Skip to main content

Genomic Diversity and Climate Adaptation in Brachypodium

  • Chapter
  • First Online:
Genetics and Genomics of Brachypodium

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 18))

Abstract

The Brachypodium genus contains the model grasses B. distachyon, B. stacei and B. hybridum, that are useful for molecular and physiological studies relevant to grain, pasture and bioenergy crops, as well as ecology of invasive species and environmental adaptation. In this chapter we discuss the natural variation in climate/geography, genotypic and phenotypic diversity that exists within these species. We describe the utilisation of this diversity via two methods, Genome Wide Association Studies and Landscape Genomics, to examine the interaction between genetic variation, phenotype, and environment. The aim is to identify adaptive loci that control specific traits in specific environments and understand the contribution of background polygenetic variation shaped by demographic processes. With recent developments in high throughput phenotyping, sequencing, and population samples with higher spatial/temporal resolution of climate data, these approaches can exploit the diversity of these Brachypodium spp. Experiments using this toolkit will reveal alleles, genes and pathways underlying agriculturally important and environmentally sensitive traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GBS:

Genotyping by sequencing

GWAS:

Genome wide association studies

MaxEnt:

Maximum entropy

QTL:

Quantitative trait loci

SNPs:

Single nucleotide polymorphisms

References

  • Atwell S, Huang YS, Villhjálmsson BJ, Willems G, Horton M, Li Y, et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nat Lett. 2010;465:627–31.

    Article  CAS  Google Scholar 

  • Azhaguvel P, Li W, Rudd JC, Gill BS, Michels Jr GJ, Weng Y. Aphid feeding response and microsatellite genetic diversity among diploid Brachypodium distachyon (L.) Beauv accessions. Plant Genet Resour. 2008;7:72–9.

    Article  Google Scholar 

  • Bakker EG, Montgomery B, Nguyen T, Eide K, Chang J, Mockler TC, et al. Strong population structure characterises weediness gene evolution in the invasive grass species Brachypodium distachyon. Mol Ecol. 2009;18:2588–601.

    Article  CAS  PubMed  Google Scholar 

  • Banta JA, Ehrenreich IM, Gerard S, Chou L, Wilczek A, Schmitt J, et al. Climate envelope modeling reveals intraspecific relationships among phenology, niche breadth and potential range size in Arabidopsis thaliana. Ecol Lett. 2012;15:769–77.

    Article  PubMed  Google Scholar 

  • Barrero JM, Jacobsen JV, Talbot MJ, White RG, Swain SM, Garvin DF, et al. Grain dormancy and light quality effects on germination in the model grass Brachypodium distachyon. New Phytol. 2012;193:376–86.

    Article  CAS  PubMed  Google Scholar 

  • Baxter I, Brazelton JN, Yu D, Huang YS, Lahner B, Yukubova E, et al. A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1;1. PLoS Genet. 2010. doi:10.1371/journal.pgen.1001193.

    Google Scholar 

  • Betekhtin A, Jenkins G, Hasterok R. Reconstructing the evolution of Brachypodium genomes using comparative chromosome painting. PLoS One. 2014. doi:10.1371/journal.pone.0115108.

    PubMed Central  PubMed  Google Scholar 

  • BioClim [Internet]. WorldClim—Global Climate Data, free climate data for ecology. [cited 5 Jan 2015]. http://www.bioclim.org/.

  • Brachi B, Morris GP, Borevitz JO. Genome-wide association studies in plants: the missing heritability in the field. Genome Biol. 2011;12:232.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bragg JG, Supple MA, Andrew RL, Borevitz JO. Tansley review: genomic variation across landscapes: insights and applications. New Phytol. 2015;208:953.

    Article  Google Scholar 

  • Brown TB, Cheng R, Sirault XRR, Rungrat T, Murray KD, Trtilek M, et al. TraitCapture: genomic and environmental modelling of plant phenomic data. Curr Opin Plant Biol. 2014;18:73–9.

    Article  CAS  PubMed  Google Scholar 

  • Brummitt RK, Cheek MR. Hoplestigmataceae. In: Heywood VH, Brummitt RK, Culham A, Seberg O, editors. Flowering plant families of the world. Kew: Royal Botanic Gardens; 2007. p. 167.

    Google Scholar 

  • Clausen J, Keck DD, Hiesey WM. Experimental studies on the nature of species. Washington, DC: Carnegie Institution of Washington; 1940.

