Skip to main content

Locomotor Profiling from Rodents to the Clinic and Back Again

  • Chapter
Translational Neuropsychopharmacology

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 28))

Abstract

The quantification of unconditioned motoric activity is one of the oldest and most commonly utilized tools in behavioral studies. Although typically measured in reference to psychiatric disorders, e.g., amphetamine-induced hyperactivity used as a model of schizophrenia, bipolar disorder (BD), and Tourette’s syndrome, the motoric behavior of psychiatric patients had not been quantified similarly to rodents until recently. The rodent behavioral pattern monitor (BPM) was reverse-translated for use in humans, providing the quantification of not only motoric activity but also the locomotor exploratory profile of various psychiatric populations. This measurement includes the quantification of specific exploration and locomotor patterns. As an example, patients with BD, schizophrenia, and those with history of methamphetamine dependence exhibited unique locomotor profiles. It was subsequently determined that reducing dopamine transporter function selectively recreated the locomotor profile of BD mania patients and not any other patient population. Hence, multivariate locomotor profiling offers a first-step approach toward understanding the neural mechanism(s) underlying abnormal behavior in patients with psychiatric disorders. Advances in wearable technology will undoubtedly enable similar multivariate assessments of exploratory and locomotor behavior in “real-world” contexts. Furthermore, trans-diagnostic studies of locomotor activity profiles will inform about essential brain-based functions that cut across diagnostic nosologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amitai N, Young JW, Higa K, Sharp RF, Geyer MA, Powell SB (2014) Isolation rearing effects on probabilistic learning and cognitive flexibility in rats. Cogn Affect Behav Neurosci 14(1):388–406

    Article  PubMed  PubMed Central  Google Scholar 

  • Ankers D, Jones SH (2009) Objective assessment of circadian activity and sleep patterns in individuals at behavioural risk of hypomania. J Clin Psychol 65(10):1071–1086

    Article  PubMed  Google Scholar 

  • Arnone D, Cavanagh J, Gerber D, Lawrie SM, Ebmeier KP, McIntosh AM (2009) Magnetic resonance imaging studies in bipolar disorder and schizophrenia: meta-analysis. Br J Psychiatry 195(3):194–201

    Article  PubMed  Google Scholar 

  • Bechara A, Damasio AR, Damasio H, Anderson SW (1994) Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50(1–3):7–15

    Article  CAS  PubMed  Google Scholar 

  • Berlyne DE (1966) Curiosity and exploration. Science 153(3731):25–33

    Article  CAS  PubMed  Google Scholar 

  • Bernard JA, Mittal VA (2015) Updating the research domain criteria: the utility of a motor dimension. Psychol Med 1–5

    Google Scholar 

  • Cavanaugh JT, Ellis TD, Earhart GM, Ford MP, Foreman KB, Dibble LE (2015) Toward understanding ambulatory activity decline in parkinson disease. Phys Ther

    Google Scholar 

  • Claridge EA, McPhee PG, Timmons BW, Ginis KA, MacDonald MJ, Gorter JW (2014) Quantification of physical activity and sedentary time in adults with cerebral palsy. Med Sci Sports Exerc

    Google Scholar 

  • Cuthbert BN, Insel TR (2010) Toward new approaches to psychotic disorders: the NIMH Research Domain Criteria project. Schizophr Bull 36(6):1061–1062

    Article  PubMed  PubMed Central  Google Scholar 

  • Dawe GS, Ratty AK (2007) The chakragati mouse: a mouse model for rapid in vivo screening of antipsychotic drug candidates. Biotechnol J 2(11):1344–1352

    Article  CAS  PubMed  Google Scholar 

  • DeLany JP, Dube JJ, Standley RA, Distefano G, Goodpaster BH, Stefanovic-Racic M, Coen PM, Toledo FG (2014) Racial differences in peripheral insulin sensitivity and mitochondrial capacity in the absence of obesity. J Clin Endocrinol Metab 99(11):4307–4314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz KM, Krupka DJ, Chang MJ, Peacock J, Ma Y, Goldsmith J, Schwartz JE, Davidson KW (2015) Fitbit(R): an accurate and reliable device for wireless physical activity tracking. Int J Cardiol 185:138–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Drai D, Golani I (2001) SEE: a tool for the visualization and analysis of rodent exploratory behavior. Neurosci Biobehav Rev 25(5):409–426

