Skip to main content

The Genomics of Wood Formation in Angiosperm Trees

  • Chapter
  • First Online:
Comparative and Evolutionary Genomics of Angiosperm Trees

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 21))

Abstract

Advances in genomic science have enabled comparative approaches that can evaluate the evolution of genes and mechanisms underlying phenotypic traits relevant to angiosperm forest trees. Wood formation is an excellent subject for comparative genomics, as it is an ancestral trait for angiosperms and has undergone significant modification in different angiosperm lineages. This chapter discusses some of the traits associated with wood formation, what is currently known about the genes and mechanisms regulating these traits, and how comparative evolutionary genomic studies can be undertaken to provide more comprehensive views of the evolution and development of wood formation in angiosperms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham P, Adams R, Giannone RJ, Kalluri U, Rnajan P, Erickson B, Shah MTGA. Defining the boundaries and characterizing the landscape of functional genome expression in vascular tissues of populus using shotgun proteomics. J Proteome Res. 2012;11:449–60.

    Article  CAS  PubMed  Google Scholar 

  • Afrasiabi C, Samad B, Dineen D, Meacham C, Sjölander K. The PhyloFacts FAT-CAT web server: ortholog identification and function prediction using fast approximate tree classification. Nucleic Acids Res. 2013;41(W1):W242–8. doi:10.1093/nar/gkt399.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnold DH, Mauseth JD. Effects of environmental factors on development of wood. Am J Bot. 1999;86(3):367–71.

    Article  CAS  PubMed  Google Scholar 

  • Baas P. Systematic, phylogenetic and ecological wood anatomy – history and perspectives. In: Baas P, editor. New perspectives in wood anatomy. Springer Science Business Media, Springer Netherlands B.V; 1982.

    Google Scholar 

  • Bailey IW. The development of vessels in angiosperms and its significance in morphological research. Am J Bot. 1944;31(7):421–8.

    Article  Google Scholar 

  • Becker A, Alix K, Damerval C. The evolution of flower development: current understanding and future challenges. Ann Bot. 2011;107(9):1427–31. doi:10.1093/aob/mcr122.

    Article  PubMed  PubMed Central  Google Scholar 

  • Birchler JA, Yao H, Chudalayandi S. Unraveling the genetic basis of hybrid vigor. Proc Natl Acad Sci. 2006;103(35):12957–8. doi:10.1073/pnas.0605627103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bliss MC. The vessel in seed plants. Bot Gaz. 1921;71(4):314–26.

    Article  Google Scholar 

  • Brady SM, Zhang L, Megraw M, Martinez NJ, Jiang E, Yi CS, Liu W, Zeng A, Taylor‐Teeples M, Kim D, Ahnert S, Ohler U, Ware D, Walhout AJM, Benfey PN. A stele‐enriched gene regulatory network in the Arabidopsis root. Mol Syst Biol. 2011;7:459. doi:10.1038/msb.2010.114.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bylesjo M, Nilsson R, Srivastava V, Gronlund A, Johansson A, Jansson S, Karlsson J, Moritz T, Wingsle G, Trygg J. Integrated analysis of transcript, protein and metabolite data to study lignin biosynthesis in hybrid aspen. J Proteome Res. 2009;8:199–210.

    Article  PubMed  Google Scholar 

  • Carlquist S. Comparative wood anatomy. Systematic, ecological, and evolutionary aspects of dicotyledon wood. Berlin: Spinger-Verlag; 2001.

    Google Scholar 

  • Carlquist S. Successive cambia revisited: ontogeny, histology, diversity, and functional significance. J Torrey Bot Soc. 2007;134(2):301–32.

    Article  Google Scholar 

  • Carlquist S. Xylem heterochrony: an unappreciated key to angiosperm origin and diversifications. Bot J Linn Soc. 2009;161(1):26–65.

    Article  Google Scholar 

  • Carlquist S, Schneider EL. The tracheid–vessel element transition in angiosperms involves multiple independent features: cladistic consequences. Am J Bot. 2002;89(2):185–95. doi:10.3732/ajb.89.2.185.

