Skip to main content

Evolutionary Histories of Gene Families in Angiosperm Trees

  • Chapter
  • First Online:
Comparative and Evolutionary Genomics of Angiosperm Trees

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 21))

Abstract

Genes can be grouped into families based on either the presence of conserved domains or by parameter-based clustering of pairwise alignments of the proteins they encode. The vast majority of gene families found in angiosperm trees have existed before the origin of seed plants, while the lineage-specific adaptations of trees have depended on highly dynamic but selective patterns of gene family gain and loss. The mechanisms governing the diversification of gene families, among them various types of gene duplication, horizontal gene transfer, protein domain re-arrangement and de novo evolution, each play distinct roles in expanding the functional repertoire of the core proteome of land plants. In this chapter we reconstructed a parsimonious evolutionary history of gene family gain and loss in angiosperm tree lineages relative to close herbaceous relatives, gymnosperms and nonvascular plants, revealing considerable variation in the frequency and functional enrichment of gain and loss events across lineages. Throughout the chapter, we highlight general and tree-specific examples of gene family adaptations that have contributed to the remarkable success of these organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Dous EK, George B, Al-Mahmoud ME, Al-Jaber MY, Wang H, et al. De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat Biotechnol. 2011;29:521–7.

    Article  CAS  PubMed  Google Scholar 

  • Allario T, Brumos J, Colmenero-Flores JM, Tadeo F, Froelicher Y, et al. Large changes in anatomy and physiology between diploid Rangpur lime (Citrus limonia) and its autotetraploid are not associated with large changes in leaf gene expression. J Exp Bot. 2011;62:2507–19.

    Article  CAS  PubMed  Google Scholar 

  • Al-Mssallem IS, Hu S, Zhang X, Lin Q, Liu W, et al. Genome sequence of the date palm Phoenix dactylifera L. Nat Commun. 2013;4:2274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arendsee ZW, Li L, Wurtele ES. Coming of age: orphan genes in plants. Trends Plant Sci. 2014;19:698–708.

    Article  CAS  PubMed  Google Scholar 

  • Argout X, Salse J, Aury J-M, Guiltinan MJ, Droc G, et al. The genome of Theobroma cacao. Nat Genet. 2011;43:101–8.

    Article  CAS  PubMed  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. Gene Ontology: tool for the unification of biology. Nat Genet. 2000;25:25–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M, et al. The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science. 2011;332:960–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergthorsson U, Richardson AO, Young GJ, Goertzen LR, Palmer JD. Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. Proc Natl Acad Sci U S A. 2004;101:17747–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biezen EAVD, Jones JDG. The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol. 1998;8:R226–8.

    Article  PubMed  Google Scholar 

  • Birchler JA, Veitia RA. The Gene Balance Hypothesis: from classical genetics to modern genomics. Plant Cell. 2007;19:395–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birchler JA, Riddle NC, Auger DL, Veitia RA. Dosage balance in gene regulation: biological implications. Trends Genet. 2005;21:219–26.

    Article  CAS  PubMed  Google Scholar 

  • Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, et al. Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics. 2013;29:1492–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bock R. The give-and-take of DNA: horizontal gene transfer in plants. Trends Plant Sci. 2009;15:11–22.

    Article  PubMed  CAS  Google Scholar 

  • Bornberg-Bauer E, Albà MM. Dynamics and adaptive benefits of modular protein evolution. Curr Opin Struct Biol. 2013;23:459–66.

    Article  CAS  PubMed  Google Scholar 

  • Cannon, S. B., A. Mitra, A. Baumgarten, N. D. Young and G. 2004 The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4: 10.

    Google Scholar 

  • Casneuf T, De Bodt S, Raes J, Maere S, van de Peer Y. Nonrandom divergence of gene expression following gene and genome duplications in the flowering plant Arabidopsis thaliana. Genome Biol. 2006;7:R13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaw S-M, Chang C-C, Chen H-L, Li W-H. Dating the monocot–dicot divergence and the origin of core eudicots using whole chloroplast genomes. J Mol Evol. 2004;58:424–41.

    Article  CAS  PubMed  Google Scholar 

  • D’Hont A, Denoeud F, Aury J-M, Baurens F-C, Carreel F, et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature. 2012;488:213–7.

    Article  PubMed  CAS  Google Scholar 

  • Dayhoff MO. The origin and evolution of protein superfamilies. Fed Proc. 1976;35:2132–8.