    Article  CAS  PubMed  Google Scholar 

  • Eilam D, Golani I (1988) The ontogeny of exploratory behavior in the house rat (Rattus rattus): the mobility gradient. Dev Psychobiol 21(7):679–710

    Article  CAS  PubMed  Google Scholar 

  • Eilam D, Shefer G (1997) The developmental order of bipedal locomotion in the jerboa (Jaculus orientalis): pivoting, creeping, quadrupedalism, and bipedalism. Dev Psychobiol 31(2):137–142

    Article  CAS  PubMed  Google Scholar 

  • Faedda GL, Teicher MH (2005) Objective measures of activity and attention in the differential diagnosis of psychiatric disorders of childhood. Essent Psychopharmacol 6(5):239–249

    PubMed  Google Scholar 

  • File SE, Wardill AG (1975) The reliability of the hole-board apparatus. Psychopharmacologia 44(1):47–51

    Article  CAS  PubMed  Google Scholar 

  • Geoffroy PA, Scott J, Boudebesse C, Lajnef M, Henry C, Leboyer M, Bellivier F, Etain B (2015) Sleep in patients with remitted bipolar disorders: a meta-analysis of actigraphy studies. Acta Psychiatr Scand 131(2):89–99

    Article  CAS  PubMed  Google Scholar 

  • Geyer MA (1990) Approaches to the characterization of drug effects on locomotor activity in rodents. In: Cowan A, Adler MW (eds) Testing and evaluation of drugs of abuse New York. Wiley-Liss Inc, USA

    Google Scholar 

  • Geyer MA, Paulus M (1996) Multivariate analyses of locomotor and investigatory behavior in rodents. In: Ossenkopp K, Kavaliers M, Sanberg PR (eds) Mearusing movement and locomotion: from invertebrates to humans, Chapman & Hall, New York

    Google Scholar 

  • Geyer MA, Vollenweider FX (2008) Serotonin research: contributions to understanding psychoses. Trends Pharmacol Sci 29(9):445–453

    Article  CAS  PubMed  Google Scholar 

  • Geyer MA, Russo PV, Masten VL (1986) Multivariate assessment of locomotor behavior: pharmacological and behavioral analyses. Pharmacol Biochem Behav 25(1):277–288

    Article  CAS  PubMed  Google Scholar 

  • Geyer MA, Wilkinson LS, Humby T, Robbins TW (1993) Isolation rearing of rats produces a deficit in prepulse inhibition of acoustic startle similar to that in schizophrenia. Biol Psychiatry 34(6):361–372

    Article  CAS  PubMed  Google Scholar 

  • Goto Y, Yang CR, Otani S (2010) Functional and dysfunctional synaptic plasticity in prefrontal cortex: roles in psychiatric disorders. Biol Psychiatry 67(3):199–207

    Article  PubMed  Google Scholar 

  • Gould TD, Dao DT, Kovacsics CE (2009) The open field test. In: Gould TD (ed) Mood and anxiety related phenotypes in mice: characterization using behavioral tests. Humana Press, New York, pp 1–20

    Chapter  Google Scholar 

  • Grossman P (2004) The LifeShirt: a multi-function ambulatory system monitoring health, disease, and medical intervention in the real world. Stud Health Technol Inform 108:133–141

    PubMed  Google Scholar 

  • Halberstadt AL, Koedood L, Powell SB, Geyer MA (2011) Differential contributions of serotonin receptors to the behavioral effects of indoleamine hallucinogens in mice. J Psychopharmacol 25(11):1548–1561

    Article  CAS  PubMed  Google Scholar 

  • Halperin JM, Newcorn JH, Matier K, Sharma V, McKay KE, Schwartz S (1993) Discriminant validity of attention-deficit hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 32(5):1038–1043

    Article  CAS  PubMed  Google Scholar 

  • Henry BL, Minassian A, Young JW, Paulus MP, Geyer MA, Perry W (2010) Cross-species assessments of motor and exploratory behavior related to bipolar disorder. Neurosci Biobehav Rev 34(8):1296–1306