    Article  PubMed  Google Scholar 

  • Carlsbecker A, Lee J, Roberts C, Dettmer J, Lehesranta S, Zhou J, Lindgren O, Moreno-Risueno M, Vaten A, Thitamadee S, Campilho A, Sebastian J, Bowman J, Helariutta Y, Benfey P. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature. 2010;465:316–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champagne CEM, Goliber TE, Wojciechowski MF, Mei RW, Townsley BT, Wang K, Paz MM, Geeta R, Sinha NR. Compound leaf development and evolution in the legumes. Plant Cell. 2007;19(11):3369–78. doi:10.1105/tpc.107.052886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Consortium TEP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74. doi:http://www.nature.com/nature/journal/v489/n7414/abs/nature11247.html#supplementary-information.

  • Dafoe N, Constabel C. Proteomic analysis of hybrid poplar xylem sap. Phytochemistry. 2009;70:856–63.

    Article  CAS  PubMed  Google Scholar 

  • Derbyshire P, Menard D, Green P, Saalbach G, Buschmann H, Lloyd C, Pesquet E. Proteomic analysis of microtubule interacting proteins over the course of xylem tracheary element formation in Arabidopsis. Plant Cell. 2015;27:2709–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Q, Zeng J, He X. Deep sequencing on a genome-wide scale reveals diverse stage-specific microRNAs in cambium during dormancy-release induced by chilling in poplar. BMC Plant Biol. 2014;14:267.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dkhar J, Pareek A. What determines a leaf's shape? Evodevo. 2014;5(1):1–19. doi:10.1186/2041-9139-5-47.

    Article  Google Scholar 

  • Du J, Xie HL, Zhang DQ, He XQ, Wang MJ, Li YZ, Cui KM, Lu MZ. Regeneration of the secondary vascular system in poplar as a novel system to investigate gene expression by a proteomic approach. Proteomics. 2006;6(3):881–95. doi:10.1002/pmic.200401348.

    Article  PubMed  Google Scholar 

  • Du J, Mansfield SD, Groover AT. The Populus homeobox gene ARBORKNOX2 regulates cell differentiation during secondary growth. Plant J. 2009;60(6):1000–14.

    Article  CAS  PubMed  Google Scholar 

  • Du J, Robischon M, Miura E, Martinez C, Groover AT. The Populus Class III HD ZIP transcription factor POPCORONA affects patterning and cell differentiation during secondary growth of woody stems. PLoS One. 2011;6(2), e17458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol. 2003;13(20):1768–74.

    Article  CAS  PubMed  Google Scholar 

  • Esau K. Anatomy of seed plants. 2nd ed. New York: Wiley; 1977.

    Google Scholar 

  • Escamez S, Tuominen H. Programmes of cell death and autolysis in tracheary elements: when a suicidal cell arranges its own corpse removal. J Exp Bot. 2014;65(5):1313–21. doi:10.1093/jxb/eru057.

    Article  CAS  PubMed  Google Scholar 

  • Etchells JP, Turner SR. The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development. 2010;137(5):767–74. doi:10.1242/dev.044941.

    Article  CAS  PubMed  Google Scholar 

  • Etienne Paux VC, Marques C, Mendes de Sousa A, Borralho N, Sivadon P, Grima-Pettenati J. Transcript profiling of Eucalyptus xylem genes during tension wood formation. New Phytol. 2005;167(1):89–100.

    Article  PubMed  Google Scholar 

  • Filkov V. Identifying gene regulatory networks from gene expression data. In: Aluru S, editor. Handbook of computational molecular biology. Boca Raton: Chapman & Hall/CRC Press; 2005.

    Google Scholar 

  • Fiorani C, de Andrade A, Meireles K, Gallo D, Caldas D, Moon D, Carneiro R, Franceschini L, Oda S, Labate C. Proteomic analysis of the cambial region in juvenile eucalyptus grandis at three ages. Proteomics. 2007;7:2258–74.

