Skip to main content

The Sensory Neocortex and Associative Memory

  • Chapter
Behavioral Neuroscience of Learning and Memory

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 37))

Abstract

Most behaviors in mammals are directly or indirectly guided by prior experience and therefore depend on the ability of our brains to form memories. The ability to form an association between an initially possibly neutral sensory stimulus and its behavioral relevance is essential for our ability to navigate in a changing environment. The formation of a memory is a complex process involving many areas of the brain. In this chapter we review classic and recent work that has shed light on the specific contribution of sensory cortical areas to the formation of associative memories. We discuss synaptic and circuit mechanisms that mediate plastic adaptations of functional properties in individual neurons as well as larger neuronal populations forming topographically organized representations. Furthermore, we describe commonly used behavioral paradigms that are used to study the mechanisms of memory formation. We focus on the auditory modality that is receiving increasing attention for the study of associative memory in rodent model systems. We argue that sensory cortical areas may play an important role for the memory-dependent categorical recognition of previously encountered sensory stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitkin L, Schuck D (1985) Low frequency neurons in the lateral central nucleus of the cat inferior colliculus receive their input predominantly from the medial superior olive. Hear Res 17(1):87–93

    Article  CAS  PubMed  Google Scholar 

  • Amit DJ, Brunel N (1997) Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb Cortex 7(3):237–252

    Article  CAS  PubMed  Google Scholar 

  • Anagnostaras SG et al (2001) Hippocampus and contextual fear conditioning: recent controversies and advances. Hippocampus 11(1):8–17

    Article  CAS  PubMed  Google Scholar 

  • Antunes R, Moita MA (2010) Discriminative auditory fear learning requires both tuned and nontuned auditory pathways to the amygdala. J Neurosci 30(29):9782–9787

    Article  CAS  PubMed  Google Scholar 

  • Armony JL et al (1997) Stimulus generalization of fear responses: effects of auditory cortex lesions in a computational model and in rats. Cereb Cortex 7(2):157–165

    Article  CAS  PubMed  Google Scholar 

  • Aschauer DF, Rumpel S (2014) Measuring the functional organization of the neocortex at large and small scales. Neuron 83(4):756–758

    Article  CAS  PubMed  Google Scholar 

  • Ashby FG, O’Brien JB (2005) Category learning and multiple memory systems. Trends Cogn Sci 9(2):83–89

    Article  PubMed  Google Scholar 

  • Bakin JS et al (1996) Induction of receptive field plasticity in the auditory cortex of the guinea pig during instrumental avoidance conditioning. Behav Neurosci 110(5):905–913

    Article  CAS  PubMed  Google Scholar 

  • Bakin JS, Weinberger NM (1990) Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig. Brain Res 536(1–2):271–286

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay S et al (2010) Dichotomy of functional organization in the mouse auditory cortex. Nat Neurosci 13(3):361–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao S et al (2001) Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature 412(6842):79–83

    Article  CAS  PubMed  Google Scholar 

  • Bao S et al (2004) Temporal plasticity in the primary auditory cortex induced by operant perceptual learning. Nat Neurosci 7(9):974–981

    Article  CAS  PubMed  Google Scholar 

  • Bar-Yosef O, Nelken I (2007) The effects of background noise on the neural responses to natural sounds in cat primary auditory cortex. Front Comput Neurosci 1:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Bathellier B et al (2013) A multiplicative reinforcement learning model capturing learning dynamics and interindividual variability in mice. Proc Natl Acad Sci U S A 110(49):19950–19955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bathellier B et al (2012) Discrete neocortical dynamics predict behavioral categorization of sounds. Neuron 76(2):435–449

    Article  CAS  PubMed  Google Scholar 

  • Bendor D, Wang X (2005) The neuronal representation of pitch in primate auditory cortex. Nature 436(7054):1161–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt DH et al (2009) Dendritic spine dynamics. Annu Rev Physiol 71:261–282

    Article  CAS  PubMed  Google Scholar 

  • Bieszczad KM, Weinberger NM (2010) Representational gain in cortical area underlies increase of memory strength. Proc Natl Acad Sci U S A 107(8):3793–3798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binder JR et al (1994) Functional magnetic resonance imaging of human auditory cortex. Ann Neurol 35(6):662–672

    Article  CAS  PubMed  Google Scholar 

  • Bizley JK et al (2005) Functional organization of ferret auditory cortex. Cereb Cortex 15(10):1637–1653

    Article  PubMed  Google Scholar 

  • Blake DT et al (2002) Neural correlates of instrumental learning in primary auditory cortex. Proc Natl Acad Sci U S A 99(15):10114–10119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boatman JA, Kim JJ (2006) A thalamo-cortico-amygdala pathway mediates auditory fear conditioning in the intact brain. Eur J Neurosci 24(3):894–900

    Article  PubMed  Google Scholar 

  • Borsook D et al (1998) Acute plasticity in the human somatosensory cortex following amputation. NeuroReport 9(6):1013–1017

    Article  CAS  PubMed  Google Scholar 

  • Brainard MS, Knudsen EI (1993) Experience-dependent plasticity in the inferior colliculus: a site for visual calibration of the neural representation of auditory space in the barn owl. J Neurosci 13(11):4589–4608

    CAS  PubMed  Google Scholar 

  • Branco T, Hausser M (2010) The single dendritic branch as a fundamental functional unit in the nervous system. Curr Opin Neurobiol 20(4):494–502

    Article  CAS  PubMed  Google Scholar 

  • Brosch M et al (2015) Neuronal activity in primate auditory cortex during the performance of audiovisual tasks. Eur J Neurosci 41(5):603–614

    Article  PubMed  Google Scholar 

  • Bruno RM, Sakmann B (2006) Cortex is driven by weak but synchronously active thalamocortical synapses. Science 312(5780):1622–1627

    Article  CAS  PubMed  Google Scholar 

  • Buchwald JS et al (1966) Changes in Cortical and Subcortical Unit Activity during Behavioral Conditioning. Physiol Behav 1(1):11

    Article  Google Scholar 

  • Butt AE et al (2009) Association learning-dependent increases in acetylcholine release in the rat auditory cortex during auditory classical conditioning. Neurobiol Learn Mem 92(3):400–409

    Article  CAS  PubMed  Google Scholar 

  • Butt AE, Hodge GK (1997) Simple and configural association learning in rats with bilateral quisqualic acid lesions of the nucleus basalis magnocellularis. Behav Brain Res 89(1–2):71–85

