Skip to main content

PET Imaging Agents for Alzheimer’s Disease

  • Chapter
  • First Online:
Alzheimer’s Disease II

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 24))

  • 1402 Accesses

Abstract

In the past four decades, PET (positron emission tomography) imaging has been developed into a common diagnostic tool. After an i.v. injection of a small amount of radioactive probe, PET images are taken based on the decay of short-lived positron-emitting isotopes. The emitted positron collides with a neighboring electron to produce two 511 KeV gamma rays roughly 180 apart. It is based on this physical principal and the positron coincident signals that the point source of the gamma rays can be deduced by using a coincident circuit for detectors 180 apart. Currently, there are three FDA-approved imaging agents (Amyvid, NeuraCeq, and Vizamyl) available for mapping Aβ in the brain of patients suspected of having Alzheimer’s disease. There is a strong interest in measuring tau deposition by PET imaging in a quantitative manner. Several useful Tau imaging agents have been tested in humans; however, they have not been fully validated as those of Aβ imaging agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cherry S, Sorenson J, Phelps M (2003) Physics in nuclear medicine, 3rd edn. W.B. Saunders, New York

    Google Scholar 

  2. Phelps ME, Mazziotta JC, Schelbert HR (1986) Positron emission tomography and autoradiography: principles and applications for the brain and heart. Raven, New York

    Google Scholar 

  3. Sokoloff L (1986) Positron emission tomography and autoradiography: principles and applications for the brain and heart. Raven, New York

    Google Scholar 

  4. Fowler JS, MacGregor RR, Wolf AP, Farrell AA, Karlstrom KI, Ruth TJ (1981) A shielded synthesis system for production of 2-deoxy-2-[18F]fluoro-D-glucose. J Nucl Med 22:376–380

    CAS  Google Scholar 

  5. Ido T, Wan CN, Fowler JS, Wolf AP (1977) Fluorination with F2: a convenient synthesis of 2-deoxy-2-fluoro-D-glucose. J Org Chem 42:2341

    Article  CAS  Google Scholar 

  6. Hamacher K, Coenen HH, Stocklin G (1986) Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med 27:235–238

    CAS  Google Scholar 

  7. Alexoff DL, Casati R, Fowler JS, Wolf AP, Shea C, Schlyer DJ et al (1992) Ion chromatographic analysis of high specific activity 18FDG preparations and detection of the chemical impurity 2-deoxy-2-chloro-D-glucose. Int J Rad Appl Instrum A 43:1313–1322

    Article  CAS  Google Scholar 

  8. Gambhir SS (2008) Molecular imaging of cancer: from molecules to humans. Introduction. J Nucl Med 49(Suppl 2):1S–4S

    Article  Google Scholar 

  9. Zhu L, Ploessl K, Kung HF (2013) Expanding the scope of fluorine tags for PET imaging. Science 342:429–430

    Article  CAS  Google Scholar 

  10. Small GW, Ercoli LM, Silverman DH, Huang SC, Komo S, Bookheimer SY et al (2000) Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc Natl Acad Sci U S A 97:6037–6042

    Article  CAS  Google Scholar 

  11. Silverman DH (2004) Brain 18F-FDG PET in the diagnosis of neurodegenerative dementias: comparison with perfusion SPECT and with clinical evaluations lacking nuclear imaging. J Nucl Med 45:594–607

    Google Scholar 

  12. Roberson ED, Mucke L (2006) 100 years and counting: prospects for defeating Alzheimer’s disease. Science 314:781–784

    Article  Google Scholar 

  13. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608

    Article  CAS  Google Scholar 

  14. Hardy J (2006) Has the amyloid cascade hypothesis for Alzheimer’s disease been proved? Curr Alzheimer Res 3:71–73

    Article  CAS  Google Scholar 

  15. Goedert M, Spillantini MG (2006) A century of Alzheimer’s disease. Science 314:777–781

    Article  CAS  Google Scholar 

  16. Villemagne VL (2016) Amyloid imaging: past, present and future perspectives. Ageing Res Rev 16:S1568–S1637

    Google Scholar 

  17. Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S et al (2016) Alzheimer’s disease. Lancet 388:505–517