    Article  Google Scholar 

  • Fischer S, Brunk BP, Chen F, Gao X, Harb OS, Iodice JB, Shanmugam D, Roos DS, Stoeckert CJ (2011) Using OrthoMCL to assign proteins to OrthoMCL-DB groups or to cluster proteomes into new ortholog groups. Curr Protoc Bioinformatics/editoral board, Andreas D Baxevanis [et al] Chapter: Unit-6.1219. doi:10.1002/0471250953.bi0612s35.

  • Floyd SK, Zalewski CS, Bowman JL. Evolution of class III homeodomain-leucine zipper genes in streptophytes. Genetics. 2006;173(1):373–88. doi:10.1534/genetics.105.054239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerttula S, Zinkgraf M, Muday GK, Lewis DR, Ibatullin FM, Brumer H, Hart F, Mansfield SD, Filkov V, Groover A. Transcriptional and hormonal regulation of gravitropism of woody stems in populus. Plant Cell. 2015;27(10):2800–13. doi:10.1105/tpc.15.00531.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Groover A, Cronk Q. From Nehemiah Grew to Genomics: the emerging field of evo-devo research for woody plants. Int J Plant Sci. 2013;174(7):959–63. doi:10.1086/671569.

    Article  Google Scholar 

  • Groover A, Dosmann M. The importance of living botanical collections for plant biology and the “next generation” of evo-devo research. Front Plant Sci. 2012;3. doi:10.3389/fpls.2012.00137.

  • Groover A, Jones A. Tracheary element differentiation uses a novel mechanism coordinating programmed cell death and secondary cell wall synthesis. Plant Physiol. 1999;119:375–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groover A, Mansfield S, DiFazio S, Dupper G, Fontana J, Millar R, Wang Y. The Populus homeobox gene ARBORKNOX1 reveals overlapping mechanisms regulating the shoot apical meristem and the vascular cambium. Plant Mol Biol. 2006;61(6):917–32.

    Article  CAS  PubMed  Google Scholar 

  • Henry IM, Zinkgraf MS, Groover AT, Comai L. A system for dosage-based functional genomics in poplar. Plant Cell. 2015;27(9):2370–83. doi:10.1105/tpc.15.00349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirakawa Y, Bowman JL. A role of TDIF peptide signaling in vascular cell differentiation is conserved among euphyllophytes. Front Plant Sci. 2015;6:1048. doi:10.3389/fpls.2015.01048.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, Ogawa M, Sawa S, Ohashi-Ito K, Matsubayashi Y, Fukuda H. Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc Natl Acad Sci. 2008;105(39):15208–13. doi:10.1073/pnas.0808444105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirakawa Y, Kondo Y, Fukuda H. TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell. 2010;22(8):2618–29. doi:10.1105/tpc.110.076083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T, Mende DR, Sunagawa S, Kuhn M, Jensen LJ, von Mering C, Bork P. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44(D1):D286–93. doi:10.1093/nar/gkv1248.

    Article  CAS  PubMed  Google Scholar 

  • Ichihashi Y, Aguilar-Martínez JA, Farhi M, Chitwood DH, Kumar R, Millon LV, Peng J, Maloof JN, Sinha NR. Evolutionary developmental transcriptomics reveals a gene network module regulating interspecific diversity in plant leaf shape. Proc Natl Acad Sci. 2014;111(25):E2616–21. doi:10.1073/pnas.1402835111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irish VF, Litt A. Flower development and evolution: gene duplication, diversification and redeployment. Curr Opin Genet Dev. 2005;15(4):454–60. doi:http://dx.doi.org/10.1016/j.gde.2005.06.001.

  • Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H. Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science. 2006;313(5788):842–5. doi:10.1126/science.1128436.

    Article  CAS  PubMed  Google Scholar 

  • Kaku T, Serada S, Baba K, Tanaka F, Hayash T. Proteomic analysis of the G-layer in poplar tension wood. J Wood Sci. 2009;55:250–7.

