Skip to main content

The Rise of Brachypodium as a Model System

  • Chapter
  • First Online:
Genetics and Genomics of Brachypodium

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 18))

Abstract

Grasses have played a central role in the formation of human civilization. Indeed, the inception of agriculture and the production of grains that could be easily stored and traded is one of the major factors that led to the creation of cities and the specialization of labor. Today, grasses provide the bulk of calories consumed by humans either directly through the consumption of grain or indirectly through grain and grass fed animals. Furthermore, due to their high productivity, grasses are increasingly utilized as a source of renewable biomass for the sustainable production of bioenergy and liquid biofuels. Grasses also play a fundamental role in many terrestrial ecosystems that benefit humans in numerous ways. Given the importance of grasses to humanity, there is considerable value in understanding their biology in great detail. Model biological systems greatly facilitate scientific research and many of the rapid advances in molecular biology and genetics would have been difficult to achieve without them. The model plant Arabidopsis thaliana has been used to make tremendous gains in our understanding of plant biology. However, as a eudicot, A. thaliana is unsuitable to study the unique aspects of grass biology. Several crop grasses (e.g. maize and rice) have been used as model systems and while each has certain strengths, they have some disadvantages when compared to a model like A. thaliana. Brachypodium distachyon has emerged to fill the need for a truly tractable model grass that is compatible with modern high-throughput molecular-genetic experiments. An overview of the development and widespread adoption of B. distachyon as a model grass is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aranguren B, Becattini R, Lippi MM, Revedin A. Grinding flour in Upper Palaeolithic Europe (25 000 years bp). Antiquity. 2007;81(314):845–55.

    Article  Google Scholar 

  • Bablak P, Draper J, Davey MR, Lynch PT. Plant regeneration and micropropagation of Brachypodium distachyon. Plant Cell Tiss Org Cult. 1995;42(1):97–107.

    Article  Google Scholar 

  • Bragg JN, Anderton A, Nieu R, Vogel JP. Brachypodium distachyon. Methods Mol Biol. 2015;1223:17–33.

    Article  PubMed  Google Scholar 

  • Bragg JN, Wu J, Gordon SP, Guttman ME, Thilmony R, Lazo GR, et al. Generation and characterization of the Western Regional Research Center Brachypodium T-DNA insertional mutant collection. PLoS One. 2012;7(9):e41916.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brkljacic J, Grotewold E, Scholl S, Mockler T, Garvin D, Vain P, et al. Brachypodium as a model for the grasses: today and the future. Plant Physiol. 2011;157:3–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brutnell TP, Bennetzen JL, Vogel JP. Brachypodium distachyon and Setaria viridis: model genetic systems for the grasses. Annu Rev Plant Biol. 2015;66:465–85.

    Article  CAS  PubMed  Google Scholar 

  • Carroll A, Somerville C. Cellulosic biofuels. Annu Rev Plant Biol. 2009;60:165–82.

    Article  CAS  PubMed  Google Scholar 

  • Catalán P, Müller J, Hasterok R, Jenkins G, Mur LAJ, Langdon T, et al. Evolution and taxonomic split of the model grass Brachypodium distachyon. Ann Bot. 2012;109(2):385–405.

    Article  PubMed Central  PubMed  Google Scholar 

  • Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16(6):735–43.

    Article  CAS  PubMed  Google Scholar 

  • Davis BNK, Lakhani KH, Brown MC, Park DG. Early seral communities in a limestone quarry: an experimental study of treatment effects on cover and richness of vegetation. J Appl Ecol. 1985;22(2):473–90.

    Article  Google Scholar 

  • DOE, editor. Breaking the biological barriers to cellulosic ethanol: a joint research agenda. U.S. Department of Energy, Office of Science and Office of Energy Efficiency; 2006. http://genomicsgtl.energy.gov/biofuels/b2bworkshop.shtml.

  • Draper J, Mur LAJ, Jenkins G, Ghosh-Biswas GC, Bablak P, Hasterok R, et al. Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol. 2001;127(4):1539–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Editorial. How to feed a hungry world. Nature. 2010;466(7306):531–2.

    Article  Google Scholar 

  • Fedoroff NV, Battisti DS, Beachy RN, Cooper PJM, Fischhoff DA, Hodges CN, et al. Radically rethinking agriculture for the 21st century. Science. 2010;327(5967):833–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Foote TN, Griffiths S, Allouis S, Moore G. Construction and analysis of a BAC library in the grass Brachypodium sylvaticum: its use as a tool to bridge the gap between rice and wheat in elucidating gene content. Funct Integr Genomics. 2004;4(1):26–33.