    Google Scholar 

  • Catalán P, Müller J, Hasterok R, Jenkins G, Mur LAJ, Langdon T, et al. Evolution and taxonomic split of the model grass Brachypodium distachyon. Ann Bot. 2012;109(2):385–405.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cui Y, Lee MY, Huo N, Bragg J, Yan L, Yuan C, et al. Fine mapping of the Bsr1 barley stripe mosaic virus resistance gene in the model grass Brachypodium distachyon. PLoS One. 2012;7:e38333.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dell’Acqua M, Zuccolo A, Tuna M, Gianfranceschi L, Enrico PM. Targeting environmental adaptation in the monocot model Brachypodium distachyon: a multi-faceted approach. BMC Genomics. 2014;15:801.

    Article  PubMed Central  PubMed  Google Scholar 

  • Draper J, Mur LA, Jenkins G, Ghosh-Biswas GC, Bablak P, Hasterok R, et al. Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol. 2001;127:1539–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A robust simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011. doi:10.1371/journal.pone.0019379.

    PubMed Central  PubMed  Google Scholar 

  • Filiz E, Ozdemir BS, Budak F, Vogel JP, Tuna M, Budak H. Molecular, morphological, and cytological analysis of diverse Brachypodium distachyon inbred lines. Genome. 2009;52:876–90.

    Article  CAS  PubMed  Google Scholar 

  • Fournier-Level A, Korte A, Cooper MD, Nordborg M, Schmitt J, Wilczek AM. A map of local adaptation in Arabidopsis thaliana. Science. 2011;334(6052):86–9.

    Article  CAS  PubMed  Google Scholar 

  • Garvin DF, Gu YQ, Hasterok R, Hazen SP, Jenkins G, Mockler TC, et al. Development of genetic and genomic research resources for Brachypodium distachyon, a new model system for grass crop research. Crop Sci. 2008;48:S69–84.

    Article  Google Scholar 

  • Gordon SP, Priest H, Des Marais DL, Schackwitz W, Figueroa M, Martin J, et al. Genome diversity in Brachypodium distachyon: deep sequencing of highly diverse inbred lines. Plant J. 2014;79:361–74.

    Article  CAS  PubMed  Google Scholar 

  • The Global Biodiversity Information Facility: GBIF Backbone Taxonomy, 2013-07-01. http://www.gbif.org/species/5290143. Accessed 2015-05-08.

  • Grime JP. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat. 1977;111(982):1169–94.

    Article  Google Scholar 

  • Groombridge B, Jenkins M. World atlas of biodiversity: Earth’s living resources in the 21st century. University of California Press: Berkeley, CA; 2002.

    Google Scholar 

  • Halperin E, Stephan DA. SNP imputation in association studies. Nat Biotechnol. 2009;27:349–51.

    Article  CAS  PubMed  Google Scholar 

  • Hammami R, Jouve N, Soler C, Frieiro E, González JM. Genetic diversity of SSR and ISSR markers in wild population of Brachypodium distachyon and its close relatives B. stacei and B. hybridum (Poaceae). Plant Syst Evol. 2014;300:2029–40.

    Article  Google Scholar 

  • Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB, Sperone FG, et al. Adaptation to climate across the Arabidopsis thaliana genome. Science. 2011;334(6052):83–6.

    Article  CAS  PubMed  Google Scholar 

  • Hartley W. Studies on the origin, evolution and distribution of the Gramineae. V. The subfamily Festucoideae. Aust J Bot. 1973;21:201–34.

    Article  Google Scholar 

  • Hasterok R, Draper J, Jenkins G. Laying the cytotaxonomic foundations of a new model grass, Brachypodium distachyon (L.) Beauv. Chromosome Res. 2004;12:397–403.

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann A, Griffin P, Dillon S, Catullo R, Rane R, Byrne M, et al. A framework for incorporating evolutionary genomics into biodiversity conservation and management. Clim Chang Responses. 2015;2:1. doi:10.1186/s40665-014-0009-x.

    Article  Google Scholar 

  • Horton MW, Hancock AM, Huang YS, Toomajian C, Atwell S, Auton A, et al. Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel. Nat Genet. 2012;44(2):212–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang X, Han B. Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol. 2014;65:531–51.