    Article  PubMed  PubMed Central  Google Scholar 

  • Henry BL, Minassian A, van Rhenen M, Young JW, Geyer MA, Perry W (2011) Effect of methamphetamine dependence on inhibitory deficits in a novel human open-field paradigm. Psychopharmacology 215(4):697–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry BL, Geyer MA, Buell M, Perry W, Young JW, Minassian A (2013a) Behavioral effects of chronic methamphetamine treatment in HIV-1 gp120 transgenic mice. Behav Brain Res 236(1):210–220

    Article  CAS  PubMed  Google Scholar 

  • Henry BL, Minassian A, Patt VM, Hua J, Young JW, Geyer MA, Perry W (2013b) Inhibitory deficits in euthymic bipolar disorder patients assessed in the human behavioral pattern monitor. J Affect Disord 150(3):948–954

    Article  PubMed  PubMed Central  Google Scholar 

  • Insel TR (2014) The NIMH research domain criteria (RDoC) project: precision medicine for psychiatry. Am J Psychiatry 171(4):395–397

    Article  PubMed  Google Scholar 

  • Kafkafi N, Lipkind D, Benjamini Y, Mayo CL, Elmer GI, Golani I (2003) SEE locomotor behavior test discriminates C57BL/6 J and DBA/2 J mouse inbred strains across laboratories and protocol conditions. Behav Neurosci 117(3):464–477

    Article  PubMed  Google Scholar 

  • Keenan DB, Wilhelm FH (2005) Classification of locomotor activity by acceleration measurement: validation in Parkinson disease. Biomed Sci Instrum 41:329–334

    PubMed  Google Scholar 

  • Kim DH, Lu N, Ma R, Kim YS, Kim RH, Wang S, Wu J, Won SM, Tao H, Islam A, Yu KJ, Kim TI, Chowdhury R, Ying M, Xu L, Li M, Chung HJ, Keum H, McCormick M, Liu P, Zhang YW, Omenetto FG, Huang Y, Coleman T, Rogers JA (2011) Epidermal electronics. Science 333(6044):838–843

    Article  CAS  PubMed  Google Scholar 

  • Klein E, Lavie P, Meiraz R, Sadeh A, Lenox RH (1992) Increased motor activity and recurrent manic episodes: predictors of rapid relapse in remitted bipolar disorder patients after lithium discontinuation. Biol Psychiatry 31(3):279–284

    Article  CAS  PubMed  Google Scholar 

  • Koenigs M, Grafman J (2009) The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav Brain Res 201(2):239–243

    Article  PubMed  PubMed Central  Google Scholar 

  • Krebs-Thomson K, Paulus MP, Geyer MA (1998) Effects of hallucinogens on locomotor and investigatory activity and patterns: influence of 5-HT2A and 5-HT2C receptors. Neuropsychopharmacology 18(5):339–351

    Article  CAS  PubMed  Google Scholar 

  • Lat J (1965) The spontaneous exploratory reactions as a tool for psychopharmacological studies. A contribution towards a theory of contradictory results in psychopharmacology. In: Mikhelson MY, Long VG, Votava Z (eds) Pharmacology of conditioning, learning and retention. Pergamon Press, Oxford, pp. 47–66

    Google Scholar 

  • Lehmann-Masten VD, Geyer MA (1991) Spatial and temporal patterning distinguishes the locomotor activating effects of dizocilpine and phencyclidine in rats. Neuropharmacology 30(6):629–636

    Article  CAS  PubMed  Google Scholar 

  • Lhermitte F (1983) ‘Utilization behaviour’ and its relation to lesions of the frontal lobes. Brain 106(Pt 2):237–255

    Article  PubMed  Google Scholar 

  • McClung CA (2013) How might circadian rhythms control mood? Let me count the ways. Biol Psychiatry 74(4):242–249

    Article  PubMed  PubMed Central  Google Scholar 

  • McNamara RJ, McKeough ZJ, McKenzie DK, Alison JA (2014) Physical comorbidities affect physical activity in chronic obstructive pulmonary disease: a prospective cohort study. Respirology 19(6):866–872