    Article  CAS  PubMed  Google Scholar 

  • Buzsaki G (2010) Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68(3):362–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campeau S, Davis M (1995) Involvement of subcortical and cortical afferents to the lateral nucleus of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli. J Neurosci 15(3 Pt 2):2312–2327

    CAS  PubMed  Google Scholar 

  • Caroni P et al (2012) Structural plasticity upon learning: regulation and functions. Nat Rev Neurosci 13(7):478–490

    Article  CAS  PubMed  Google Scholar 

  • Chen QC, Jen PH (2000) Bicuculline application affects discharge patterns, rate-intensity functions, and frequency tuning characteristics of bat auditory cortical neurons. Hear Res 150(1–2):161–174

    Article  CAS  PubMed  Google Scholar 

  • Chen X et al (2011) Functional mapping of single spines in cortical neurons in vivo. Nature 475(7357):501–505

    Article  CAS  PubMed  Google Scholar 

  • Cheung SW et al (2005) Plasticity in primary auditory cortex of monkeys with altered vocal production. J Neurosci 25(10):2490–2503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhury SA, Suga N (2000) Reorganization of the frequency map of the auditory cortex evoked by cortical electrical stimulation in the big brown bat. J Neurophysiol 83(4):1856–1863

    Article  CAS  PubMed  Google Scholar 

  • Ciocchi S et al (2010) Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468(7321):277–282

    Article  CAS  PubMed  Google Scholar 

  • Cossell L et al (2015) Functional organization of excitatory synaptic strength in primary visual cortex. Nature 518(7539):399–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courtney SM et al (1997) Transient and sustained activity in a distributed neural system for human working memory. Nature 386(6625):608–611

    Article  CAS  PubMed  Google Scholar 

  • Cui G et al (2013) Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494(7436):238–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Amour JA, Froemke RC (2015) Inhibitory and excitatory spike-timing-dependent plasticity in the auditory cortex. Neuron 86(2):514–528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Baene W et al (2008) Effects of category learning on the stimulus selectivity of macaque inferior temporal neurons. Learn Mem 15(9):717–727

    Article  PubMed  Google Scholar 

  • deCharms RC, Merzenich MM (1996) Primary cortical representation of sounds by the coordination of action-potential timing. Nature 381(6583):610–613

    Article  CAS  PubMed  Google Scholar 

  • DeFelipe J, Farinas I (1992) The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog Neurobiol 39(6):563–607

    Article  CAS  PubMed  Google Scholar 

  • Dekker AJ et al (1991) The role of cholinergic projections from the nucleus basalis in memory. Neurosci Biobehav Rev 15(2):299–317

    Article  CAS  PubMed  Google Scholar 

  • Delacour J et al (1987) “Learned” changes in the responses of the rat barrel field neurons. Neuroscience 23(1):63–71

    Article  CAS  PubMed  Google Scholar 

  • Deliano M et al (2009) Auditory cortical activity after intracortical microstimulation and its role for sensory processing and learning. J Neurosci 29(50):15898–15909

    Article  CAS  PubMed  Google Scholar 

  • Desimone R (1996) Neural mechanisms for visual memory and their role in attention. Proc Natl Acad Sci U S A 93(24):13494–13499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deutsch JA (1971) The cholinergic synapse and the site of memory. Science 174(4011):788–794

    Article  CAS  PubMed  Google Scholar 

  • DeWeese MR et al (2003) Binary spiking in auditory cortex. J Neurosci 23(21):7940–7949

    CAS  PubMed  Google Scholar 

  • Diamond ME et al (1993) Experience-dependent plasticity in adult rat barrel cortex. Proc Natl Acad Sci U S A 90(5):2082–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dick AO (1974) Iconic Memory and Its Relation to Perceptual Processing and Other Memory Mechanisms. Percept Psychophys 16(3):575–596

    Article  Google Scholar 

  • Ding L, Gold JI (2010) Caudate encodes multiple computations for perceptual decisions. J Neurosci 30(47):15747–15759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinse HR et al (2003) Pharmacological modulation of perceptual learning and associated cortical reorganization. Science 301(5629):91–94

    Article  CAS  PubMed  Google Scholar 

  • Donato F et al (2013) Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning. Nature 504(7479):272–276

    Article  CAS  PubMed  Google Scholar 

  • Doron NN et al (2002) Redefining the tonotopic core of rat auditory cortex: physiological evidence for a posterior field. J Comp Neurol 453(4):345–360

    Article  PubMed  Google Scholar 

  • Dorrn AL et al (2010) Developmental sensory experience balances cortical excitation and inhibition. Nature 465(7300):932–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas RJ, Martin KA (2007) Recurrent neuronal circuits in the neocortex. Curr Biol 17(13):R496–500

    Article  CAS  PubMed  Google Scholar 

  • Ecker AS et al (2010) Decorrelated neuronal firing in cortical microcircuits. Science 327(5965):584–587

    Article  CAS  PubMed  Google Scholar 

  • Edeline JM (1990) Frequency-specific plasticity of single unit discharges in the rat medial geniculate body. Brain Res 529(1–2):109–119

    Article  CAS  PubMed  Google Scholar 

  • Edeline JM et al (2011) Induction of selective plasticity in the frequency tuning of auditory cortex and auditory thalamus neurons by locus coeruleus stimulation. Hear Res 274(1–2):75–84

    Article  PubMed  Google Scholar 

  • Edeline JM et al (1993) Rapid development of learning-induced receptive field plasticity in the auditory cortex. Behav Neurosci 107(4):539–551

    Article  CAS  PubMed  Google Scholar 

  • Ehret G, Schreiner CE (2005) Spectral and intensity coding in the auditory midbrain. In: Winer JA, Schreiner CE (eds)The inferior colliculus. Springer New York, New York, pp 312–345

    Google Scholar 

  • Engineer ND et al (2011) Reversing pathological neural activity using targeted plasticity. Nature 470(7332):101–104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Esser KH, Eiermann A (1999) Tonotopic organization and parcellation of auditory cortex in the FM-bat Carollia perspicillata. Eur J Neurosci 11(10):3669–3682

    Article  CAS  PubMed  Google Scholar 

  • Feldman DE, Brecht M (2005) Map plasticity in somatosensory cortex. Science 310(5749):810–815

    Article  CAS  PubMed  Google Scholar 

  • Flor H et al (1995) Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375(6531):482–484

