Skip to main content

Nano-Enabled Delivery of Intracellular Therapeutics

  • Chapter
  • First Online:
Personalized Medicine with a Nanochemistry Twist

Abstract

Many diseases that plague the modern medical world have their origins at the cellular or molecular level and, as such, require greater specificity to be effectively combated and cured. A number of recent advances in understanding the biology and biochemistry have enabled researchers to develop the specialized tools and techniques needed to detect and provide therapy for these debilitating conditions. Many of these treatments take advantage of the way that cells behave and interact with their environment or various properties of the cell’s structure and form. Researchers are able to surpass a number of cellular hurdles, such as the cell membrane, endosomal escape, and intracellular targeting to begin the arduous task of understanding, diagnosing, and treating diseases like cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

CIE:

Clathrin-independent endocytosis

CLIC:

Clathrin- and dynamin-independent carriers

CME:

Clathrin-mediated endocytosis

CPP:

Cell penetrating peptides

CPT:

Camptothecin

DNP:

Dinitrophenol

ECM:

Extracellular matrix

EGFR:

Epidermal growth factor receptors

ER:

Endoplasmic reticulum

ETC:

Electron transport chain

FR:

Fc receptor

GUV:

Giant unilamellar vesicle

HP:

Hematoporphyrin

NLS:

Nuclear localization sequence

NP:

Nanoparticle

NPC:

Nuclear pore complex

PC:

Phophatidylcholine

PCI:

Photo-chemical internalization

PE:

Phosphatidylethanolamine

PEG:

Poly-ethylene glycol

PS:

Phosphatidylserine

PSMA:

Prostate-specific membrane antigens

RES:

Reticulo-endothelial system

ROS:

Reactive oxygen species

TCHD:

Trans-cyclohexane-1,2-diol

TIM:

Transporter inner membrane

TOM:

Transporter outer membrane

TPP:

Triphenylphosphonium

TR:

Transferrin receptors

References

  1. Gong Y et al (2003) Alzheimer’s disease-affected brain: presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci 100(18):10417–10422

    Article  CAS  Google Scholar 

  2. Nisticò L et al (1996) The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Hum Mol Genet 5(7):1075–1080

    Article  Google Scholar 

  3. Hemminki A, Hemminki K (2005) The genetic basis of cancer. In: Cancer gene therapy. Springer, Totowa, pp 9–18

    Chapter  Google Scholar 

  4. Mehnert W, Mäder K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47(2):165–196

    Article  CAS  Google Scholar 

  5. Mukundan S Jr et al (2006) A liposomal nanoscale contrast agent for preclinical CT in mice. Am J Roentgenol 186(2):300–307

    Article  Google Scholar 

  6. Pillai O, Panchagnula R (2001) Polymers in drug delivery. Curr Opin Chem Biol 5(4):447–451

    Article  CAS  Google Scholar 

  7. Jagur‐Grodzinski J (2009) Polymers for targeted and/or sustained drug delivery. Polym Adv Technol 20(7):595–606

    Article  Google Scholar 

  8. Delehanty JB, Mattoussi H, Medintz IL (2009) Delivering quantum dots into cells: strategies, progress and remaining issues. Anal Bioanal Chem 393(4):1091–1105

    Article  CAS  Google Scholar 

  9. Pan D et al (2010) Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons. Biomaterials 31(14):4088–4093

    Article  CAS  Google Scholar 

  10. Ding Y et al (2014) Gold nanoparticles for nucleic acid delivery. Mol Ther 22(6):1075–1083

    Article  CAS  Google Scholar 

  11. Yue-Jian C et al (2010) Synthesis, self-assembly, and characterization of PEG-coated iron oxide nanoparticles as potential MRI contrast agent. Drug Dev Ind pharm 36(10):1235–1244

    Article  Google Scholar 

  12. Ziv K et al (2010) Ferritin as a reporter gene for MRI: chronic liver over expression of h-ferritin during dietary iron supplementation and aging. NMR Biomed 23(5):523–531

    Article  CAS  Google Scholar 

  13. Pan D et al (2012) Rapid synthesis of near infrared polymeric micelles for real-time sentinel lymph node imaging. Adv Healthc Mater 1(5):582–589

    Article  CAS  Google Scholar 

  14. Talelli M, Hennink WE (2011) Thermosensitive polymeric micelles for targeted drug delivery. Nanomedicine 6(7):1245–1255

    Article  CAS  Google Scholar 

  15. Flexman JA et al (2008) Magnetically targeted viral envelopes: a PET investigation of initial biodistribution. IEEE Trans Nanobioscience 7(3):223–232

    Article  Google Scholar 

  16. Wang AZ, Langer R, Farokhzad OC (2012) Nanoparticle delivery of cancer drugs. Annu Rev Med 63:185–198

    Article  CAS  Google Scholar 

  17. Egusquiaguirre SP et al (2012) Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research. Clin Transl Oncol 14(2):83–93