    Article  PubMed  Google Scholar 

  • Minassian A, Henry BL, Geyer MA, Paulus MP, Young JW, Perry W (2009) The quantitative assessment of motor activity in mania and schizophrenia. J Affect Disord 120(1–3):200–206

    Google Scholar 

  • Minassian A, Henry BL, Young JW, Masten V, Geyer MA, Perry W (2011) Repeated assessment of exploration and novelty seeking in the human behavioral pattern monitor in bipolar disorder patients and healthy individuals. PLoS ONE 6(8):e24185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minassian A, Young JW, Cope ZA, Henry BL, Geyer MA, Perry W (2016) Amphetamine increases activity but not exploration in humans and mice. Psychopharmacology 233(2): 225–233

    Google Scholar 

  • Morris SE, Cuthbert BN (2012) Research domain criteria: cognitive systems, neural circuits, and dimensions of behavior. Dialogues Clin Neurosci 14(1):29–37

    PubMed  PubMed Central  Google Scholar 

  • Naslund JA, Aschbrenner KA, Barre LK, Bartels SJ (2015) Feasibility of popular m-health technologies for activity tracking among individuals with serious mental illness. Telemed J E Health 21(3):213–216

    Article  PubMed  PubMed Central  Google Scholar 

  • Neill JC, Barnes S, Cook S, Grayson B, Idris NF, McLean SL, Snigdha S, Rajagopal L, Harte MK (2010) Animal models of cognitive dysfunction and negative symptoms of schizophrenia: focus on NMDA receptor antagonism. Pharmacol Ther

    Google Scholar 

  • Novak D, Albert F, Spaniel F (2014) Analysis of actigraph parameters for relapse prediction in bipolar disorder: a feasibility study. Conf Proc IEEE Eng Med Biol Soc 2014:4972–4975

    CAS  PubMed  Google Scholar 

  • Paulus MP, Geyer MA (1993) Three independent factors characterize spontaneous rat motor activity. Behav Brain Res 53(1–2):11–20

    Article  CAS  PubMed  Google Scholar 

  • Paulus M, Geyer MA (1996a) Assessing the organization of motor behavior: new applroaches based on the behavior of complex physical systems. In: Ossenkopp KP, Kavaliers M, Sanberg PR (eds) Measuring movement and locomotion: From invertebrate animals to humans. Chapman & Hall, New York

    Google Scholar 

  • Paulus M, Geyer MA (1996b) Assessing the organization of motor behavior: new approaches based on the behavior of complex physical systems. In: Ossenkopp K, Kavaliers M, Sanberg PR (eds) Measuring movement and locomotion: from invertebrates to humans. Chapman & Hall, New York

    Google Scholar 

  • Perry W, Minassian A, Paulus MP, Young JW, Kincaid MJ, Ferguson EJ, Henry BL, Zhuang X, Masten VL, Sharp RF, Geyer MA (2009) A reverse-translational study of dysfunctional exploration in psychiatric disorders: from mice to men. Arch Gen Psychiatry 66(10):1072–1080

    Article  PubMed  PubMed Central  Google Scholar 

  • Perry W, Minassian A, Henry B, Kincaid M, Young JW, Geyer MA (2010) Quantifying over-activity in bipolar and schizophrenia patients in a human open field paradigm. Psychiatry Res 178(1):84–91

    Article  PubMed  PubMed Central  Google Scholar 

  • Pierce K, Courchesne E (2001a) Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autism. Biol Psychiatry 49(8):655–664

    Article  CAS  PubMed  Google Scholar 

  • Pierce K, Courchesne E (2001b) Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autism. Biol Psychiatry 49:655–664

    Article  CAS  PubMed  Google Scholar 

  • Pini S, de Queiroz V, Dell’Osso L, Abelli M, Mastrocinque C, Saettoni M, Catena M, Cassano GB (2004) Cross-sectional similarities and differences between schizophrenia, schizoaffective disorder and mania or mixed mania with mood-incongruent psychotic features. Eur Psychiatry 19(1):8–14

    Article  PubMed  Google Scholar 

  • Porrino LJ, Rapoport JL, Behar D, Sceery W, Ismond DR, Bunney WE Jr (1983) A naturalistic assessment of the motor activity of hyperactive boys. I. Comparison with normal controls. Arch Gen Psychiatry 40(6):681–687