    Article  CAS  Google Scholar 

  • Ko JH, Prassinos C, Han KH. Developmental and seasonal expression of PtaHB1, a Populus gene encoding a class III HD-Zip protein, is closely associated with secondary growth and inversely correlated with the level of microRNA (miR166). New Phytol. 2006;169(3):469–78. doi:10.1111/j.1469-8137.2005.01623.x. NPH1623 [pii].

    Article  CAS  PubMed  Google Scholar 

  • Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T. Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev. 2005;19(16):1855–60. doi:10.1101/gad.1331305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larson PR. The vascular cambium. Berlin: Springer; 1994.

    Book  Google Scholar 

  • Lechner M, Hernandez-Rosales M, Doerr D, Wieseke N, Thévenin A, Stoye J, Hartmann RK, Prohaska SJ, Stadler PF. Orthology detection combining clustering and synteny for very large datasets. PLoS One. 2014;9(8), e105015. doi:10.1371/journal.pone.0105015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13(9):2178–89. doi:10.1101/gr.1224503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Ramsay T, Zinkgraf M, Sundell D, Street NR, Filkov V, Groover A. A resource for characterizing genome-wide binding and putative target genes of transcription factors expressed during secondary growth and wood formation in Populus. Plant J. 2015a. doi:10.1111/tpj.12850.

    PubMed Central  Google Scholar 

  • Liu L, Zinkgraf M, Petzold HE, Beers EP, Filkov V, Groover A. The Populus ARBORKNOX1 homeodomain transcription factor regulates woody growth through binding to evolutionarily conserved target genes of diverse function. New Phytol. 2015b;205(2):682–94. doi:10.1111/nph.13151.

    Article  CAS  PubMed  Google Scholar 

  • Long J, Moan E, Medford J, Barton M. A member of the KNOTTED class of homeodomain proteins encoded by the SHOOTMERISTEMLESS gene of Arabidopsis. Nature. 1996;379:66–9.

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Sun Y, Shi R, Clark C, Li L, Chiang V. Novel and mechanical stress-responsive MicroRNAs in populus trichocarpa that are absent from Arabidopsis. Plant Cell. 2005;17:2186–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu S, Li Q, Wei H, Chang M, Tunlaya-Anukit S, Kim H, Liu J, Song J, Sun Y, Yuan L, Yeh T, Peszlen I, Ralph J, Sederoff R, Chiang V. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in populus trichocarpa. Proc Natl Acad Sci U S A. 2013;110:10848–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauriat M, Leple J, Claverol S, Bartholome J, Negroni L, Richet N, Lalanne C, Bonneu M, Coutand C, Plomion C. Quantitative proteomic and phosphoproteomic approaches for deciphering the signaling pathway for tension wood formation in poplar. J Proteome Res. 2015;14:3188–203.

    Article  CAS  PubMed  Google Scholar 

  • Mauseth J, Plemons-Rodriguez B. Evolution of extreme xeromorphic characters in wood: a study of nine evolutionary lines in Cactaceae. Am J Bot. 1998;85(2):209.

    Article  Google Scholar 

  • Meng Y, Shao C, Wang H, Chen M. The regulatory activities of plant MicroRNAs: a more dynamic perspective. Plant Physiol. 2011;157(4):1583–95. doi:10.1104/pp.111.187088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mijnsbrugge K, Meyermans H, Van Montagu M, Bauw G, Boerjan W. Wood formation in poplar: identification, characterization, and seasonal variation of xylem proteins. Planta. 2000;210:589–98.