    CAS  PubMed  Google Scholar 

  • De Smet R, Adams KL, Vandepoele K, Van Montagu MCE, Maere S, et al. Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants. Proc Natl Acad Sci U S A. 2013;110:2898–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demuth JP, Hahn MW. The life and death of gene families. Bioessays. 2009;31:29–39.

    Article  PubMed  Google Scholar 

  • Donoghue MT, Keshavaiah C, Swamidatta SH, Spillane C. Evolutionary origins of Brassicaceae specific genes in Arabidopsis thaliana. BMC Evol Biol. 2011;11:47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Droc G, Larivière D, Guignon V, Yahiaoui N, This D, et al. The banana genome hub. Database. 2013;2013:bac035.

    Article  CAS  Google Scholar 

  • Emiliani G, Fondi M, Fani R, Gribaldo S. A horizontal gene transfer at the origin of phenylpropanoid metabolism: a key adaptation of plants to land. Biol Direct. 2009;4:7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 2002;30:1575–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fawcett JA, Maere S, Peer YVD. Plants with double genomes might have had a better chance to survive the Cretaceous–Tertiary extinction event. Proc Natl Acad Sci U S A. 2010;106:5737–42.

    Article  Google Scholar 

  • Felsenstein J. PHYLIP―phylogeny inference package (version 3.2). Cladistics. 1989;5:163–6.

    Article  Google Scholar 

  • Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016;44:D279–85.

    Article  CAS  PubMed  Google Scholar 

  • Flagel LE, Wendel JF. Gene duplication and evolutionary novelty in plants. New Phytol. 2009;183:557–64.

    Article  PubMed  Google Scholar 

  • Freeling M. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol. 2009;60:433–53.

    Article  CAS  PubMed  Google Scholar 

  • Fuentes I, Stegemann S, Golczyk H, Karcher D, Bock R. Horizontal genome transfer as an asexual path to the formation of new species. Nature. 2014;511:232–5.

    Article  CAS  PubMed  Google Scholar 

  • Ganko EW, Meyers BC, Vision TJ. Divergence in expression between duplicated genes in Arabidopsis. Mol Biol Evol. 2007;24:2298–309.

    Article  CAS  PubMed  Google Scholar 

  • Gough J, Karplus K, Hughey R, Chothia C. Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol. 2001;313:903–19.

    Article  CAS  PubMed  Google Scholar 

  • Groover AT. What genes make a tree a tree? Trends Plant Sci. 2005;10:210–4.

    Article  CAS  PubMed  Google Scholar 

  • Guo Y-L. Gene family evolution in green plants with emphasis on the origination and evolution of Arabidopsis thaliana genes. Plant J. 2013;73:941–51.

    Article  CAS  PubMed  Google Scholar 

  • Haft DH, Selengut JD, White O. The TIGRFAMs database of protein families. Nucleic Acids Res. 2003;31:371–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X, Zhang J. Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. Genetics. 2005;169:1157–64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hefer C, Mizrachi E, Joubert F, Myburg A. The Eucalyptus genome integrative explorer (EucGenIE): a resource for Eucalyptus genomics and transcriptomics. BMC Proc. 2011;5:O49.

    Article  PubMed Central  Google Scholar 

  • Hefer CA, Mizrachi E, Myburg AA, Douglas CJ, Mansfield SD. Comparative interrogation of the developing xylem transcriptomes of two wood-forming species: Populus trichocarpa and Eucalyptus grandis. New Phytol. 2015;206:1391–405.

    Article  CAS  PubMed  Google Scholar 

  • Huntley RP, Sawford T, Martin MJ, O’Donovan C. Understanding how and why the Gene Ontology and its annotations evolve: the GO within UniProt. Giga Sci. 2014;3:4.

    Article  CAS  Google Scholar 

  • Janssen T, Bremer K. The age of major monocot groups inferred from 800+ rbcL sequences. Bot J Linn Soc. 2004;146:385–98.

    Article  Google Scholar 

  • Jiao Y, Paterson AH. Polyploidy-associated genome modifications during land plant evolution. Philos Trans R Soc Lon B. 2014;369:20130355.

    Article  Google Scholar 

  • Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, et al. Ancestral polyploidy in seed plants and angiosperms. Nature. 2011;473:97–100.