    Article  CAS  PubMed  Google Scholar 

  • Freedman DJ, Miller EK (2008) Neural mechanisms of visual categorization: insights from neurophysiology. Neurosci Biobehav Rev 32(2):311–329

    Article  PubMed  Google Scholar 

  • Freiwald WA et al (2001) Synchronization and assembly formation in the visual cortex. Prog Brain Res 130:111–140

    Article  CAS  PubMed  Google Scholar 

  • Frisina RD (2001) Subcortical neural coding mechanisms for auditory temporal processing. Hear Res 158(1–2):1–27

    Article  CAS  PubMed  Google Scholar 

  • Fritz J et al (2003) Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nat Neurosci 6(11):1216–1223

    Article  CAS  PubMed  Google Scholar 

  • Fritz JB et al (2007) Auditory attention–focusing the searchlight on sound. Curr Opin Neurobiol 17(4):437–455

    Article  CAS  PubMed  Google Scholar 

  • Froemke RC et al (2013) Long-term modification of cortical synapses improves sensory perception. Nat Neurosci 16(1):79–88

    Article  CAS  PubMed  Google Scholar 

  • Froemke RC et al (2007) A synaptic memory trace for cortical receptive field plasticity. Nature 450(7168):425–429

    Article  CAS  PubMed  Google Scholar 

  • Fu Y et al (2014) A cortical circuit for gain control by behavioral state. Cell 156(6):1139–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galambos R et al (1956) Electrophysiological correlates of a conditioned response in cats. Science 123(3192):376–377

    Article  CAS  PubMed  Google Scholar 

  • Galvan VV, Weinberger NM (2002) Long-term consolidation and retention of learning-induced tuning plasticity in the auditory cortex of the guinea pig. Neurobiol Learn Mem 77(1):78–108

    Article  PubMed  Google Scholar 

  • Gao E, Suga N (1998) Experience-dependent corticofugal adjustment of midbrain frequency map in bat auditory system. Proc Natl Acad Sci U S A 95(21):12663–12670

    Article  CAS  Google Scholar 

  • Gao E, Suga N (2000) Experience-dependent plasticity in the auditory cortex and the inferior colliculus of bats: role of the corticofugal system. Proc Natl Acad Sci U S A 97(14):8081–8086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gdalyahu A et al (2012) Associative fear learning enhances sparse network coding in primary sensory cortex. Neuron 75(1):121–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geva-Sagiv M et al (2015) Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation. Nat Rev Neurosci 16(2):94–108

    Article  CAS  PubMed  Google Scholar 

  • Gilbert CD, Li W (2013) Top-down influences on visual processing. Nat Rev Neurosci 14(5):350–363

    Article  CAS  PubMed  Google Scholar 

  • Gilbert CD, Sigman M (2007) Brain states: top-down influences in sensory processing. Neuron 54(5):677–696

    Article  CAS  PubMed  Google Scholar 

  • Gleich O, Strutz J (2012) The Mongolian Gerbil as a Model for the Analysis of Peripheral and Central Age-Dependent Hearing Loss. Hearing Loss. S, Naz, InTech

    Google Scholar 

  • Gonzalez-Lima F, Scheich H (1986) Neural substrates for tone-conditioned bradycardia demonstrated with 2-deoxyglucose. II. Auditory cortex plasticity. Behav Brain Res 20(3):281–293

    Article  CAS  PubMed  Google Scholar 

  • Guillery RW, Sherman SM (2011) Branched thalamic afferents: what are the messages that they relay to the cortex? Brain Res Rev 66(1–2):205–219

    Article  CAS  PubMed  Google Scholar 

  • Guo F et al (2012a) Auditory discrimination training rescues developmentally degraded directional selectivity and restores mature expression of GABA(A) and AMPA receptor subunits in rat auditory cortex. Behav Brain Res 229(2):301–307

    Article  CAS  PubMed  Google Scholar 

  • Guo W et al (2012b) Robustness of cortical topography across fields, laminae, anesthetic states, and neurophysiological signal types. J Neurosci 32(27):9159–9172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo F et al (2013) Tone-detection training enhances spectral integration mediated by intracortical pathways in primary auditory cortex. Neurobiol Learn Mem 101:75–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Hackett TA et al (2011) Linking topography to tonotopy in the mouse auditory thalamocortical circuit. J Neurosci 31(8):2983–2995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harel N et al (2000) Three distinct auditory areas of cortex (AI, AII, and AAF) defined by optical imaging of intrinsic signals. Neuroimage 11(4):302–312

    Article  CAS  PubMed  Google Scholar 

  • Harris KD et al (2003) Organization of cell assemblies in the hippocampus. Nature 424(6948):552–556

    Article  CAS  PubMed  Google Scholar 

  • Harris KD, Mrsic-Flogel TD (2013) Cortical connectivity and sensory coding. Nature 503(7474):51–58

    Article  CAS  PubMed  Google Scholar 

  • Hars B et al (1993) Basal forebrain stimulation facilitates tone-evoked responses in the auditory cortex of awake rat. Neuroscience 56(1):61–74

    Article  CAS  PubMed  Google Scholar 

  • Hartley T et al (2014) Space in the brain: how the hippocampal formation supports spatial cognition. Philos Trans R Soc Lond B Biol Sci 369(1635):20120510

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasselmo ME (1995) Neuromodulation and cortical function: modeling the physiological basis of behavior. Behav Brain Res 67(1):1–27

    Article  CAS  PubMed  Google Scholar 

  • Hebb DO (1949) The organization of behavior. Wiley & Sons, New York

    Google Scholar 

  • Hensch TK (2005a) Critical period mechanisms in developing visual cortex. Curr Top Dev Biol 69:215–237

    Article  CAS  PubMed  Google Scholar 

  • Hensch TK (2005b) Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6(11):877–888

    Article  CAS  PubMed  Google Scholar 

  • Herry C et al (2008) Switching on and off fear by distinct neuronal circuits. Nature 454(7204):600–606

    Article  CAS  PubMed  Google Scholar 

  • Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10(9):647–658

    Article  CAS  PubMed  Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci U S A 79(8):2554–2558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hromadka T et al (2008) Sparse representation of sounds in the unanesthetized auditory cortex. PLoS Biol 6(1):e16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hromadka T, Zador AM (2009) Representations in auditory cortex. Curr Opin Neurobiol 19(4):430–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubener M, Bonhoeffer T (2010) Searching for engrams. Neuron 67(3):363–371