    Article  CAS  Google Scholar 

  18. Vallabhajosula S (2011) Positron emission tomography radiopharmaceuticals for imaging brain Beta-amyloid. Semin Nucl Med 41:283–299

    Article  Google Scholar 

  19. Mathis CA, Mason NS, Lopresti BJ, Klunk WE (2012) Development of positron emission tomography beta-amyloid plaque imaging agents. Semin Nucl Med 42:423–432

    Article  Google Scholar 

  20. Kung H (2012) The β-amyloid hypothesis in Alzheimer’s disease: seeing is believing. ACS Med Chem Lett 3:265–267

    Article  CAS  Google Scholar 

  21. Kung H, Choi S, Qu W, Zhang W, Skovronsky D (2009) 18F stilbenes and styrylpyridines for PET imaging of A beta plaques in Alzheimer’s disease: a miniperspective. J Med Chem 53:933–941

    Article  Google Scholar 

  22. Mason NS, Mathis CA, Klunk WE (2013) Positron emission tomography radioligands for in vivo imaging of Abeta plaques. J Labelled Comp Radiopharm 56:89–95

    Article  CAS  Google Scholar 

  23. Mathis CA, Wang Y, Holt DP, Huang G-F, Debnath ML, Klunk WE (2003) Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem 46:2740–2754

    Article  CAS  Google Scholar 

  24. Eckelman WC, Mathis CA (2006) Targeting proteins in vivo: in vitro guidelines. Nucl Med Biol 33:161–164

    Article  CAS  Google Scholar 

  25. Eckelman WC, Mathis CA (2006) Molecular targets. Nucl Med Biol 33:1

    Article  CAS  Google Scholar 

  26. Eckelman WC, Kilbourn MR, Mathis CA (2009) Specific to nonspecific binding in radiopharmaceutical studies: it’s not so simple as it seems. Nucl Med Biol 36:235–237

    Article  CAS  Google Scholar 

  27. Kung H, Lee C, Zhuang Z, Kung M, Hou C, Plossl K (2001) Novel stilbenes as probes for amyloid plaques. J Am Chem Soc 123:12740–12741

    Article  CAS  Google Scholar 

  28. Verhoeff N, Wilson A, Takeshita S, Trop L, Hussey D, Singh K et al (2004) In vivo imaging of Alzheimer disease beta-amyloid with [11C]SB-13 PET. Am J Geriatr Psychiatry 12:584–595

    Google Scholar 

  29. Ong K, Villemagne VL, Bahar-Fuchs A, Lamb F, Chetelat G, Raniga P et al (2013) 18F-florbetaben Abeta imaging in mild cognitive impairment. Alzheimers Res Ther 5:4

    Article  CAS  Google Scholar 

  30. Clark CM, Schneider JA, Bedell BJ, Beach TG, Bilker WB, Mintun MA et al (2011) Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA 305:275–283

    Article  CAS  Google Scholar 

  31. Leinonen V, Rinne JO, Virtanen KA, Eskola O, Rummukainen J, Huttunen J et al (2013) Positron emission tomography with [18F]flutemetamol and [11C]PiB for in vivo detection of cerebral cortical amyloid in normal pressure hydrocephalus patients. Eur J Neurol 20:1043–1052

    Article  CAS  Google Scholar 

  32. Klunk WE (2011) Amyloid imaging as a biomarker for cerebral beta-amyloidosis and risk prediction for Alzheimer dementia. Neurobiol Aging 32(Suppl 1):S20–S36

    Article  CAS  Google Scholar 

  33. Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O et al (2013) Amyloid beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol 12:357–367