    Article  CAS  PubMed  Google Scholar 

  • Jiao Y, Leebens-Mack J, Ayyampalayam S, Bowers JE, McKain MR, et al. A genome triplication associated with early diversification of the core eudicots. Genome Biol. 2012;13:R3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones JDG, Dangl JL. The plant immune system. Nat Rev. 2006;444:323–9.

    CAS  Google Scholar 

  • Katju V. In with the old, in with the new: the promiscuity of the duplication process engenders diverse pathways for novel gene creation. Int J Evol Biol. 2012;2012:341932.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kempe A, Lautenschläger T, Lange A, Neinhuis C. How to become a tree without wood – biomechanical analysis of the stem of Carica papaya L. Plant Biol. 2014;16:264–71.

    Article  CAS  PubMed  Google Scholar 

  • Kersting AR, Bornberg-Bauer E, Moore AD, Grath S. Dynamics and adaptive benefits of protein domain emergence and arrangements during plant genome evolution. Genome Biol Evol. 2012;4:316–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kersting AR, Mizrachi E, Bornberg-Bauer E, Myburg AA. Protein domain evolution is associated with reproductive diversification and adaptive radiation in the genus Eucalyptus. New Phytol. 2015;206:1328–36.

    Article  CAS  PubMed  Google Scholar 

  • Kyndt T, Quispe D, Zhai H, Jarret R, Ghislain M, et al. The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop. Proc Natl Acad Sci U S A. 2015;112:5844–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Wurtele ES. The QQS orphan gene of Arabidopsis modulates carbon and nitrogen allocation in soybean. Plant Biotechnol J. 2015;13:177–87.

    Article  CAS  PubMed  Google Scholar 

  • Li L, Foster CM, Gan Q, Nettleton D, James MG, et al. Identification of the novel protein QQS as a component of the starch metabolic network in Arabidopsis leaves. Plant J. 2009a;58:485–98.

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Zhang H, Ge S, Gu X, Gao G, et al. Expression pattern divergence of duplicated genes in rice. BMC Bioinf. 2009b;10:S8.

    Article  CAS  Google Scholar 

  • Li F-W, Villarreal JC, Kelly S, Rothfels CJ, Melkonian M, et al. Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns. Proc Natl Acad Sci U S A. 2014a;111:6672–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Fan G, Wang K, Sun F, Yuan Y, et al. Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet. 2014b;46:567–72.

    Article  CAS  PubMed  Google Scholar 

  • Li L, Zheng W, Zhu Y, Ye H, Tang B, et al. QQS orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions. Proc Natl Acad Sci U S A. 2015a;112:14734–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Baniaga AE, Sessa EB, Scascitelli M, Graham SW, et al. Early genome duplications in conifers and other seed plants. Sci Adv. 2015b;1:e1501084.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Defoort J, Tasdighian S, Maere S, Peer YVD, et al. Gene duplicability of core genes is highly consistent across all angiosperms. Plant Cell. 2016;28:326–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu P, Jernstedt JA. Rhizophore and root development in Selaginella martensii: meristem transitions and identity. Int J Plant Sci. 1996;157:180–94.

    Article  Google Scholar 

  • Maere S, Bodt SD, Raes J, Casneuf T, Montagu MV, et al. Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci U S A. 2005;102:5454–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magallón S, Hilu KW, Quandt D. Land plant evolutionary timeline: Gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. Am J Bot. 2013;100:556–73.

    Article  PubMed  CAS  Google Scholar 

  • Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature. 2008;452:991–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreira D, Philippe H. Smr: a bacterial and eukaryotic homologue of the C-terminal region of the MutS2 family. Trends Biochem Sci. 1999;24:298–300.

    Article  CAS  PubMed  Google Scholar 

  • Motamayor JC, Mockaitis K, Schmutz J, Haiminen N, Livingstone D, et al. The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color. Genome Biol. 2013;14:r53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mower JP, Stefanović S, Hao W, Gummow JS, Jain K, et al. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes. BMC Biol. 2010;8:150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, et al. The genome of Eucalyptus grandis – a global tree for fiber and energy. Nature. 2014;510:356–62.

    CAS  PubMed  Google Scholar 

  • Neale D, Wegrzyn J, Stevens K, Zimin A, Puiu D, et al. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol. 2014;15:R59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neme R, Tautz D. Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution. BMC Genomics. 2013;14:117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolaidis N, Doran N, Cosgrove DJ. Plant expansins in bacteria and fungi: evolution by horizontal gene transfer and independent domain fusion. Mol Biol Evol. 2013;31:376–86.