    Article  PubMed  CAS  Google Scholar 

  • Huber D et al (2012) Multiple dynamic representations in the motor cortex during sensorimotor learning. Nature 484(7395):473–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imig TJ, Adrian HO (1977) Binaural columns in the primary field (A1) of cat auditory cortex. Brain Res 138(2):241–257

    Article  CAS  PubMed  Google Scholar 

  • Insabato A et al (2014) The influence of spatiotemporal structure of noisy stimuli in decision making. PLoS Comput Biol 10(4):e1003492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Irvine DR et al (2000) Specificity of perceptual learning in a frequency discrimination task. J Acoust Soc Am 108(6):2964–2968

    Article  CAS  PubMed  Google Scholar 

  • Issa JB et al (2014) Multiscale optical Ca2 + imaging of tonal organization in mouse auditory cortex. Neuron 83(4):944–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaramillo S, Zador AM (2011) The auditory cortex mediates the perceptual effects of acoustic temporal expectation. Nat Neurosci 14(2):246–251

    Article  CAS  PubMed  Google Scholar 

  • Jarrell TW et al (1987) Involvement of cortical and thalamic auditory regions in retention of differential bradycardiac conditioning to acoustic conditioned stimuli in rabbits. Brain Res 412(2):285–294

    Article  CAS  PubMed  Google Scholar 

  • Jeanne JM et al (2013) Associative learning enhances population coding by inverting interneuronal correlation patterns. Neuron 78(2):352–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji W et al (2001) Effects of acetylcholine and atropine on plasticity of central auditory neurons caused by conditioning in bats. J Neurophysiol 86(1):211–225

    Article  CAS  PubMed  Google Scholar 

  • Joachimsthaler B et al (2014) Quantitative analysis of neuronal response properties in primary and higher-order auditory cortical fields of awake house mice (Mus musculus). Eur J Neurosci 39(6):904–918

    Article  PubMed  PubMed Central  Google Scholar 

  • Johansen JP et al (2011) Molecular mechanisms of fear learning and memory. Cell 147(3):509–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Josselyn SA (2010) Continuing the search for the engram: examining the mechanism of fear memories. J Psychiatry Neurosci 35(4):221–228

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaas JH (1997) Topographic maps are fundamental to sensory processing. Brain Res Bull 44(2):107–112

    Article  CAS  PubMed  Google Scholar 

  • Kandel ER (1991) Learning and memory. In: Kandel ER, Schwartz JH, Jessel TM (eds) Principles of neural science. Elsevier, New York, pp 1009–1031

    Google Scholar 

  • Kanold PO et al (2014) Local versus global scales of organization in auditory cortex. Trends Neurosci 37(9):502–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274(5290):1133–1138

    Article  CAS  PubMed  Google Scholar 

  • Kentridge RW et al (1999) Attention without awareness in blindsight. Proc Biol Sci 266(1430):1805–1811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keri S (2003) The cognitive neuroscience of category learning. Brain Res Brain Res Rev 43(1):85–109

    Article  PubMed  Google Scholar 

  • Kesner RP, Churchwell JC (2011) An analysis of rat prefrontal cortex in mediating executive function. Neurobiol Learn Mem 96(3):417–431

    Article  PubMed  Google Scholar 

  • Kholodar-Smith DB et al (2008) Fear conditioning to discontinuous auditory cues requires perirhinal cortical function. Behav Neurosci 122(5):1178–1185

    Article  CAS  PubMed  Google Scholar 

  • Kilgard MP, Merzenich MM (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279(5357):1714–1718

    Article  CAS  PubMed  Google Scholar 

  • Kilgard MP, Merzenich MM (1999) Distributed representation of spectral and temporal information in rat primary auditory cortex. Hear Res 134(1–2):16–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimchi EY, Laubach M (2009) Dynamic encoding of action selection by the medial striatum. J Neurosci 29(10):3148–3159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko H et al (2011) Functional specificity of local synaptic connections in neocortical networks. Nature 473(7345):87–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi Y, Isa T (2002) Sensory-motor gating and cognitive control by the brainstem cholinergic system. Neural Netw 15(4–6):731–741

    Article  PubMed  Google Scholar 

  • Kurt S et al (2006) Differential effects of iontophoretic in vivo application of the GABA(A)-antagonists bicuculline and gabazine in sensory cortex. Hear Res 212(1–2):224–235

    Article  CAS  PubMed  Google Scholar 

  • LaBar KS et al (1998) Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron 20(5):937–945

    Article  CAS  PubMed  Google Scholar 

  • Lai CS et al (2012) Opposite effects of fear conditioning and extinction on dendritic spine remodelling. Nature 483(7387):87–91

    Article  CAS  PubMed  Google Scholar 

  • Lamberts K (2002) Feature sampling in categorization and recognition of objects. Q J Exp Psychol A 55(1):141–154

    Article  PubMed  Google Scholar 

  • Langers DR, van Dijk P (2012) Mapping the tonotopic organization in human auditory cortex with minimally salient acoustic stimulation. Cereb Cortex 22(9):2024–2038

    Article  PubMed  Google Scholar 

  • Lansner A (2009) Associative memory models: from the cell-assembly theory to biophysically detailed cortex simulations. Trends Neurosci 32(3):178–186

    Article  CAS  PubMed  Google Scholar 

  • Laudanski J et al (2012) Differences between spectro-temporal receptive fields derived from artificial and natural stimuli in the auditory cortex. PLoS ONE 7(11):e50539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  CAS  PubMed  Google Scholar 

  • LeDoux JE (2014) Coming to terms with fear. Proc Natl Acad Sci U S A 111(8):2871–2878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeDoux JE et al (1984) Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned to acoustic stimuli. J Neurosci 4(3):683–698

    CAS  PubMed  Google Scholar 

  • Lee AM et al (2014) Identification of a brainstem circuit regulating visual cortical state in parallel with locomotion. Neuron 83(2):455–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CC et al (2004) Concurrent tonotopic processing streams in auditory cortex. Cereb Cortex 14(4):441–451

    Article  PubMed  Google Scholar 

  • Letzkus JJ et al (2011) A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480(7377):331–335

    Article  CAS  PubMed  Google Scholar 

  • Levy RB, Reyes AD (2012) Spatial profile of excitatory and inhibitory synaptic connectivity in mouse primary auditory cortex. J Neurosci 32(16):5609–5619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liberman AM et al (1967) Perception of the speech code. Psychol Rev 74(6):431–461

