabies virus IE180, and varicella zoster virus IE62 genes recognize similar sites in the corresponding promoters. J Virol 65:1149–1159

    PubMed  CAS  Google Scholar 

  • Wysocka J, Myers MP, Laherty CD, Eisenman RN, Herr W (2003) Human Sin3 deacetylase and trithorax-related Set1/Ash2 histone H3-K4 methyltransferase are tethered together selectively by the cell-proliferation factor HCF-1. Genes Dev 17:896–911

    Article  PubMed  CAS  Google Scholar 

  • Wysocka J, Swigut T, Xiao H, Milne TA, Kwon SY, Landry J, Kauer M, Tackett AJ, Chait BT, Badenhorst P, Wu C, Allis CD (2006) A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442:86–90

    PubMed  CAS  Google Scholar 

  • Xiao W, Pizer LI, Wilcox KW (1997) Identification of a promoter-specific transactivation domain in the herpes simplex virus regulatory protein ICP4. J Virol 71:1757–1765

    PubMed  CAS  Google Scholar 

  • Yamamoto S, Aletskii A, Szyperski T, Hay J, Ruyechan WT (2009) Analysis of the VZV IE62 N-terminal acidic transactivating domain and its interaction with the human mediator complex. J Virol 83:6300–6305

    Article  PubMed  CAS  Google Scholar 

  • Yang F, DeBeaumont R, Zhou S, Naar AM (2004a) The activator-recruited cofactor/Mediator coactivator subunit ARC92 is a functionally important target of the VP16 transcriptional activator. Proc Natl Acad Sci USA 101:2339–2344

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Hay J, Ruyechan WT (2004b) The DNA element controlling expression of the varicella zoster virus ORF 28 and ORF 29 genes consists of two divergent unidirectional promoters which share a common USF site. J Virol 78:10939–10952

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Peng H, Hay J, Ruyechan WT (2006) Promoter activation by the varicella-zoster virus major transactivator IE62 and the cellular transcription factor USF. J Virol 80:7339–7353

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Hay J, Ruyechan WT (2008) The varicella zoster virus IE62 protein utilizes the human mediator complex in promoter activation. J Virol 82:12154–12163

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero DJ, Kitabayashi I, Herr W, Cleary ML (2004) Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 24:5639–5649

    Article  PubMed  CAS  Google Scholar 

  • Zalani S, Coppage A, Holley-Guthrie E, Kenney S (1997) The cellular YY1 transcription factor binds a cis-acting, negatively regulating element in the Epstein-Barr virus BRLF1 promoter. J Virol 71:3268–3274

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The work from the author’s laboratory described in this chapter was supported by Grants AI18449 and AI36884 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William T. Ruyechan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ruyechan, W.T. (2010). Roles of Cellular Transcription Factors in VZV Replication. In: Abendroth, A., Arvin, A., Moffat, J. (eds) Varicella-zoster Virus. Current Topics in Microbiology and Immunology, vol 342. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2010_42

Download citation

Publish with us

Policies and ethics