    Article  PubMed  CAS  Google Scholar 

  • Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-C, et al. The Norway spruce genome sequence and conifer genome evolution. Nature. 2013;497:579–84.

    Article  CAS  PubMed  Google Scholar 

  • Philipson WR, Ward JM. The ontogeny of the vascular cambium in the stem of seed plants. Biol Rev. 1965;40:534–79.

    Article  Google Scholar 

  • Proost S, Bel MV, Vaneechoutte D, Peer YVD, Inzé D, et al. PLAZA 3.0: an access point for plant comparative genomics. Nucleic Acids Res. 2014;43:D974–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Punta M, Coggill PC, Eberhardt RY, Tate JMJ, Boursnell C, et al. The Pfam protein families database. Nucleic Acids Res. 2012;40:D290–301.

    Article  CAS  PubMed  Google Scholar 

  • Qian W, Zhang J. Genomic evidence for adaptation by gene duplication. Genome Res. 2014;24:1356–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, et al. InterProScan: protein domains identifier. Nucleic Acids Res. 2005;33:W116–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratke C, Pawar PM-A, Balasubramanian VK, Naumann M, Duncranz ML, et al. Populus GT43 family members group into distinct sets required for primary and secondary wall xylan biosynthesis and include useful promoters for wood modification. Plant Biotechnol J. 2015;13:26–37.

    Article  CAS  PubMed  Google Scholar 

  • Rensing SA. Gene duplication as a driver of plant morphogenetic evolution. Curr Opin Plant Biol. 2014;17:43–8.

    Article  CAS  PubMed  Google Scholar 

  • Rensing SA, Ick J, Fawcett JA, Lang D, Zimmer A, et al. An ancient genome duplication contributed to the abundance of metabolic genes in the moss Physcomitrella patens. BMC Evol Biol. 2007;7:130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rice DW, Alverson AJ, Richardson AO, Young GJ, Sanchez-Puerta MV, et al. Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science. 2013;342:1468–73.

    Article  CAS  PubMed  Google Scholar 

  • Rodgers-Melnick E, Mane SP, Dharmawardhana P, Slavov GT, Crasta OR, et al. Contrasting patterns of evolution following whole genome versus tandem duplication events in Populus. Genome Res. 2012;22:95–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudall P. Lateral meristems and secondary thickening growth in monocotyledons. Bot Rev. 1991;57:150–63.

    Article  Google Scholar 

  • Rutter MT, Cross KV, Woert PAV. Birth, death and subfunctionalization in the Arabidopsis genome. Trends Plant Sci. 2012;17:204–12.

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, et al. Genome sequence of the palaeopolyploid soybean. Nature. 2010;463:178–83.

    Article  CAS  PubMed  Google Scholar 

  • Spicer R, Groover A. Evolution of development of vascular cambia and secondary growth. New Phytol. 2010;186:577–92.

    Article  CAS  PubMed  Google Scholar 

  • Takata N, Taniguchi T. Expression divergence of cellulose synthase (CesA) genes after a recent whole genome duplication event in Populus. Planta. 2015;241:29–42.

    Article  CAS  PubMed  Google Scholar 

  • Tautz D, Domatez-LoÅ¡o T. The evolutionary origin of orphan genes. Nat Rev Genet. 2011;12:692–702.

    Article  CAS  PubMed  Google Scholar 

  • Taylor ZN, Rice DW, Palmer JD. The complete moss mitochondrial genome in the angiosperm Amborella is a chimera derived from two moss whole-genome transfers. PLoS One. 2014;10:e0137532.

    Article  CAS  Google Scholar 

  • Timell TE. Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol. 1967;1:45–70.

    Article  CAS  Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science. 2006;313:1596–604.

    Article  CAS  PubMed  Google Scholar 

  • Van de Peer Y, Fawcett JA, Proost S, Sterck L, Vandepoele K. The flowering world: a tale of duplications. Trends Plant Sci. 2009;14:680–8.

    Article  CAS  PubMed  Google Scholar 

  • Vanneste K, Maere S, Peer YVD. Tangled up in two: a burst of genome duplications at the end of the Cretaceous and the consequences for plant evolution. Philos Trans R Soc Lon B. 2014;369:20130353.