    Article  CAS  Google Scholar 

  34. Curtis C, Gamez JE, Singh U, Sadowsky CH, Villena T, Sabbagh MN et al (2015) Phase 3 trial of flutemetamol labeled with radioactive fluorine 18 imaging and neuritic plaque density. JAMA Neurol 72:287–294

    Article  Google Scholar 

  35. Rowe CC, Pejoska S, Mulligan RS, Jones G, Chan JG, Svensson S et al (2013) Head-to-head comparison of 11C-PiB and 18F-AZD4694 (NAV4694) for beta-amyloid imaging in aging and dementia. J Nucl Med 54:880–886

    Article  CAS  Google Scholar 

  36. Rowe CC, Jones G, Dore V, Pejoska S, Margison L, Mulligan RS et al (2016) Standardized expression of 18F-NAV4694 and 11C-PiB beta-amyloid PET results with the centiloid scale. J Nucl Med 57:1233–1237

    Article  Google Scholar 

  37. Bateman RJ, Xiong C, Benzinger TLS, Fagan AM, Goate A, Fox NC et al (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367:795–804

    Article  CAS  Google Scholar 

  38. Drzezga A, Grimmer T, Henriksen G, Muhlau M, Perneczky R, Miederer I et al (2009) Effect of APOE genotype on amyloid plaque load and gray matter volume in Alzheimer disease. Neurology 72:1487–1494

    Article  CAS  Google Scholar 

  39. Tayeb HO, Murray ED, Price BH, Tarazi FI (2013) Bapineuzumab and solanezumab for Alzheimer’s disease: is the ‘amyloid cascade hypothesis’ still alive? Expert Opin Biol Ther 13:1075–1084

    Article  CAS  Google Scholar 

  40. Grundman M, Dibernardo A, Raghavan N, Krams M, Yuen E (2013) 2012: a watershed year for Alzheimer’s disease research. J Nutr Health Aging 17:51–53

    Article  CAS  Google Scholar 

  41. Callaway E (2012) Alzheimer’s drugs take a new tack. Nature 489:13–14

    Article  CAS  Google Scholar 

  42. Niva C, Parkinson J, Olsson F, van Schaick E, Lundkvist J, Visser SA (2013) Has inhibition of Abeta production adequately been tested as therapeutic approach in mild AD? A model-based meta-analysis of gamma-secretase inhibitor data. Eur J Clin Pharmacol 69:1247–1260

    Article  CAS  Google Scholar 

  43. Li H, Qin J, Dhondi P, Zhou W, Vicarel M, Bara T et al (2013) The discovery of fused oxadiazepines as gamma secretase modulators for treatment of Alzheimer’s disease. Bioorg Med Chem Lett 23:466–471

    Article  CAS  Google Scholar 

  44. Wu WL, Sasikumar TK, Domalski MS, Qiang L, Burnett DA, Clader J et al (2013) A-ring modification of SCH 900229 and related chromene sulfone gamma-secretase inhibitors. Bioorg Med Chem Lett 23:850–853

    Article  CAS  Google Scholar 

  45. Huang Y, Li T, Eatherton A, Mitchell WL, Rong N, Ye L et al (2013) Orally bioavailable and brain-penetrant pyridazine and pyridine-derived gamma-secretase modulators reduced amyloidogenic Abeta peptides in vivo. Neuropharmacology 70C:278–286

    Article  Google Scholar 

  46. Kakuda N, Akazawa K, Hatsuta H, Murayama S, Ihara Y (2013) Suspected limited efficacy of gamma-secretase modulators. Neurobiol Aging 34:1101–1104

    Article  CAS  Google Scholar 

  47. Sabri O, Sabbagh MN, Seibyl J, Barthel H, Akatsu H, Ouchi Y et al (2015) Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: phase 3 study. Alzheimers Dement 11:964–974

    Article  Google Scholar 

  48. Brier MR, Gordon B, Friedrichsen K, McCarthy J, Stern A, Christensen J, et al (2016) Tau and Abeta imaging, CSF measures, and cognition in Alzheimer’s disease. Sci Transl Med 8:338ra66