    Article  CAS  PubMed  Google Scholar 

  • Queiroz AI, de Araujo MM, da Silva Araujo T, de Souza GC, Cavalcante LM, de Jesus Souza Machado M, de Lucena DF, Quevedo J, Macedo D (2015) GBR 12909 administration as an animal model of bipolar mania: time course of behavioral, brain oxidative alterations and effect of mood stabilizing drugs. Metab Brain Dis

    Google Scholar 

  • Ratty AK, Fitzgerald LW, Titeler M, Glick SD, Mullins JJ, Gross KW (1990) Circling behavior exhibited by a transgenic insertional mutant. Brain Res Mol Brain Res 8(4):355–358

    Article  CAS  PubMed  Google Scholar 

  • Segal DS, Geyer MA (1985) Animal models of psychopathology. In: Groves PM, Judd LL (eds) Psychobiological foundations of clinical psychiatry. J.B. Lippincott Co, Philadelphia

    Google Scholar 

  • Silverstone PH, Pukhovsky A, Rotzinger S (1998) Lithium does not attenuate the effects of D-amphetamine in healthy volunteers. Psychiatry Res 79(3):219–226

    Article  CAS  PubMed  Google Scholar 

  • Sims J, Smith F, Duffy A, Hilton S (1999) The vagaries of self-reports of physical activity: a problem revisited and addressed in a study of exercise promotion in the over 65s in general practice. Fam Pract 16(2):152–157

    Article  CAS  PubMed  Google Scholar 

  • Steinhubl SR, Muse ED, Topol EJ (2015) The emerging field of mobile health. Sci Transl Med, 7(283):283rv283

    Google Scholar 

  • Tanaka S, Young JW, Halberstadt AL, Masten VL, Geyer MA (2012) Four factors underlying mouse behavior in an open field. Behav Brain Res 233(1):55–61

    Article  PubMed  Google Scholar 

  • Teicher MH (1995a) Actigraphy and motion analysis: new tools for psychiatry. Harvard Rev Psychiatry 3(1):18–35

    Article  CAS  Google Scholar 

  • Teicher MH (1995b) Actigraphy and motion analysis: new tools for psychiatry. Harv Rev Psychiatry 3(1):18–35

    Article  CAS  PubMed  Google Scholar 

  • Teicher MH, Lawrence JM, Barber NI, Finklestein SP, Lieberman H, Baldessarini RJ (1986) Altered locomotor activity in neuropsychiatric patients. Prog Neuropsychopharmacol Biol Psychiatry 10:755–761

    Article  CAS  PubMed  Google Scholar 

  • Teicher MH, Lowen SB, Polcari A, Foley M, McGreenery CE (2004) Novel strategy for the analysis of CPT data provides new insight into the effects of methylphenidate on attentional states in children with ADHD. J Child Adolesc Psychopharmacol 14(2):219–232

    Article  PubMed  Google Scholar 

  • Topol E (2015) The patient will see you now: the future of medicine is in your hands. Basic Books, New York (NY)

    Google Scholar 

  • Turakhia MP, Ullal AJ, Hoang DD, Than CT, Miller JD, Friday KJ, Perez MV, Freeman JV, Wang PJ, Heidenreich PA (2015) Feasibility of extended ambulatory electrocardiogram monitoring to identify silent atrial fibrillation in high-risk patients: the screening study for undiagnosed atrial fibrillation (STUDY-AF). Clin Cardiol 38(5):285–292

    Article  PubMed  PubMed Central  Google Scholar 

  • van Enkhuizen J, Geyer MA, Kooistra K, Young JW (2012) Chronic valproate attenuates some, but not all, facets of mania-like behaviour in mice. Int J Neuropsychopharmacol: 1–11

    Google Scholar 

  • van Enkhuizen J, Minassian A, Young JW (2013) Further evidence for ClockDelta19 mice as a model for bipolar disorder mania using cross-species tests of exploration and sensorimotor gating. Behav Brain Res 249:44–54

    Article  PubMed  PubMed Central  Google Scholar 

  • van Enkhuizen J, Geyer MA, Halberstadt AL, Zhuang X, Young JW (2014a) Dopamine depletion attenuates some behavioral abnormalities in a hyperdopaminergic mouse model of bipolar disorder. J Affect Disord 155:247–254