    Article  Google Scholar 

  • Nakaya A, Katayama T, Itoh M, Hiranuka K, Kawashima S, Moriya Y, Okuda S, Tanaka M, Tokimatsu T, Yamanishi Y, Yoshizawa AC, Kanehisa M, Goto S. KEGG OC: a large-scale automatic construction of taxonomy-based ortholog clusters. Nucleic Acids Res. 2013;41(D1):D353–7. doi:10.1093/nar/gks1239.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson R, Bernfur K, Gustavsson N, Bygdell J, Wingsle G, Larsson C. Proteomics of plasma membranes from poplar trees reveals tissue distribution of transporters, receptors, and proteins in cell wall formation. Mol Cell Proteomics. 2010;9:368–87.

    Article  CAS  PubMed  Google Scholar 

  • Plomion C, Pionneau C, Baillères H. Identification of tension-wood responsive proteins in the developing xylem of eucalyptus. Holzforschung. 2003;57:353–8.

    Article  CAS  Google Scholar 

  • Porth I, Klápště J, Skyba O, Friedmann MC, Hannemann J, Ehlting J, El-Kassaby YA, Mansfield SD, Douglas CJ. Network analysis reveals the relationship among wood properties, gene expression levels and genotypes of natural Populus trichocarpa accessions. New Phytol. 2013a;200(3):727–42. doi:10.1111/nph.12419.

    Article  CAS  PubMed  Google Scholar 

  • Porth I, Klapšte J, Skyba O, Hannemann J, McKown AD, Guy RD, DiFazio SP, Muchero W, Ranjan P, Tuskan GA, Friedmann MC, Ehlting J, Cronk QCB, El-Kassaby YA, Douglas CJ, Mansfield SD. Genome-wide association mapping for wood characteristics in Populus identifies an array of candidate single nucleotide polymorphisms. New Phytol. 2013b;200(3):710–26. doi:10.1111/nph.12422.

    Article  CAS  PubMed  Google Scholar 

  • Robischon M, Du J, Miura E, Groover A. The Populus Class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems. Plant Physiol. 2011;155:1214–25.

    Article  CAS  PubMed  Google Scholar 

  • Schrader J, Nilsson J, Mellerowicz E, Berglund A, Nilsson P, Hertzberg M, Sandberg G. A high-resolution transcript profile across the wood-forming meristem of poplar identifies potential regulators of cambial stem cell identity. Plant Cell. 2004;16(9):2278–92. doi:10.1105/tpc.104.024190. tpc.104.024190 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SA, Beaulieu JM. Life history influences rates of climatic niche evolution in flowering plants. Pro R Soc Lond B Biol Sci. 2009. doi:10.1098/rspb.2009.1176.

    Google Scholar 

  • Smith SA, Donoghue MJ. Rates of molecular evolution are linked to life history in flowering plants. Science. 2008;322(5898):86–9. doi:10.1126/science.1163197.

    Article  CAS  PubMed  Google Scholar 

  • Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, dePamphilis CW, Wall PK, Soltis PS. Polyploidy and angiosperm diversification. Am J Bot. 2009;96(1):336–48. doi:10.3732/ajb.0800079.

    Article  PubMed  Google Scholar 

  • Song D, Xi W, Shen J, Bi T, Li L. Characterization of the plasma membrane proteins and receptor-like kinases associated with secondary vascular differentiation in poplar. Plant Mol Biol. 2011;76(97–115).

    Google Scholar 

  • Spicer R, Groover A. The evolution of development of the vascular cambium and secondary growth. New Phytol. 2010;186:577–92.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava V, Obudulu O, Bygdell J, Lofstedt T, Ryden P, Nilsson R, Ahnlund M, Johansson A, Jonsson P, Freyhult E, Qvarnstrom J, Karlsson J, Melzer M, Moritz T, Trygg J, Hvidsten T, Wingsle G. OnPLS integration of transcriptomic, proteomic and metabolomic data shows multi-level oxidative stress responses in the cambium of transgenic hipI- superoxide dismutase populus plants. BMC Genomics. 2013;14:893.

    Article  PubMed  PubMed Central  Google Scholar 

  • Street N, Jansson S, Hvidsten T. A systems biology model of the regulatory network in Populus leaves reveals interacting regulators and conserved regulation. BMC Plant Biol. 2011;11(1):13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Shi R, Zhang X, Chiang V, Sederoff R. MicroRNAs in trees. Plant Mol Biol. 2012;80:37–53.