    Article  CAS  PubMed  Google Scholar 

  • Lipton PA et al (1999) Crossmodal associative memory representations in rodent orbitofrontal cortex. Neuron 22(2):349–359

    Article  CAS  PubMed  Google Scholar 

  • Loewenstein Y et al (2011) Multiplicative dynamics underlie the emergence of the log-normal distribution of spine sizes in the neocortex in vivo. J Neurosci 31(26):9481–9488

    Article  CAS  PubMed  Google Scholar 

  • Loewenstein Y et al (2015) Predicting the Dynamics of Network Connectivity in the Neocortex. J Neurosci 35(36):12535–12544

    Article  CAS  PubMed  Google Scholar 

  • Lumani A, Zhang H (2010) Responses of neurons in the rat’s dorsal cortex of the inferior colliculus to monaural tone bursts. Brain Res 1351:115–129

    Article  CAS  PubMed  Google Scholar 

  • Lutcke H et al (2013) Steady or changing? Long-term monitoring of neuronal population activity. Trends Neurosci 36(7):375–384

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Suga N (2005) Long-term cortical plasticity evoked by electric stimulation and acetylcholine applied to the auditory cortex. Proc Natl Acad Sci U S A 102(26):9335–9340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Suga N (2009) Specific and nonspecific plasticity of the primary auditory cortex elicited by thalamic auditory neurons. J Neurosci 29(15):4888–4896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maass W et al (2007) Computational aspects of feedback in neural circuits. PLoS Comput Biol 3(1):e165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maass W, Zador AM (1999) Dynamic stochastic synapses as computational units. Neural Comput 11(4):903–917

    Article  CAS  PubMed  Google Scholar 

  • Machens CK et al (2004) Linearity of cortical receptive fields measured with natural sounds. J Neurosci 24(5):1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Macphail EM (1982) Brain and intelligence in vertebrates. Clarendon Press, Oxford

    Google Scholar 

  • Magnussen S (2000) Low-level memory processes in vision. Trends Neurosci 23(6):247–251

    Article  CAS  PubMed  Google Scholar 

  • Manita S et al (2015) A Top-Down Cortical Circuit for Accurate Sensory Perception. Neuron 86(5):1304–1316

    Article  CAS  PubMed  Google Scholar 

  • Maren S et al (2013) The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat Rev Neurosci 14(6):417–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maren S et al (2001) The amygdala is essential for the development of neuronal plasticity in the medial geniculate nucleus during auditory fear conditioning in rats. J Neurosci 21(6):RC135

    Google Scholar 

  • Margolis DJ et al (2014) Microcircuit dynamics of map plasticity in barrel cortex. Curr Opin Neurobiol 24(1):76–81

    Article  CAS  PubMed  Google Scholar 

  • Markovitz CD et al (2013) Tonotopic and localized pathways from primary auditory cortex to the central nucleus of the inferior colliculus. Front Neural Circuits 7:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Markram H et al (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5(10):793–807

    Article  CAS  PubMed  Google Scholar 

  • Marr D (1970) A theory for cerebral neocortex. Proc R Soc Ser B-Biol Sci 176(1043):161– + 

    Article  CAS  Google Scholar 

  • McKenna TM et al (1989) Cholinergic modulation of frequency receptive fields in auditory cortex: I. Frequency-specific effects of muscarinic agonists. Synapse 4(1):30–43

    Article  CAS  PubMed  Google Scholar 

  • McKernan MG, Shinnick-Gallagher P (1997) Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390(6660):607–611

    Article  CAS  PubMed  Google Scholar 

  • Mendez MF, Geehan GR Jr (1988) Cortical auditory disorders: clinical and psychoacoustic features. J Neurol Neurosurg Psychiatry 51(1):1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merzenich MM, Brugge JF (1973) Representation of the cochlear partition of the superior temporal plane of the macaque monkey. Brain Res 50(2):275–296

    Article  CAS  PubMed  Google Scholar 

  • Merzenich MM et al (1976) Auditory cortex in the grey squirrel: tonotopic organization and architectonic fields. J Comp Neurol 166(4):387–401

    Article  CAS  PubMed  Google Scholar 

  • Merzenich MM et al (1983) Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation. Neuroscience 8(1):33–55

    Article  CAS  PubMed  Google Scholar 

  • Merzenich MM et al (1973) Cochleotopic organization of primary auditory cortex in the cat. Brain Res 63:343–346

    Article  CAS  PubMed  Google Scholar 

  • Mesulam MM et al (1983) Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214(2):170–197

    Article  CAS  PubMed  Google Scholar 

  • Metzger CD et al (2013) Functional mapping of thalamic nuclei and their integration into cortico-striatal-thalamo-cortical loops via ultra-high resolution imaging-from animal anatomy to in vivo imaging in humans. Front Neurosci 7:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Middlebrooks JC, Knudsen EI (1984) A neural code for auditory space in the cat’s superior colliculus. J Neurosci 4(10):2621–2634

    CAS  PubMed  Google Scholar 

  • Miller EK et al (2003) Neural correlates of categories and concepts. Curr Opin Neurobiol 13(2):198–203

    Article  CAS  PubMed  Google Scholar 

  • Mitz AR et al (1991) Learning-dependent neuronal activity in the premotor cortex: activity during the acquisition of conditional motor associations. J Neurosci 11(6):1855–1872

    CAS  PubMed  Google Scholar 

  • Miyashita Y (1988) Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature 335(6193):817–820

    Article  CAS  PubMed  Google Scholar 

  • Mizrahi A et al (2014) Single neuron and population coding of natural sounds in auditory cortex. Curr Opin Neurobiol 24(1):103–110

    Article  CAS  PubMed  Google Scholar 

  • Moczulska KE et al (2013) Dynamics of dendritic spines in the mouse auditory cortex during memory formation and memory recall. Proc Natl Acad Sci U S A 110(45):18315–18320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mogilner A et al (1993) Somatosensory Cortical Plasticity in Adult Humans Revealed by Magnetoencephalography. Proc Natl Acad Sci U S A 90(8):3593–3597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mongillo G et al (2008) Synaptic theory of working memory. Science 319(5869):1543–1546

    Article  CAS  PubMed  Google Scholar 

  • Morel A, Kaas JH (1992) Subdivisions and connections of auditory cortex in owl monkeys. J Comp Neurol 318(1):27–63

    Article  CAS  PubMed  Google Scholar 

  • Morosan P et al (2001) Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. Neuroimage 13(4):684–701