    Article  CAS  Google Scholar 

  18. Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8(8):603–612

    Article  CAS  Google Scholar 

  19. Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307(1):93–102

    Article  CAS  Google Scholar 

  20. Kettler K et al (2014) Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ Toxicol Chem 33(3):481–492

    Article  CAS  Google Scholar 

  21. Champion JA, Mitragotri S (2009) Shape induced inhibition of phagocytosis of polymer particles. Pharm Res 26(1):244–249

    Article  CAS  Google Scholar 

  22. Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A 103(13):4930–4934

    Article  CAS  Google Scholar 

  23. Bareford LM, Swaan PW (2007) Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev 59(8):748–758

    Article  CAS  Google Scholar 

  24. Yameen B et al (2014) Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release 190:485–499

    Article  CAS  Google Scholar 

  25. Nune SK et al (2009) Nanoparticles for biomedical imaging. Expert Opin Drug Deliv 6(11):1175–1194

    Article  CAS  Google Scholar 

  26. Howes MT et al (2010) Clathrin-independent carriers form a high capacity endocytic sorting system at the leading edge of migrating cells. J Cell Biol 190(4):675–691

    Article  CAS  Google Scholar 

  27. Sahay G, Alakhova DY, Kabanov AV (2010) Endocytosis of nanomedicines. J Control Release 145(3):182–195

    Article  CAS  Google Scholar 

  28. Harush-Frenkel O et al (2007) Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun 353(1):26–32

    Article  CAS  Google Scholar 

  29. Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4(5):346–358

    Article  CAS  Google Scholar 

  30. Misra SK et al (2015) Next generation carbon nanoparticles for efficient gene therapy. Mol Pharm 12(2):375–385

    Article  CAS  Google Scholar 

  31. Misra SK et al (2014) Nanoscopic poly-DNA-cleaver for breast cancer regression with induced oxidative damage. Mol Pharm 11(11):4218–4227

    Article  CAS  Google Scholar 

  32. Xu S et al (2013) Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv Drug Deliv Rev 65(1):121–138

    Article  CAS  Google Scholar 

  33. Chou LY, Ming K, Chan WC (2011) Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev 40(1):233–245

    Article  CAS  Google Scholar 

  34. Morille M et al (2008) Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials 29(24):3477–3496

    Article  CAS  Google Scholar 

  35. Misra SK et al (2014) A cationic cholesterol based nanocarrier for the delivery of p53-EGFP-C3 plasmid to cancer cells. Biomaterials 35(4):1334–1346

    Article  CAS  Google Scholar 

  36. Oh KS et al (2010) Core/shell nanoparticles for pH-sensitive delivery of doxorubicin. J Nanosci Nanotechnol 10(10):6967–6971

    Article  CAS  Google Scholar 

  37. Lungwitz U et al (2005) Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm 60(2):247–266

    Article  CAS  Google Scholar 

  38. Ferreira DDS et al (2013) pH-sensitive liposomes for drug delivery in cancer treatment. Ther Deliv 4(9):1099–1123

    Article  CAS  Google Scholar 

  39. Huang JG, Leshuk T, Gu FX (2011) Emerging nanomaterials for targeting subcellular organelles. Nano Today 6(5):478–492

    Article  CAS  Google Scholar 

  40. Berg K et al (1999) Photochemical internalization: a novel technology for delivery of macromolecules into cytosol. Cancer Res 59(6):1180–1183

    CAS  Google Scholar 

  41. Rajendran L, Knölker H-J, Simons K (2010) Subcellular targeting strategies for drug design and delivery. Nat Rev Drug Discov 9(1):29–42

    Article  CAS  Google Scholar 

  42. Pasparakis G et al (2014) Harnessing photochemical internalization with dual degradable nanoparticles for combinatorial photo-chemotherapy. Nat Commun 5

    Google Scholar 

  43. Rittner K et al (2002) New basic membrane-destabilizing peptides for plasmid-based gene delivery in vitro and in vivo. Mol Ther 5(2):104–114

    Article  CAS  Google Scholar 

  44. Vaccaro L et al (2005) Plasticity of influenza haemagglutinin fusion peptides and their interaction with lipid bilayers. Biophys J 88(1):25–36

    Article  CAS  Google Scholar 

  45. Endoh T, Ohtsuki T (2009) Cellular siRNA delivery using cell-penetrating peptides modified for endosomal escape. Adv Drug Deliv Rev 61(9):704–709

    Article  CAS  Google Scholar 

  46. Stewart KM, Horton KL, Kelley SO (2008) Cell-penetrating peptides as delivery vehicles for biology and medicine. Org Biomol Chem 6(13):2242–2255

    Article  CAS  Google Scholar 

  47. Deshayes S et al (2005) Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cell Mol Life Sci 62(16):1839–1849

    Article  CAS  Google Scholar 

  48. Chen B et al (2008) Transmembrane delivery of the cell-penetrating peptide conjugated semiconductor quantum dots. Langmuir 24(20):11866–11871

    Article  CAS  Google Scholar 

  49. Holowka EP et al (2007) Polyarginine segments in block copolypeptides drive both vesicular assembly and intracellular delivery. Nat Mater 6(1):52–57