    Article  Google Scholar 

  • Vanneste K, Sterck L, Myburg AA, Peer YVD, Mizrachi E. Horsetails are ancient polyploids: evidence from Equisetum giganteum. Plant Cell. 2015;27:1567–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vekemans D, Proost S, Vanneste K, Coenen H, Viaene T, et al. Gamma paleohexaploidy in the stem lineage of core eudicots: significance for MADS-box gene and species diversification. Mol Biol Evol. 2012;29:3793–806.

    Article  CAS  PubMed  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, et al. The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet. 2010;42:833–9.

    Article  CAS  PubMed  Google Scholar 

  • Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, et al. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet. 2013;45:487–94.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang X, Paterson AH. Genome and gene duplications and gene expression divergence: a view from plants. Ann N Y Acad Sci. 2012;1256:1–14.

    Article  PubMed  Google Scholar 

  • Wang Q, Sun H, Huang J. The evolution of land plants: a perspective from horizontal gene transfer. Acta Soc Bot Pol. 2014;83:363–8.

    Article  CAS  Google Scholar 

  • Wang B, Climent J, Wang X-R. Horizontal gene transfer from a flowering plant to the insular pine Pinus canariensis (Chr. Sm. Ex DC in Buch). Heredity. 2015;114:413–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren RL, Keeling CI, Yuen MMS, Raymond A, Taylor GA, et al. Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. Plant J. 2015;83:189–212.

    Article  CAS  PubMed  Google Scholar 

  • Wegrzyn JL, Liechty JD, Stevens KA, Wu L-S, Loopstra CA, et al. Unique features of the Loblolly Pine (Pinus taeda L.) megagenome revealed through sequence annotation. Genetics. 2014;196:891–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wikström N, Savolainen V, Chase MW. Evolution of the angiosperms: calibrating the family tree. Proc R Soc B. 2001;268:2211–20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Willyard A, Syring J, Gernandt DS, Liston A, Cronn R. Fossil calibration of molecular divergence infers a moderate mutation rate and recent radiations for Pinus. Mol Biol Evol. 2007;24:90–101.

    Article  PubMed  CAS  Google Scholar 

  • Wu GA, Prochnik S, Jenkins J, Salse J, Hellsten U, et al. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat Biotechnol. 2014;32:656–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xi Z, Wang Y, Bradley RK, Sugumaran M, Marx CJ, et al. Massive mitochondrial gene transfer in a parasitic flowering plant clade. PLoS Genet. 2013;9:e1003265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Chen L-L, Ruan X, Chen D, Zhu A, et al. The draft genome of sweet orange (Citrus sinensis). Nat Genet. 2013;45:59–66.

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Ohtani M, Yamaguchi M, Toyooka K, Wakazaki M, et al. Contribution of NAC transcription factors to plant adaptation to land. Science. 2014;343:1505–8.

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki K, Kigawa T, Seki M, Shinozaki K, Yokoyama S. DNA-binding domains of plant-specific transcription factors: structure, function, and evolution. Trends Plant Sci. 2013;18:267–76.

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Zhou Y, Huang J, Hu Y, Zhang E, et al. Ancient horizontal transfer of transaldolase-like protein gene and its role in plant vascular development. New Phytol. 2015;206:807–16.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Maruyama S, Nozaki H, Shirasu K. Horizontal gene transfer by the parasitic plant Striga hermonthica. Science. 2010;328:1128.

    Article  CAS  PubMed  Google Scholar 

  • Yue J-X, Meyers BC, Chen J-Q, Tian D, Yang S. Tracing the origin and evolutionary history of plant nucleotide-binding site–leucine-rich repeat (NBS-LRR) genes. New Phytol. 2011;193:1049–63.

    Article  PubMed  CAS  Google Scholar 

  • Zhang J. Evolution by gene duplication: an update. Trends Ecol Evol. 2003;18:292–8.

    Article  Google Scholar 

  • Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M, et al. Sequencing and assembly of the 22-Gb loblolly pine genome. Genetics. 2014;196:875–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Hussey, S.G., Wegrzyn, J.L., Vasquez-Gross, H.A. (2016). Evolutionary Histories of Gene Families in Angiosperm Trees. In: Groover, A., Cronk, Q. (eds) Comparative and Evolutionary Genomics of Angiosperm Trees. Plant Genetics and Genomics: Crops and Models, vol 21. Springer, Cham. https://doi.org/10.1007/7397_2016_26

Download citation

Publish with us

Policies and ethics