Skip to main content

Flock House Virus: A Model System for Understanding Non-Enveloped Virus Entry and Membrane Penetration

  • Chapter
  • First Online:
Cell Entry by Non-Enveloped Viruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 343))

Abstract

The means by which non-enveloped viruses penetrate cellular membranes during cell entry remain poorly defined. Recent findings indicate that several members of this group share a common mechanism of membrane penetration in which the virus particle undergoes programmed conformational changes, leading to capsid disassembly and release of small membrane-interacting peptides. Flock House Virus (FHV), a member of the nodaviridae family, offers some unique advantages for studying non-enveloped virus entry. The simplicity of the FHV capsid, coupled with a robust reverse genetics system for virus expression and an abundance of structural and biochemical data, make FHV an ideal model system for such studies. Here, we review the FHV atomic structure and examine how these molecular details provide insight into the mechanism of FHV entry. In addition, recent studies of FHV entry are discussed and a current model of FHV entry and membrane penetration is presented. A complete understanding of host cell entry by this minimal system will help elucidate the mechanisms of non-enveloped virus membrane penetration in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ball LA, Amann JM et al (1992) Replication of nodamura virus after transfection of viral RNA into mammalian cells in culture. J Virol 66(4):2326–2334

    PubMed  CAS  Google Scholar 

  • Banerjee M, Johnson JE (2008) Activation, exposure and penetration of virally encoded, membrane-active polypeptides during non-enveloped virus entry. Curr Protein Pept Sci 9(1):16–27

    Article  PubMed  CAS  Google Scholar 

  • Banerjee M, Khayat R et al (2009) Dissecting the functional domains of a non-enveloped virus membrane penetration peptide. J Virol 83(13):6929–6933

    Article  PubMed  CAS  Google Scholar 

  • Banerjee M, Speir JA et al (2010) Structure and function of a genetically engineered mimic of a non-enveloped virus entry intermediate. J of Virology 2010, Feb 17 [Epub ahead of print]

    Google Scholar 

  • Bong DT, Steinem C et al (1999) A highly membrane-active peptide in Flock House virus: implications for the mechanism of nodavirus infection. Chem Biol 6(7):473–481

    Article  PubMed  CAS  Google Scholar 

  • Bong DT, Janshoff A et al (2000) Membrane partitioning of the cleavage peptide in Flock House virus. Biophys J 78(2):839–845

    Article  PubMed  CAS  Google Scholar 

  • Bothner B, Dong XF et al (1998) Evidence of viral capsid dynamics using limited proteolysis and mass spectrometry. J Biol Chem 273(2):673–676

    Article  PubMed  CAS  Google Scholar 

  • Bothner B, Schneemann A et al (1999) Crystallographically identical virus capsids display different properties in solution. Nat Struct Biol 6(2):114–116

    Article  PubMed  CAS  Google Scholar 

  • Chandran K, Nibert ML (2003) Animal cell invasion by a large nonenveloped virus: reovirus delivers the goods. Trends Microbiol 11(8):374–382

    Article  PubMed  CAS  Google Scholar 

  • Chao JA, Lee JH et al (2005) Dual modes of RNA-silencing suppression by Flock House virus protein B2. Nat Struct Mol Biol 12(11):952–957

    PubMed  CAS  Google Scholar 

  • Cheng RH, Reddy VS et al (1994) Functional implications of quasi-equivalence in a T = 3 icosahedral animal virus established by cryo-electron microscopy and X-ray crystallography. Structure 2(4):271–282

    Article  PubMed  CAS  Google Scholar 

  • Dearing SC, Scotti PD et al (1980) A small RNA virus isolated from the grass grub, Costelytra zealandica (Coleoptera: Scarabaeidae). N Z J Zool 7:267–269

    Article  Google Scholar 

  • Farr GA, Zhang LG et al (2005) Parvoviral virions deploy a capsid-tethered lipolytic enzyme to breach the endosomal membrane during cell entry. Proc Natl Acad Sci U S A 102(47): 17148–17153

    Article  PubMed  CAS  Google Scholar 

  • Fisher AJ, Johnson JE (1993) Ordered duplex RNA controls capsid architecture in an icosahedral animal virus. Nature 361(6408):176–179

    Article  PubMed  CAS  Google Scholar 

  • Fisher AJ, McKinney BR et al (1993) Crystallization of viruslike particles assembled from Flock House virus coat protein expressed in a baculovirus system. J Virol 67(5):2950–2953

    PubMed  CAS  Google Scholar 

  • Friesen PD, Rueckert RR (1981) Synthesis of black beetle virus proteins in cultured drosophila cells: differential expression of RNAs 1 and 2. J Virol 37(3):876–886

    PubMed  CAS  Google Scholar 

  • Gallagher TM, Rueckert RR (1988) Assembly-dependent maturation cleavage in provirions of a small icosahedral insect ribovirus. J Virol 62(9):3399–3406

    PubMed  CAS  Google Scholar 

  • Guarino LA, Ghosh A et al (1984) Sequence of the black beetle virus subgenomic RNA and its location in the viral genome. Virology 139(1):199–203

    Article  PubMed  CAS  Google Scholar 

  • Janshoff A, Bong DT et al (1999) An animal virus-derived peptide switches membrane morphology: possible relevance to nodaviral transfection processes. Biochemistry 38(17):5328–5336