    Article  CAS  Google Scholar 

  50. Wender PA et al (2000) The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci 97(24):13003–13008

    Article  CAS  Google Scholar 

  51. Copolovici DM et al (2014) Cell-penetrating peptides: design, synthesis, and applications. ACS Nano 8(3):1972–1994

    Article  CAS  Google Scholar 

  52. Torchilin VP (2006) Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng 8:343–375

    Article  CAS  Google Scholar 

  53. Berry C (2008) Intracellular delivery of nanoparticles via the HIV-1 tat peptide

    Google Scholar 

  54. Ciobanasu C, Siebrasse JP, Kubitscheck U (2010) Cell-penetrating HIV1 TAT peptides can generate pores in model membranes. Biophys J 99(1):153–162

    Article  CAS  Google Scholar 

  55. Karanth H, Murthy R (2007) pH-sensitive liposomes—principle and application in cancer therapy. J Pharm Pharmacol 59(4):469–483

    Article  CAS  Google Scholar 

  56. Turk MJ et al (2002) Characterization of a novel pH-sensitive peptide that enhances drug release from folate-targeted liposomes at endosomal pHs. Biochim Biophys Acta Biomembranes 1559(1):56–68

    Article  CAS  Google Scholar 

  57. Adarsh S, Shah Viral A, Umesh U (2011) Organelle specific targeted drug delivery – a review. Int J Res Pharm Biomed Sci 2:895–912

    Google Scholar 

  58. Suh J et al (2007) PEGylation of nanoparticles improves their cytoplasmic transport. Int J Nanomedicine 2(4):735

    CAS  Google Scholar 

  59. Yamada Y, Harashima H (2008) Mitochondrial drug delivery systems for macromolecule and their therapeutic application to mitochondrial diseases. Adv Drug Deliv Rev 60(13):1439–1462

    Article  CAS  Google Scholar 

  60. Biswas S, Torchilin VP (2014) Nanopreparations for organelle-specific delivery in cancer. Adv Drug Deliv Rev 66:26–41

    Article  CAS  Google Scholar 

  61. Yamada Y et al (2008) MITO-porter: a liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochim Biophys Acta Biomembranes 1778(2):423–432

    Article  CAS  Google Scholar 

  62. Gruber J et al (2013) Mitochondria-targeted antioxidants and metabolic modulators as pharmacological interventions to slow ageing. Biotechnol Adv 31(5):563–592

    Article  CAS  Google Scholar 

  63. Kopeček J (2013) Polymer–drug conjugates: origins, progress to date and future directions. Adv Drug Deliv Rev 65(1):49–59

    Article  Google Scholar 

  64. Breunig M, Bauer S, Göpferich A (2008) Polymers and nanoparticles: intelligent tools for intracellular targeting? Eur J Pharm Biopharm 68(1):112–128

    Article  CAS  Google Scholar 

  65. Weis K (2003) Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112(4):441–451

    Article  CAS  Google Scholar 

  66. Griesenbach U et al (2012) Assessment of the nuclear pore dilating agent trans-cyclohexane-1,2-diol in differentiated airway epithelium. J Gene Med 14(7):491–500

    Article  CAS  Google Scholar 

  67. Mohr D et al (2009) Characterisation of the passive permeability barrier of nuclear pore complexes. EMBO J 28(17):2541–2553

    Article  CAS  Google Scholar 

  68. Keminer O, Peters R (1999) Permeability of single nuclear pores. Biophys J 77(1):217–228

    Article  CAS  Google Scholar 

  69. Ellenberg J et al (1997) Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J Cell Biol 138(6):1193–1206

    Article  CAS  Google Scholar 

  70. Kalderon D et al (1984) A short amino acid sequence able to specify nuclear location. Cell 39(3):499–509

    Article  CAS  Google Scholar 

  71. Lee BJ et al (2006) Rules for nuclear localization sequence recognition by karyopherinβ2. Cell 126(3):543–558

    Article  CAS  Google Scholar 

  72. Wang R, Brattain MG (2007) The maximal size of protein to diffuse through the nuclear pore is larger than 60kDa. FEBS Lett 581(17):3164–3170

    Article  CAS  Google Scholar 

  73. Mathot F et al (2007) Passive diffusion of polymeric surfactants across lipid bilayers. J Control Release 120(1):79–87

    Article  CAS  Google Scholar 

  74. Dingwall C, Laskey R (1992) The nuclear membrane. Science 258(5084):942–947

    Article  CAS  Google Scholar 

  75. Sakhrani NM, Padh H (2013) Organelle targeting: third level of drug targeting. Drug Des Dev Ther 7:585

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipanjan Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ostadhossein, F. et al. (2015). Nano-Enabled Delivery of Intracellular Therapeutics. In: Pan, D. (eds) Personalized Medicine with a Nanochemistry Twist. Topics in Medicinal Chemistry, vol 20. Springer, Cham. https://doi.org/10.1007/7355_2015_97

Download citation

Publish with us

Policies and ethics