    Article  CAS  PubMed  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, et al. Food security: the challenge of feeding 9 billion people. Science. 2010;327(5967):812–8.

    Article  CAS  PubMed  Google Scholar 

  • Godfray HCJ, Pretty J, Thomas SM, Warham EJ, Beddington JR. Linking policy on climate and food. Science. 2011;331(6020):1013–4.

    Article  CAS  PubMed  Google Scholar 

  • Gordon SP, Priest H, Des Marais DL, Schackwitz W, Figueroa M, Martin J, et al. Genome diversity in Brachypodium distachyon: deep sequencing of highly diverse inbred lines. Plant J. 2014;79(3):361–74.

    Article  CAS  PubMed  Google Scholar 

  • Hayama R, Coupland G. The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiol. 2004;135(2):677–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • IBI. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature. 2010;463:763–8.

    Article  Google Scholar 

  • Jeong DH, Schmidt SA, Rymarquis LA, Park S, Ganssmann M, German MA, et al. Parallel analysis of RNA ends enhances global investigation of microRNAs and target RNAs of Brachypodium distachyon. Genome Biol. 2013;14(12):R145.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kaul S, Koo HL, Jenkins J, Rizzo M, Rooney T, Tallon LJ, et al. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000;408(6814):796–815.

    Article  CAS  Google Scholar 

  • Khan MA. Seed-protein electrophoretic pattern in Brachypodium P. Beauv. species. Ann Bot. 1992;70(1):61–8.

    CAS  Google Scholar 

  • Kucharik CJ, Ramankutty N. Trends and variability in U.S. Corn yields over the twentieth century. Earth Interact. 2005;9(1):1–29.

    Article  Google Scholar 

  • Lyons C, Scholthof K. Watching grass grow: the emergence of Brachypodium distachyon as a model for the Poaceae. In: Phillips D, Kingsland S, editors. New perspectives on the history of life sciences and agriculture. Archimedes 40; 2015:479–501. http://link.springer.com/chapter/10.1007%2F978-3-319-12185-7_23

  • Meyerowitz EM. Prehistory and history of Arabidopsis research. Plant Physiol. 2001;125(1):15–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Organisation for Economic Co-Operation and Development. World Energy Outlook 4014. Organisation for Economic Co-Operation and Development; 2014. ISBN: 978-92-64-20804-9.

    Google Scholar 

  • Revedin A, Aranguren B, Becattini R, Longo L, Marconi E, Lippi MM, et al. Thirty thousand-year-old evidence of plant food processing. Proc Natl Acad Sci U S A. 2010;107(44):18815–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shi Y, Draper J, Stace C. Ribosomal DNA variation and its phylogenetic implication in the genus Brachypodium (Poaceae). Plant Syst Evol. 1993;188(3–4):125–38.

    CAS  Google Scholar 

  • Thole V, Worland B, Wright J, Bevan MW, Vain P. Distribution and characterization of more than 1000 T-DNA tags in the genome of Brachypodium distachyon community standard line Bd21. Plant Biotechnol J. 2010;8(6):734–47.

    Article  CAS  PubMed  Google Scholar 

  • Tyler L, Fangel JU, FagerstrÃm AD, Steinwand MA, Raab TK, Willats WGT, et al. Selection and phenotypic characterization of a core collection of Brachypodium distachyon inbred lines. BMC Plant Biol. 2014;14(1):25.

    Article  PubMed Central  PubMed  Google Scholar 

  • Vain P, Worland B, Thole V, McKenzie N, Alves SC, Opanowicz M, et al. Agrobacterium-mediated transformation of the temperate grass Brachypodium distachyon (genotype Bd21) for T-DNA insertional mutagenesis. Plant Biotechnol J. 2008;6:236–45.

    Article  CAS  PubMed  Google Scholar 

  • Vogel J, Hill T. High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3. Plant Cell Rep. 2008;27(3):471–8.

    Article  CAS  PubMed  Google Scholar 

  • Vogel JP, Garvin DF, Leong OM, Hayden DM. Agrobacterium-mediated transformation and inbred line development in the model grass Brachypodium distachyon. Plant Cell Tiss Org Cult. 2006;85:199–211.

    Article  Google Scholar 

  • Wheeler T, Von Braun J. Climate change impacts on global food security. Science. 2013;341(6145):508–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

I would like to thank Samuel Hazen for critically reading the manuscript. The work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Vogel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vogel, J.P. (2015). The Rise of Brachypodium as a Model System. In: Vogel, J. (eds) Genetics and Genomics of Brachypodium. Plant Genetics and Genomics: Crops and Models, vol 18. Springer, Cham. https://doi.org/10.1007/7397_2015_14

Download citation

Publish with us

Policies and ethics