    Google Scholar 

  49. Holtzman DM, Carrillo MC, Hendrix JA, Bain LJ, Catafau AM, Gault LM, et al (2016) Tau: from research to clinical development. Alzheimers Dement

    Google Scholar 

  50. Herholz K (2016) Tau PET, and tauopathies. Eur J Nucl Med Mol Imaging 43:1684–1685

    Article  Google Scholar 

  51. Wu JW, Herman M, Liu L, Simoes S, Acker CM, Figueroa H et al (2013) Small misfolded Tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J Biol Chem 288:1856–1870

    Article  CAS  Google Scholar 

  52. Scholl M, Lockhart SN, Schonhaut DR, O’Neil JP, Janabi M, Ossenkoppele R et al (2016) PET imaging of Tau deposition in the aging human brain. Neuron 89:971–982

    Article  CAS  Google Scholar 

  53. Attems J, Thal DR, Jellinger KA (2012) The relationship between subcortical tau pathology and Alzheimer’s disease. Biochem Soc Trans 40:711–715

    Article  CAS  Google Scholar 

  54. Mandelkow EM, Mandelkow E (2012) Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2, a006247

    Article  Google Scholar 

  55. Spillantini MG, Goedert M (2013) Tau pathology and neurodegeneration. Lancet Neurol 12:609–622

    Article  CAS  Google Scholar 

  56. Daebel V, Chinnathambi S, Biernat J, Schwalbe M, Habenstein B, Loquet A et al (2012) beta-Sheet core of tau paired helical filaments revealed by solid-state NMR. J Am Chem Soc 134:13982–13989

    Article  CAS  Google Scholar 

  57. Holtzman DM, Carrillo MC, Hendrix JA, Bain LJ, Catafau AM, Gault LM et al (2016) Tau: from research to clinical development. Alzheimers Dement 16:S1552–S5260

    Google Scholar 

  58. Sala Frigerio C, De Strooper B (2016) Alzheimer’s disease mechanisms and emerging roads to novel therapeutics. Annu Rev Neurosci 39:57–79

    Article  CAS  Google Scholar 

  59. Villemagne VL, Okamura N (2016) Tau imaging in the study of ageing, Alzheimer’s disease, and other neurodegenerative conditions. Curr Opin Neurobiol 36:43–51

    Article  CAS  Google Scholar 

  60. Small GW, Siddarth P, Kepe V, Ercoli LM, Burggren AC, Bookheimer SY et al (2012) Prediction of cognitive decline by positron emission tomography of brain amyloid and tau. Arch Neurol 69:215–222

    Article  Google Scholar 

  61. Shoghi-Jadid K, Small GW, Agdeppa ED, Kepe V, Ercoli LM, Siddarth P et al (2002) Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease: binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for beta-amyloid plaques in Alzheimer disease. Am J Geriatr Psychiatry 10:24–35

    Article  Google Scholar 

  62. Agdeppa ED, Kepe V, Liu J, Flores-Torres S, Satyamurthy N, Petric A et al (2001) Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for b-amyloid plaques in Alzheimer’s disease. J Neurosci 21:RC189

    CAS  Google Scholar 

  63. Small GW, Kepe V, Siddarth P, Ercoli LM, Merrill DA, Donoghue N et al (2013) PET scanning of brain tau in retired national football league players: preliminary findings. Am J Geriatr Psychiatry 21:138–144

    Article  Google Scholar 

  64. Kepe V, Bordelon Y, Boxer A, Huang SC, Liu J, Thiede FC et al (2013) PET imaging of neuropathology in tauopathies: progressive supranuclear palsy. J Alzheimers Dis 36:145–153

    CAS  Google Scholar 

  65. Declercq L, Celen S, Lecina J, Ahamed M, Tousseyn T, Moechars D et al (2016) Comparison of new Tau PET-tracer candidates with [18F]T808 and [18F]T807. Mol Imaging 15:36012115624920