    Article  CAS  PubMed  Google Scholar 

  • Morrell F et al (1983) Conditioning of single units in visual association cortex: cell-specific behavior within a small population. Exp Neurol 80(1):111–146

    Article  CAS  PubMed  Google Scholar 

  • Morris RG et al (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319(6056):774–776

    Article  CAS  PubMed  Google Scholar 

  • Nabavi S et al (2014) Engineering a memory with LTD and LTP. Nature 511(7509):348–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nader K et al (2001) Damage to the lateral and central, but not other, amygdaloid nuclei prevents the acquisition of auditory fear conditioning. Learn Mem 8(3):156–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayan SS et al (1998) Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae. Science 282(5395):1882–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelken I et al (2003) Primary auditory cortex of cats: feature detection or something else? Biol Cybern 89(5):397–406

    Article  PubMed  Google Scholar 

  • O’Keefe J (1979) A review of the hippocampal place cells. Prog Neurobiol 13(4):419–439

    Article  PubMed  Google Scholar 

  • Ohl FW (2015) Role of cortical neurodynamics for understanding the neural basis of motivated behavior—lessons from auditory category learning. Curr Opin Neurobiol 31:88–94

    Article  CAS  PubMed  Google Scholar 

  • Ohl FW et al (2003) Early and late patterns of stimulus-related activity in auditory cortex of trained animals. Biol Cybern 88(5):374–379

    Article  CAS  PubMed  Google Scholar 

  • Ohl FW, Scheich H (2005) Learning-induced plasticity in animal and human auditory cortex. Curr Opin Neurobiol 15(4):470–477

    Article  CAS  PubMed  Google Scholar 

  • Ohl FW et al (2001) Change in pattern of ongoing cortical activity with auditory category learning. Nature 412(6848):733–736

    Article  CAS  PubMed  Google Scholar 

  • Ohl FW et al (1999) Bilateral ablation of auditory cortex in Mongolian gerbil affects discrimination of frequency modulated tones but not of pure tones. Learn Mem 6(4):347–362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver DL et al (1976) Tonotopic Organization and Connections of Primary Auditory-Cortex in Tree Shrew, Tupaia Glis. Anat Rec 184(3):491

    Google Scholar 

  • Orsini CA et al (2013) Ensemble coding of context-dependent fear memory in the amygdala. Front Behav Neurosci 7:199

    Article  PubMed  PubMed Central  Google Scholar 

  • Oswald AM, Reyes AD (2008) Maturation of intrinsic and synaptic properties of layer 2/3 pyramidal neurons in mouse auditory cortex. J Neurophysiol 99(6):2998–3008

    Article  PubMed  PubMed Central  Google Scholar 

  • Pai S et al (2011) Minimal impairment in a rat model of duration discrimination following excitotoxic lesions of primary auditory and prefrontal cortices. Front Syst Neurosci 5:74

    Article  PubMed  PubMed Central  Google Scholar 

  • Palmer AR, Kuwada S (2005) Binaural and spatial coding in the inferior colliculus. In: Winer JA, Schreiner CE (eds) The inferior colliculus. Springer New York, New York, pp 377–410

    Google Scholar 

  • Pantev C et al (1995) Specific tonotopic organizations of different areas of the human auditory cortex revealed by simultaneous magnetic and electric recordings. Electroencephalogr Clin Neurophysiol 94(1):26–40

    Article  CAS  PubMed  Google Scholar 

  • Parto Dezfouli M, Daliri MR (2015) The effect of adaptation on the tuning curves of rat auditory cortex. PLoS ONE 10(2):e0115621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pasternak T, Greenlee MW (2005) Working memory in primate sensory systems. Nat Rev Neurosci 6(2):97–107

    Article  CAS  PubMed  Google Scholar 

  • Pavlov IP, Anrep GV (1927) Conditioned reflexes; an investigation of the physiological activity of the cerebral cortex. London, Oxford University Press, Humphrey Milford

    Google Scholar 

  • Pearce JM (1994) Similarity and discrimination: a selective review and a connectionist model. Psychol Rev 101(4):587–607

    Article  CAS  PubMed  Google Scholar 

  • Penfield W (1959) The interpretive cortex; the stream of consciousness in the human brain can be electrically reactivated. Science 129(3365):1719–1725

    Article  CAS  PubMed  Google Scholar 

  • Peter M et al (2012) Induction of immediate early genes in the mouse auditory cortex after auditory cued fear conditioning to complex sounds. Genes Brain Behav 11(3):314–324

    Article  CAS  PubMed  Google Scholar 

  • Petkov CI et al (2004) Attentional modulation of human auditory cortex. Nat Neurosci 7(6):658–663

    Article  CAS  PubMed  Google Scholar 

  • Pi HJ et al (2013) Cortical interneurons that specialize in disinhibitory control. Nature 503(7477):521–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pienkowski M, Eggermont JJ (2011) Cortical tonotopic map plasticity and behavior. Neurosci Biobehav Rev 35(10):2117–2128

    Article  PubMed  Google Scholar 

  • Plato, Campbell L (1883) The Theaetetus of Plato, with a revised text and English notes/by Lewis Campbell. The Clarendon press, Oxford

    Google Scholar 

  • Pleger B et al (2003) Functional imaging of perceptual learning in human primary and secondary somatosensory cortex. Neuron 40(3):643–653

    Article  CAS  PubMed  Google Scholar 

  • Poldrack RA, Foerde K (2008) Category learning and the memory systems debate. Neurosci Biobehav Rev 32(2):197–205

    Article  PubMed  Google Scholar 

  • Polk TA, Farah MJ (1995) Brain localization for arbitrary stimulus categories: a simple account based on Hebbian learning. Proc Natl Acad Sci U S A 92(26):12370–12373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polley DB et al (2004a) Associative learning shapes the neural code for stimulus magnitude in primary auditory cortex. Proc Natl Acad Sci USA 101(46):16351–16356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polley DB et al (2004b) Naturalistic experience transforms sensory maps in the adult cortex of caged animals. Nature 429(6987):67–71

    Article  CAS  PubMed  Google Scholar 

  • Polley DB et al (2006) Perceptual learning directs auditory cortical map reorganization through top-down influences. J Neurosci 26(18):4970–4982

    Article  CAS  PubMed  Google Scholar 

  • Profant O et al (2013) The response properties of neurons in different fields of the auditory cortex in the rat. Hear Res 296:51–59