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Wei X, Sang T, Zhao T, Zhao Q, Feng Q, et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet. 2010;42:961–7.

    Article  CAS  PubMed  Google Scholar 

  • Jaroszewicz AM, Kosina R, Stankiewicz PR. RAPD, karyology and selected morphological variation in a model grass, Brachypodium distachyon. Weed Res. 2012;52:204–16.

    Article  CAS  Google Scholar 

  • Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, et al. Complement Factor H polymorphism in age-related macular degeneration. Science. 2005;308(5720):385–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li C, Rudi H, Stockinger EJ, Cheng H, Cao M, Fox SE, et al. Comparative analyses reveal potential uses of Brachypodium distachyon as a model for cold stress responses in temperate grasses. BMC Plant Biol. 2012;12:65.

    Article  PubMed Central  PubMed  Google Scholar 

  • Li Y, Roycewicz P, Smith E, Borevitz JO. Genetics of local adaptation in the laboratory: flowering time quantitative trait loci under geographic and seasonal conditions in Arabidopsis. PLoS One. 2006;1(1):e105.

    Article  PubMed Central  PubMed  Google Scholar 

  • Li Y, Huang Y, Bergelson J, Nordborg M, Borevitz JO. Association mapping of local climate-sensitive quantitative trait loci in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2010;107(49):21199–204.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li Y, Cheng R, Spokas KA. Genetic variation for life history sensitivity to seasonal warming in Arabidopsis thaliana. Genetics. 2014;196:569–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • López-Alvarez D, Manzaneda AJ, Rey PJ, Giraldo P, Benavente E, Allainguillaume J, et al. Environmental niche variation and evolutionary diversification of the Brachypodium distachyon grass complex species in their native circu-Mediterranean range. Am J Bot. 2015;102:1073.

    Article  PubMed  Google Scholar 

  • López-Alvarez D, López-Herranz ML, Betekhtin A, Catalán P. A DNA barcoding method to discriminate between the model plant Brachypodium distachyon and Its close relatives B. stacei and B. hybridum (Poaceae). PLoS One. 2012;7:e51058.

    Article  PubMed Central  PubMed  Google Scholar 

  • Luo N, Liu J, Yu X, Jiang Y. Natural variation of drought response in Brachypodium distachyon. Physiol Plant. 2011;141:19–29.

    Article  CAS  PubMed  Google Scholar 

  • Manzaneda AJ, Rey PJ, Bastida JM, Weiss-Lehman C, Raskin E, Mitchell-Olds T. Environmental aridity is associated with cytotype segregation and polyploidy occurrence in Brachypodium distachyon (Poaceae). New Phytol. 2012;193:797–805.

    Article  PubMed Central  PubMed  Google Scholar 

  • Morris GP, Grabowski PP, Borevitz JO. Genomic diversity in switchgrass (Panicum virgatum): from the continental scale to a dune landscape. Mol Ecol. 2011;20(23):4938–52.

    Article  PubMed Central  PubMed  Google Scholar 

  • Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, et al. Population genomics and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci U S A. 2013;110(2):453–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mur LAJ, Allainguillaume J, Catalan P, Hasterok R, Jenkins G, Lesniewska K, et al. Exploiting the Brachypodium tool box in cereal and grass research. New Phytol. 2011;191:334–47.

    Article  PubMed  Google Scholar 

  • Pacheco-Villalobos D, Hardtke CS. Natural genetic variation of root system architecture from Arabidopsis to Brachypodium: towards adaptive value. Philos Trans R Soc B. 2012;367:1552–8.

    Article  CAS  Google Scholar 

  • Pasam RK, Sharma R, Malosetti M, van Eeuwijk FA, Haseneyer G, Kilian B, et al. Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biol. 2012;12:16.

    Article  PubMed Central  PubMed  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA. Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci. 2007;11:1633–44.

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Model. 2006;190(3-4):231–59.

    Article  Google Scholar 

  • Phillips SJ, Dudík M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography. 2008;31:161–75.

    Article  Google Scholar 

  • Platt A, Horton M, Huang YS, Li Y, Anastasio AE, Mulyati NW, et al. The scale of population structure in Arabidopsis thaliana. PLoS Genet. 2010;6(2):e1000843.