    Article  Google Scholar 

  66. Chien DT, Bahri S, Szardenings AK, Walsh JC, Mu F, Su MY et al (2013) Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis 34:457–468

    CAS  Google Scholar 

  67. Zhang W, Arteaga J, Cashion DK, Chen G, Gangadharmath U, Gomez LF et al (2012) A highly selective and specific PET tracer for imaging of Tau pathologies. J Alzheimers Dis 31:601–612

    CAS  Google Scholar 

  68. Johnson KA, Schultz A, Betensky RA, Becker JA, Sepulcre J, Rentz D et al (2016) Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol 79:110–119

    Article  Google Scholar 

  69. Dani M, Brooks DJ, Edison P (2015) Tau imaging in neurodegenerative diseases. Eur J Nucl Med Mol Imaging 43:1139–1150

    Article  Google Scholar 

  70. Kimura Y, Endo H, Ichise M, Shimada H, Seki C, Ikoma Y et al (2016) A new method to quantify tau pathologies with (11)C-PBB3 PET using reference tissue voxels extracted from brain cortical gray matter. Eur J Nucl Med Mol Imaging Res 6:24

    Google Scholar 

  71. Xia CF, Arteaga J, Chen G, Gangadharmath U, Gomez LF, Kasi D et al (2013) [(18)F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimers Dement 9:666–676

    Article  Google Scholar 

  72. Marquie M, Normandin MD, Vanderburg CR, Costantino IM, Bien EA, Rycyna LG et al (2015) Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol 78:787–800

    Article  CAS  Google Scholar 

  73. Okamura N, Suemoto T, Furumoto S, Suzuki M, Shimadzu H, Akatsu H et al (2005) Quinoline and benzimidazole derivatives: candidate probes for in vivo imaging of tau pathology in Alzheimer’s disease. J Neurosci 25:10857–10862

    Article  CAS  Google Scholar 

  74. Shimadzu H, Suemoto T, Suzuki M, Shiomitsu T, Okamura N, Kudo Y et al (2004) Novel probes for imaging amyloid-b: F-18 and C-11 labeling of 2-(4-aminostyryl)benzoxazole derivatives. J Labelled Compd Radiopharm 47:181–190

    Article  CAS  Google Scholar 

  75. Okamura N, Suemoto T, Shimadzu H, Suzuki M, Shiomitsu T, Akatsu H et al (2004) Styrylbenzoxazole derivatives for in vivo imaging of amyloid plaques in the brain. J Neurosci 24:2535–2541

    Article  CAS  Google Scholar 

  76. Kimura Y, Ichise M, Ito H, Shimada H, Ikoma Y, Seki C et al (2015) PET quantification of tau pathology in human brain with 11C-PBB3. J Nucl Med 56:1359–1365

    Article  CAS  Google Scholar 

  77. Wang M, Gao M, Xu Z, Zheng QH (2015) Synthesis of a PET tau tracer [(11)C]PBB3 for imaging of Alzheimer’s disease. Bioorg Med Chem Lett 25:4587–4592

    Article  CAS  Google Scholar 

  78. Hashimoto H, Kawamura K, Takei M, Igarashi N, Fujishiro T, Shiomi S et al (2015) Identification of a major radiometabolite of [11C]PBB3. Nucl Med Biol 42:905–910

    Article  CAS  Google Scholar 

  79. Chiotis K, Saint-Aubert L, Savitcheva I, Jelic V, Andersen P, Jonasson M et al (2016) Imaging in-vivo tau pathology in Alzheimer’s disease with THK5317 PET in a multimodal paradigm. Eur J Nucl Med Mol Imaging 43:1686–1699

    Article  CAS  Google Scholar 

  80. Harada R, Okamura N, Furumoto S, Furukawa K, Ishiki A, Tomita N et al (2016) 18F-THK5351: a novel PET radiotracer for imaging neurofibrillary pathology in Alzheimer disease. J Nucl Med 57:208–214