    Article  PubMed  Google Scholar 

  • Puckett AC et al (2007) Plasticity in the rat posterior auditory field following nucleus basalis stimulation. J Neurophysiol 98(1):253–265

    Article  PubMed  Google Scholar 

  • Quirk GJ et al (1997) Fear conditioning enhances different temporal components of tone-evoked spike trains in auditory cortex and lateral amygdala. Neuron 19(3):613–624

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran VS (1993) Behavioral and magnetoencephalographic correlates of plasticity in the adult human brain. Proc Natl Acad Sci U S A 90(22):10413–10420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Read HL et al (2002) Functional architecture of auditory cortex. Curr Opin Neurobiol 12(4):433–440

    Article  CAS  PubMed  Google Scholar 

  • Recanzone GH et al (2000) Frequency and intensity response properties of single neurons in the auditory cortex of the behaving macaque monkey. J Neurophysiol 83(4):2315–2331

    Article  CAS  PubMed  Google Scholar 

  • Recanzone GH et al (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci 13(1):87–103

    CAS  PubMed  Google Scholar 

  • Redgrave P et al (2010) Interactions between the midbrain superior colliculus and the basal ganglia. Front Neuroanat 4:132

    Google Scholar 

  • Reed A et al (2011) Cortical map plasticity improves learning but is not necessary for improved performance. Neuron 70(1):121–131

    Article  CAS  PubMed  Google Scholar 

  • Repa JC et al (2001) Two different lateral amygdala cell populations contribute to the initiation and storage of memory. Nat Neurosci 4(7):724–731

    Article  CAS  PubMed  Google Scholar 

  • Reynolds JN et al (2001) A cellular mechanism of reward-related learning. Nature 413(6851):67–70

    Article  CAS  PubMed  Google Scholar 

  • Rogan MT et al (1997) Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390(6660):604–607

    Article  CAS  PubMed  Google Scholar 

  • Rokni U et al (2007) Motor learning with unstable neural representations. Neuron 54(4):653–666

    Article  CAS  PubMed  Google Scholar 

  • Romanski LM, LeDoux JE (1992) Equipotentiality of thalamo-amygdala and thalamo-cortico-amygdala circuits in auditory fear conditioning. J Neurosci 12(11):4501–4509

    CAS  PubMed  Google Scholar 

  • Romo R et al (2003) Correlated neuronal discharges that increase coding efficiency during perceptual discrimination. Neuron 38(4):649–657

    Article  CAS  PubMed  Google Scholar 

  • Romo R, Salinas E (2003) Flutter discrimination: neural codes, perception, memory and decision making. Nat Rev Neurosci 4(3):203–218

    Article  CAS  PubMed  Google Scholar 

  • Ross LS et al (1988) Origin of ascending projections to an isofrequency region of the mustache bat’s inferior colliculus. J Comp Neurol 270(4):488–505

    Article  CAS  PubMed  Google Scholar 

  • Rothschild G et al (2010) Functional organization and population dynamics in the mouse primary auditory cortex. Nat Neurosci 13(3):353–360

    Article  CAS  PubMed  Google Scholar 

  • Rumpel S et al (2005) Postsynaptic receptor trafficking underlying a form of associative learning. Science 308(5718):83–88

    Article  CAS  PubMed  Google Scholar 

  • Russ BE et al (2007) Neural and behavioral correlates of auditory categorization. Hear Res 229(1–2):204–212

    Article  PubMed  Google Scholar 

  • Rutkowski RG, Weinberger NM (2005) Encoding of learned importance of sound by magnitude of representational area in primary auditory cortex. Proc Natl Acad Sci U S A 102(38):13664–13669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadagopan S, Wang X (2008) Level invariant representation of sounds by populations of neurons in primary auditory cortex. J Neurosci 28(13):3415–3426

    Article  CAS  PubMed  Google Scholar 

  • Sadagopan S, Wang X (2010) Contribution of inhibition to stimulus selectivity in primary auditory cortex of awake primates. J Neurosci 30(21):7314–7325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salzman CD et al (1990) Cortical microstimulation influences perceptual judgements of motion direction. Nature 346(6280):174–177

    Article  CAS  PubMed  Google Scholar 

  • Sawtell NB et al (2003) NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron 38(6):977–985

    Article  CAS  PubMed  Google Scholar 

  • Scheich H et al (2007) The cognitive auditory cortex: task-specificity of stimulus representations. Hear Res 229(1–2):213–224

    Article  PubMed  Google Scholar 

  • Schnupp JW et al (2006) Plasticity of temporal pattern codes for vocalization stimuli in primary auditory cortex. J Neurosci 26(18):4785–4795

    Article  CAS  PubMed  Google Scholar 

  • Schoenbaum G et al (1998) Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nat Neurosci 1(2):155–159

    Article  CAS  PubMed  Google Scholar 

  • Schoenbaum G et al (1999) Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning. J Neurosci 19(5):1876–1884

    CAS  PubMed  Google Scholar 

  • Seger CA, Miller EK (2010) Category learning in the brain. Annu Rev Neurosci 33:203–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selezneva E et al (2006) Dual time scales for categorical decision making in auditory cortex. Curr Biol 16(24):2428–2433

    Article  CAS  PubMed  Google Scholar 

  • Sellien H, Ebner FF (2007) Rapid plasticity follows whisker pairing in barrel cortex of the awake rat. Exp Brain Res 177(1):1–14

    Article  PubMed  Google Scholar 

  • Shadlen MN, Newsome WT (2001) Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J Neurophysiol 86(4):1916–1936

    Article  CAS  PubMed  Google Scholar 

  • Sherman SM (2007) The thalamus is more than just a relay. Curr Opin Neurobiol 17(4):417–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman SM (2012) Thalamocortical interactions. Curr Opin Neurobiol 22(4):575–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shetake JA et al (2012) Pairing tone trains with vagus nerve stimulation induces temporal plasticity in auditory cortex. Exp Neurol 233(1):342–349

    Article  PubMed  Google Scholar 

  • Sillito AM (1975) The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. J Physiol 250(2):305–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron 24(1):49–65, 111–125

    Article  CAS  PubMed  Google Scholar 

  • Singheiser M et al (2012) The representation of sound localization cues in the barn owl’s inferior colliculus. Front Neural Circuits 6:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Siucinska E, Kossut M (1996) Short-lasting classical conditioning induces reversible changes of representational maps of vibrissae in mouse SI cortex–a 2DG study. Cereb Cortex 6(3):506–513