    Article  PubMed  CAS  Google Scholar 

  • Li H, Li WX et al (2002) Induction and suppression of RNA silencing by an animal virus. Science 296(5571):1319–1321

    Article  PubMed  CAS  Google Scholar 

  • Maia LF, Soares MR et al (2006) Structure of a membrane-binding domain from a non-enveloped animal virus: insights into the mechanism of membrane permeability and cellular entry. J Biol Chem 281(39):29278–29286

    Article  PubMed  CAS  Google Scholar 

  • Marshall D, Schneemann A (2001) Specific packaging of nodaviral RNA2 requires the N-terminus of the capsid protein. Virology 285(1):165–175

    Article  PubMed  CAS  Google Scholar 

  • Mellman I, Fuchs R et al (1986) Acidification of the endocytic and exocytic pathways. Annu Rev Biochem 55:663–700

    Article  PubMed  CAS  Google Scholar 

  • Odegard AL, Kwan MH et al (2009) Low endocytic pH and capsid protein autocleavage are critical components of Flock House virus cell entry. J Virol 83:8628–8637

    Google Scholar 

  • Odegard AL, Chandran K et al (2004) Putative autocleavage of outer capsid protein micro1, allowing release of myristoylated peptide micro1N during particle uncoating, is critical for cell entry by reovirus. J Virol 78(16):8732–8745

    Article  PubMed  CAS  Google Scholar 

  • Oliveira AC, Gomes AM et al (2000) Virus maturation targets the protein capsid to concerted disassembly and unfolding. J Biol Chem 275(21):16037–16043

    Article  PubMed  CAS  Google Scholar 

  • Rossmann MG, Johnson JE (1989) Icosahedral RNA virus structure. Annu Rev Biochem 58:533–573

    Article  PubMed  CAS  Google Scholar 

  • Schneemann A, Marshall D (1998) Specific encapsidation of nodavirus RNAs is mediated through the C terminus of capsid precursor protein alpha. J Virol 72(11):8738–8746

    PubMed  CAS  Google Scholar 

  • Schneemann A, Zhong W et al (1992) Maturation cleavage required for infectivity of a nodavirus. J Virol 66(11):6728–6734

    PubMed  CAS  Google Scholar 

  • Schneemann A, Dasgupta R et al (1993) Use of recombinant baculoviruses in synthesis of morphologically distinct viruslike particles of Flock House virus, a nodavirus. J Virol 67(5):2756–2763

    PubMed  CAS  Google Scholar 

  • Schneemann A, Gallagher TM et al (1994) Reconstitution of Flock House provirions: a model system for studying structure and assembly. J Virol 68(7):4547–4556

    PubMed  CAS  Google Scholar 

  • Scotti PD, Dearing S et al (1983) Flock House virus: a nodavirus isolated from Costelytra zealandica (White) (Coleoptera: Scarabaeidae). Arch Virol 75(3):181–189

    Article  PubMed  CAS  Google Scholar 

  • Speir JA, Munshi S et al (1995) Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure 3(1):63–78

    Article  PubMed  CAS  Google Scholar 

  • Speir JA, Bothner B et al (2006) Enhanced local symmetry interactions globally stabilize a mutant virus capsid that maintains infectivity and capsid dynamics. J Virol 80(7):3582–3591

    Article  PubMed  CAS  Google Scholar 

  • Tang L, Johnson KN et al (2001) The structure of pariacoto virus reveals a dodecahedral cage of duplex RNA. Nat Struct Biol 8(1):77–83

    Article  PubMed  CAS  Google Scholar 

  • Tihova M, Dryden KA et al (2004) Nodavirus coat protein imposes dodecahedral RNA structure independent of nucleotide sequence and length. J Virol 78(6):2897–2905

    Article  PubMed  CAS  Google Scholar 

  • Tsai B (2007) Penetration of nonenveloped viruses into the cytoplasm. Annu Rev Cell Dev Biol 23:23–43

    Article  PubMed  CAS  Google Scholar 

  • Walukiewicz HE, Johnson JE et al (2006) Morphological changes in the T = 3 capsid of Flock House virus during cell entry. J Virol 80(2):615–622

    Article  PubMed  CAS  Google Scholar 

  • Walukiewicz HE, Banerjee M et al (2008) Rescue of maturation-defective flock house virus infectivity with noninfectious, mature, viruslike particles. J Virol 82(4):2025–2027

    Article  PubMed  CAS  Google Scholar 

  • Yamashiro DJ, Maxfield FR (1984) Acidification of endocytic compartments and the intracellular pathways of ligands and receptors. J Cell Biochem 26(4):231–246

    Article  PubMed  CAS  Google Scholar 

  • Zlotnick A, Reddy VS et al (1994) Capsid assembly in a family of animal viruses primes an autoproteolytic maturation that depends on a single aspartic acid residue. J Biol Chem 269(18):13680–13684

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Odegard, A., Banerjee, M., Johnson, J.E. (2010). Flock House Virus: A Model System for Understanding Non-Enveloped Virus Entry and Membrane Penetration. In: Johnson, J. (eds) Cell Entry by Non-Enveloped Viruses. Current Topics in Microbiology and Immunology, vol 343. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2010_35

Download citation

Publish with us

Policies and ethics