    Article  PubMed  Google Scholar 

  • van Enkhuizen J, Henry BL, Minassian A, Perry W, Milienne-Petiot M, Higa KK, Geyer MA, Young JW (2014b) Reduced dopamine transporter functioning induces high-reward risk-preference consistent with bipolar disorder. Neuropsychopharmacology 39(13):3112–3122

    Article  PubMed  PubMed Central  Google Scholar 

  • van Enkhuizen J, Milienne-Petiot M, Geyer MA, Young JW (2015) Modeling bipolar disorder in mice by increasing acetylcholine or dopamine: chronic lithium treats most, but not all features. Psychopharmacology (Berl)

    Google Scholar 

  • Walther S, Koschorke P, Horn H, Strik W (2009) Objectively measured motor activity in schizophrenia challenges the validity of expert ratings. Psychiatry Res 169(3):187–190

    Article  PubMed  Google Scholar 

  • Wilhelm FH, Roth WT, Sackner MA (2003) The lifeShirt. An advanced system for ambulatory measurement of respiratory and cardiac function. Behav Modif 27(5):671–691

    Article  PubMed  Google Scholar 

  • Wolff EA, Putnam FW, Post RM (1985) Motor activity and affective illness. Arch Gen Psychiatry 42:288–294

    Article  PubMed  Google Scholar 

  • Young JW, Geyer MA (2010) Action of modafinil-increased motivation via the dopamine transporter inhibition and D1 receptors? Biol Psychiatry 67(8):784–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JW, Geyer MA (2011) Using behavioral patterns across species in mood disorder research. In: Gould TD (ed) Mood and anxiety releated phenotypes in mice. Humana Press, New York, pp 21–41

    Chapter  Google Scholar 

  • Young JW, Minassian A, Paulus MP, Geyer MA, Perry W (2007) A reverse-translational approach to bipolar disorder: rodent and human studies in the behavioral pattern monitor. Neurosci Biobehav Rev 31(6):882–896

    Article  PubMed  PubMed Central  Google Scholar 

  • Young JW, Goey AK, Minassian A, Perry W, Paulus MP, Geyer MA (2010a) GBR 12909 administration as a mouse model of bipolar disorder mania: mimicking quantitative assessment of manic behavior. Psychopharmacology 208(3):443–454

    Article  CAS  PubMed  Google Scholar 

  • Young JW, Goey AK, Minassian A, Perry W, Paulus MP, Geyer MA (2010b) The mania-like exploratory profile in genetic dopamine transporter mouse models is diminished in a familiar environment and reinstated by subthreshold psychostimulant administration. Pharmacol Biochem Behav 96(1):7–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JW, Henry BL, Geyer MA (2011a) Predictive animal models of mania, hits, misses, and future directions. Br J Pharmacol

    Google Scholar 

  • Young JW, Kooistra K, Geyer MA (2011b) Dopamine receptor mediation of the exploratory/hyperactivity effects of modafinil. Neuropsychopharmacology 36(7):1385–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JW, van Enkhuizen J, Winstanley CA, Geyer MA (2011c) Increased risk-taking behavior in dopamine transporter knockdown mice: further support for a mouse model of mania. J Psychopharmacol 25(7):934–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JW, Ratty A, Dawe GS, Geyer MA (2014) Altered exploration and sensorimotor gating of the chakragati mouse model of schizophrenia. Behav Neurosci 128(4):460–467

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Drs. Perry, Henry, and van Enkhuizen for their support. This work was supported by NIH grants R01-MH071916, R01-MH104344, and the Veteran’s Administration VISN 22 Mental Illness Research, Education, and Clinical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared W. Young .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Young, J.W., Minassian, A., Geyer, M.A. (2015). Locomotor Profiling from Rodents to the Clinic and Back Again. In: Robbins, T.W., Sahakian, B.J. (eds) Translational Neuropsychopharmacology. Current Topics in Behavioral Neurosciences, vol 28. Springer, Cham. https://doi.org/10.1007/7854_2015_5015

Download citation

Publish with us

Policies and ethics