    Article  CAS  PubMed  Google Scholar 

  • Siucinska E, Kossut M (2004) Experience-dependent changes in cortical whisker representation in the adult mouse: a 2-deoxyglucose study. Neuroscience 127(4):961–971

    Article  CAS  PubMed  Google Scholar 

  • Skinner BF (1938) The behavior of organisms: an experimental analysis. B.F. Skinner Foundation, Cambridge, Massachusetts

    Google Scholar 

  • Song S et al (2005) Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol 3(3):e68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stiebler I et al (1997) The auditory cortex of the house mouse: left-right differences, tonotopic organization and quantitative analysis of frequency representation. J Comp Physiol A 181(6):559–571

    Article  CAS  PubMed  Google Scholar 

  • Stuermer IW et al (2003) Intraspecific allometric comparison of laboratory gerbils with Mongolian gerbils trapped in the wild indicates domestication in Meriones unguiculatus (Milne-Edwards, 1867) (Rodentia: Gerbillinae). Zoologischer Anzeiger 242(3):249–266

    Article  Google Scholar 

  • Stuttgen MC et al (2011) Mapping spikes to sensations. Front Neurosci 5:125

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutter ML (2000) Shapes and level tolerances of frequency tuning curves in primary auditory cortex: quantitative measures and population codes. J Neurophysiol 84(2):1012–1025

    Article  CAS  PubMed  Google Scholar 

  • Takahashi N et al (2012) Locally synchronized synaptic inputs. Science 335(6066):353–356

    Article  CAS  PubMed  Google Scholar 

  • Talavage TM et al (2000) Frequency-dependent responses exhibited by multiple regions in human auditory cortex. Hear Res 150(1–2):225–244

    Article  CAS  PubMed  Google Scholar 

  • Talavage TM et al (2004) Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. J Neurophysiol 91(3):1282–1296

    Article  PubMed  Google Scholar 

  • Tan AY et al (2004) Tone-evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons. J Neurophysiol 92(1):630–643

    Article  PubMed  Google Scholar 

  • Uchida N et al (2006) Seeing at a glance, smelling in a whiff: rapid forms of perceptual decision making. Nat Rev Neurosci 7(6):485–491

    Article  CAS  PubMed  Google Scholar 

  • Wallace DJ, Kerr JN (2010) Chasing the cell assembly. Curr Opin Neurobiol 20(3):296–305

    Article  CAS  PubMed  Google Scholar 

  • Wallace MN et al (2000) Identification and localisation of auditory areas in guinea pig cortex. Exp Brain Res 132(4):445–456

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Kadia SC (2001) Differential representation of species-specific primate vocalizations in the auditory cortices of marmoset and cat. J Neurophysiol 86(5):2616–2620

    Article  CAS  PubMed  Google Scholar 

  • Wang X et al (2005) Sustained firing in auditory cortex evoked by preferred stimuli. Nature 435(7040):341–346

    Article  CAS  PubMed  Google Scholar 

  • Wang X et al (1995) Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: temporal and spectral characteristics. J Neurophysiol 74(6):2685–2706

    Article  CAS  PubMed  Google Scholar 

  • Wang XJ (2008) Decision making in recurrent neuronal circuits. Neuron 60(2):215–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wehr M, Zador AM (2003) Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426(6965):442–446

    Article  CAS  PubMed  Google Scholar 

  • Weinberg RJ (1997) Are topographic maps fundamental to sensory processing? Brain Res Bull 44(2):113–116

    Article  CAS  PubMed  Google Scholar 

  • Weinberger NM (2004) Specific long-term memory traces in primary auditory cortex. Nat Rev Neurosci 5(4):279–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinberger NM (2015) New perspectives on the auditory cortex: learning and memory. Handb Clin Neurol 129:117–147

    Article  PubMed  Google Scholar 

  • Weinberger NM et al (1984) Physiological Plasticity of Single Neurons in Auditory-Cortex of the Cat during Acquisition of the Pupillary Conditioned-Response. 1. Primary Field (Ai). Behav Neurosci 98(2):171–188

    Article  CAS  PubMed  Google Scholar 

  • White EL (2007) Reflections on the specificity of synaptic connections. Brain Res Rev 55(2):422–429

    Article  PubMed  Google Scholar 

  • Whitlock JR et al (2006) Learning induces long-term potentiation in the hippocampus. Science 313(5790):1093–1097

    Article  CAS  PubMed  Google Scholar 

  • Woolsey CN, Walzl EM (1942) Topical projection of nerve fibers from local regions of the cochlea to the cerebral cortex of the cat. Bull Johns Hopkins Hosp 71:315–344

    Google Scholar 

  • Xiong Q et al (2015) Selective corticostriatal plasticity during acquisition of an auditory discrimination task. Nature 521(7552):348–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu T et al (2009) Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 462(7275):915–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan W, Suga N (1998) Corticofugal modulation of the midbrain frequency map in the bat auditory system. Nat Neurosci 1(1):54–58

    Article  CAS  PubMed  Google Scholar 

  • Yang G et al (2009) Stably maintained dendritic spines are associated with lifelong memories. Nature 462(7275):920–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon T et al (2008) Prefrontal cortex and hippocampus subserve different components of working memory in rats. Learn Mem 15(3):97–105

    Article  PubMed  PubMed Central  Google Scholar 

  • Zach N et al (2008) Emergence of novel representations in primary motor cortex and premotor neurons during associative learning. J Neurosci 28(38):9545–9556

    Article  CAS  PubMed  Google Scholar 

  • Zagha E et al (2013) Motor cortex feedback influences sensory processing by modulating network state. Neuron 79(3):567–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S et al (2014) Selective attention. Long-range and local circuits for top-down modulation of visual cortex processing. Science 345(6197):660–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Znamenskiy P, Zador AM (2013) Corticostriatal neurons in auditory cortex drive decisions during auditory discrimination. Nature 497(7450):482–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. A. Chambers, Dr. M. Stüttgen and Dr. M. Kaschube for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Rumpel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aschauer, D., Rumpel, S. (2016). The Sensory Neocortex and Associative Memory. In: Clark, R.E., Martin, S. (eds) Behavioral Neuroscience of Learning and Memory. Current Topics in Behavioral Neurosciences, vol 37. Springer, Cham. https://doi.org/10.1007/7854_2016_453

Download citation

Publish with us

Policies and ethics