    Article  PubMed Central  PubMed  Google Scholar 

  • Revedin A, Aranguren B, Becattini R, Longo L, Marconi E, Lippi MM, et al. Thirty thousand-year-old evidence of plant food processing. Proc Natl Acad Sci U S A. 2010;107(44):18815–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robertson JH. Chromosome numbers in Brachypodium Beauv. (Gramineae). Genetica. 1981;56:55–60.

    Article  Google Scholar 

  • Schwartz CJ, Doyle MR, Manzaneda AJ, Rey PJ, Mitchell-Olds T, Amasino RM. Natural variation of flowering time and vernalization responsiveness in Brachypodium distachyon. Bioenerg Res. 2010;3:38–46.

    Article  Google Scholar 

  • Storz JF. Using genome scans of DNA polymorphism to infer adaptive population divergence. Mol Ecol. 2005;14:671–88.

    Article  CAS  PubMed  Google Scholar 

  • The International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature. 2009;463:763–8.

    Google Scholar 

  • Tyler L, Fangel JU, Fagerstrom AD, Steinwand MA, Raab TK, Willats WGT, et al. Selection and phenotypic characterisation of a core collection of Brachypodium distachyon inbred lines. BMC Plant Biol. 2014;14:25.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tyler L, Lee SJ, Young ND, DeIulio GA, Benavente E, Reagon M, et al. Building tools for genome-wide association studies: flowering time helps explain population structure in Brachypodium. In: The 3rd international Brachypodium conference, University of Massachusetts, Amherst, 16–19 June 2015.

    Google Scholar 

  • Vogel JP, Garvin DF, Leong OM, Hayden DM. Agrobacterium-mediated transformation and inbred line development in the model grass Brachypodium distachyon. Plant Cell Tiss Org Cult. 2006a;84:199–211.

    Article  Google Scholar 

  • Vogel JP, Gu YQ, Twigg P, Lazo GR, Laudencia-Chingcuanco D, Hayden DM, et al. EST sequencing and phylogenetic analysis of the model grass Brachypodium distachyon. Theor Appl Genet. 2006b;113:186–95.

    Article  CAS  PubMed  Google Scholar 

  • Vogel JP, Tuna M, Budak H, Huo N, Gu YQ, Steinwand MA. Development of SSR markers and analysis of diversity in Turkish populations of Brachypodium distachyon. BMC Plant Biol. 2009;9:88.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang K, Han X, Dong K, Gao L, Li H, Ma H, et al. Characterisation of seed proteome in Brachypodium distachyon. J Cereal Sci. 2010;52:177–86.

    Article  CAS  Google Scholar 

  • Wen W, Li D, Li W, Gao Y, Li W, Li H, et al. Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nat Commun. 2014;5(3438):1–10.

    CAS  Google Scholar 

  • WorldClim [Internet]. WorldClim—Global Climate Data, free climate data for ecology. [Cited 5 Jan 2014]. http://www.worldclim.org/.

Download references

Acknowledgments

We would like to acknowledge our collaborators: Location data and seed—Shuangshuang Liu of the Kent Bradford lab at UC Davis United states, Pilar Catalan from the University of Zaragoza in Huesca Spain, Luis Mur at Aberystwyth University at Aberystwyth Wales, Dave Garvin from University of Minnesota/USDA United States and John Vogel from JGI/UC Berkeley.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Borevitz .

Editor information

Editors and Affiliations

Glossary

Accession

A collection of seeds from one location. This includes bulk collections and maternal descent lines.

Ecotype

An individual or group whose genetic distinction is strongly associated to an environment or type.

Genotype

This general term is used either to describe the genotype at a locus such as a SNP (AA, Aa, aa) or a background whole genome genotype which can have levels of species, subgroup, population genetic structure group, family, individual maternal line.

Phenotype (qualitative and quantitative)

Measurable traits expressed by plants.

Population

Non-random mating between groups within a specified geographic space.

Subgroup

In this paper, subgroup is a major hierarchical cluster of genotype groups and their respective families and/or genotypes. Subgroups could interbreed but don’t in natural environments due to some sort of natural barrier.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wilson, P., Streich, J., Borevitz, J. (2015). Genomic Diversity and Climate Adaptation in Brachypodium . In: Vogel, J. (eds) Genetics and Genomics of Brachypodium. Plant Genetics and Genomics: Crops and Models, vol 18. Springer, Cham. https://doi.org/10.1007/7397_2015_18

Download citation

Publish with us

Policies and ethics