    Article  CAS  Google Scholar 

  81. Rodriguez-Vieitez E, Leuzy A, Chiotis K, Saint-Aubert L, Wall A, Nordberg A (2016) Comparability of [18F]THK5317 and [11C]PIB blood flow proxy images with [18F]FDG positron emission tomography in Alzheimer’s disease. J Cereb Blood Flow Metab (Epub ahead of print)

    Google Scholar 

  82. Tago T, Furumoto S, Okamura N, Harada R, Adachi H, Ishikawa Y et al (2016) Structure-activity relationship of 2-arylquinolines as PET imaging tracers for tau pathology in Alzheimer disease. J Nucl Med 57:608–614

    Article  Google Scholar 

  83. Harada R, Okamura N, Furumoto S, Tago T, Maruyama M, Higuchi M et al (2013) Comparison of the binding characteristics of [18F]THK-523 and other amyloid imaging tracers to Alzheimer’s disease pathology. Eur J Nucl Med Mol Imaging 40:125–132

    Article  CAS  Google Scholar 

  84. Okamura N, Harada R, Furukawa K, Furumoto S, Tago T, Yanai K et al (2016) Advances in the development of tau PET radiotracers and their clinical applications. Ageing Res Rev 30:107–113

    Article  CAS  Google Scholar 

  85. Okamura N, Furumoto S, Harada R, Tago T, Yoshikawa T, Fodero-Tavoletti M et al (2013) Novel 18F-labeled arylquinoline derivatives for noninvasive imaging of tau pathology in Alzheimer disease. J Nucl Med 54:1420–1427

    Article  CAS  Google Scholar 

  86. Rojo LE, Alzate-Morales J, Saavedra IN, Davies P, Maccioni RB (2010) Selective interaction of lansoprazole and astemizole with tau polymers: potential new clinical use in diagnosis of Alzheimer’s disease. J Alzheimers Dis 19:573–589

    Article  CAS  Google Scholar 

  87. Fawaz MV, Brooks AF, Rodnick ME, Carpenter GM, Shao X, Desmond TJ et al (2014) High affinity radiopharmaceuticals based upon lansoprazole for PET imaging of aggregated tau in Alzheimer’s disease and progressive supranuclear palsy: synthesis, preclinical evaluation, and lead selection. ACS Chem Neurosci 5:718–730

    Article  CAS  Google Scholar 

  88. Shao X, Carpenter GM, Desmond TJ, Sherman P, Quesada CA, Fawaz M et al (2012) Evaluation of [(11)C]N-methyl lansoprazole as a radiopharmaceutical for PET imaging of tau neurofibrillary tangles. ACS Med Chem Lett 3:936–941

    Article  CAS  Google Scholar 

  89. Walji AM, Hostetler ED, Selnick H, Zeng Z, Miller P, Bennacef I et al (2016) Discovery of 6-(Fluoro-(18)F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([(18)F]-MK-6240): a positron emission tomography (PET) imaging agent for quantification of neurofibrillary tangles (NFTs). J Med Chem 59:4778–4789

    Article  CAS  Google Scholar 

  90. Cai L, Qu B, Hurtle BT, Dadiboyena S, Diaz-Arrastia R, Pike VW (2016) Candidate PET radioligand development for neurofibrillary tangles: two distinct radioligand binding sites identified in postmortem Alzheimer’s disease brain. ACS Chem Neurosci 7:897–911

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hank F. Kung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Choi, S.R., Ploessl, K., Zhu, L., Kung, H.F. (2017). PET Imaging Agents for Alzheimer’s Disease. In: Wolfe, M. (eds) Alzheimer’s Disease II. Topics in Medicinal Chemistry, vol 24. Springer, Cham. https://doi.org/10.1007/7355_2016_18

Download citation

Publish with us

Policies and ethics