    Article  CAS  PubMed  Google Scholar 

  • Taylor-Teeples M, Lin L, de Lucas M, Turco G, Toal TW, Gaudinier A, Young NF, Trabucco GM, Veling MT, Lamothe R, Handakumbura PP, Xiong G, Wang C, Corwin J, Tsoukalas A, Zhang L, Ware D, Pauly M, Kliebenstein DJ, Dehesh K, Tagkopoulos I, Breton G, Pruneda-Paz JL, Ahnert SE, Kay SA, Hazen SP, Brady SM. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature. 2015;517(7536):571–5. doi:10.1038/nature14099. http://www.nature.com/nature/journal/v517/n7536/abs/nature14099.html#supplementary-information.

  • The Angiosperm Phylogeny G. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc. 2009;161(2):105–21. doi:10.1111/j.1095-8339.2009.00996.x.

    Article  Google Scholar 

  • Tsiantis M, Hay A. Comparative plant development: the time of the leaf? Nat Rev Genet. 2003;4(3):169–80.

    Article  CAS  PubMed  Google Scholar 

  • Tsukaya H. Comparative leaf development in angiosperms. Curr Opin Plant Biol. 2014;17:103–9. doi:http://dx.doi.org/10.1016/j.pbi.2013.11.012.

  • Victor M. MicroRNAs in differentiating tissues of populus and eucalyptus trees. Thesis University of Pretoria; 2006.

    Google Scholar 

  • Ye Y, Wei B, Wen L, Rayner S. BlastGraph: a comparative genomics tool based on BLAST and graph algorithms. Bioinformatics. 2013;29(24):3222–4. doi:10.1093/bioinformatics/btt553.

    Article  CAS  PubMed  Google Scholar 

  • Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen L, Bertin RI, Calaminus A, Govaerts R, Hemmings F, Leishman MR, Oleksyn J, Soltis PS, Swenson NG, Warman L, Beaulieu JM. Three keys to the radiation of angiosperms into freezing environments. Nature. 2014;506(7486):89–92. doi:10.1038/nature12872. http://www.nature.com/nature/journal/v506/n7486/abs/nature12872.html#supplementary-information.

  • Zhao C, Craig JC, Petzold HE, Dickerman AW, Beers EP. The xylem and phloem transcriptomes from secondary tissues of the Arabidopsis root-hypocotyl. Plant Physiol. 2005;138(2):803–18. doi:10.1104/pp.105.060202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Song D, Sun J, Li L. Populus endo-beta-mannanase PtrMAN6 plays a role in coordinating cell wall remodeling with suppression of secondary wall thickening through generation of oligosaccharide signals. Plant J. 2013;74:473–85.

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Ye Z-H. Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation. Plant Cell Physiol. 2015;56(2):195–214. doi:10.1093/pcp/pcu140.

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Demura T, Ye Z-H. SND1, a NAC domain transcription factor, is a Key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell. 2006;18(11):3158–70. doi:10.1105/tpc.106.047399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong R, Lee C, Zhou J, McCarthy RL, Ye Z-H. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell. 2008;20(10):2763–82. doi:10.1105/tpc.108.061325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grant2015-67013-22891from USDA AFRI, DE-SC0007183 from DOE Office of Science, Office of Biological and Environmental Research (BER) to AG, and grant 31270219 and 31570581from National Natural Science Foundation of China to XH. We thank Keith Woeste for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

He, X., Groover, A.T. (2017). The Genomics of Wood Formation in Angiosperm Trees. In: Groover, A., Cronk, Q. (eds) Comparative and Evolutionary Genomics of Angiosperm Trees. Plant Genetics and Genomics: Crops and Models, vol 21. Springer, Cham. https://doi.org/10.1007/7397_2016_17

Download citation

Publish with us

Policies and ethics