Skip to main content

Allosteric Inhibitors of Hsp70: Drugging the Second Chaperone of Tumorigenesis

  • Chapter
  • First Online:
Heat Shock Protein Inhibitors

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 19))

  • 1001 Accesses

Abstract

Cancer cells survive in the presence of stresses that would normally cause cell death. To accomplish this feat, they express elevated levels of the molecular chaperones: heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90). Knockdown of these chaperones is selectively toxic to cancer cells, suggesting that they might be promising nodes for anticancer therapy. However, while inhibitors of Hsp90 are well known, progress in the development of Hsp70 inhibitors has proven more difficult. Hsp70 binds tightly to ATP through a highly conserved domain of the actin/hexokinase superfamily, making it challenging to identify selective, competitive inhibitors. Despite this obstacle, progress has been made and first-generation molecules are being deployed. To supplement these efforts, compounds that target important allosteric sites on the chaperone have also been discovered. In some of these cases, the molecules have been shown to control key protein–protein interactions between Hsp70 and its co-chaperones. In other cases, allosteric sites have been used to gain unexpected selectivity for members of the Hsp70 family. Here, we review recent progress in the development of Hsp70 inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Powers MV, Workman P (2007) Inhibitors of the heat shock response: biology and pharmacology. FEBS Lett 581:3758–3769

    Article  CAS  Google Scholar 

  2. Trepel J, Mollapour M, Giaccone G et al (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10:537–549

    Article  CAS  Google Scholar 

  3. Jolly C, Morimoto RI (2000) Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst 92:1564–1572

    Article  CAS  Google Scholar 

  4. Luo J, Solimini NL, Elledge SJ (2009) Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136:823–837

    Article  CAS  Google Scholar 

  5. Ferrarini M, Heltai S, Zocchi MR et al (1992) Unusual expression and localization of heat-shock proteins in human tumor cells. Int J Cancer 51:613–619

    Article  CAS  Google Scholar 

  6. Gress TM, Muller-Pillasch F, Weber C et al (1994) Differential expression of heat shock proteins in pancreatic carcinoma. Cancer Res 54:547–551

    CAS  Google Scholar 

  7. Yaglom JA, Gabai VL, Sherman MY (2007) High levels of heat shock protein Hsp72 in cancer cells suppress default senescence pathways. Cancer Res 67:2373–2381

    Article  CAS  Google Scholar 

  8. Abdel-Magid AF, Carson KG, Harris BD et al (1996) Reductive amination of aldehydes and ketones with sodium triacetoxyborohydride. Studies on direct and indirect reductive amination procedures(1). J Org Chem 61:3849–3862

    Article  CAS  Google Scholar 

  9. Gabai VL, Budagova KR, Sherman MY (2005) Increased expression of the major heat shock protein Hsp72 in human prostate carcinoma cells is dispensable for their viability but confers resistance to a variety of anticancer agents. Oncogene 24:3328–3338

    Article  CAS  Google Scholar 

  10. Gabai VL, Yaglom JA, Waldman T et al (2009) Heat shock protein Hsp72 controls oncogene-induced senescence pathways in cancer cells. Mol Cell Biol 29:559–569

    Article  CAS  Google Scholar 

  11. Yano M, Naito Z, Tanaka S et al (1996) Expression and roles of heat shock proteins in human breast cancer. Jpn J Cancer Res 87:908–915

    Article  CAS  Google Scholar 

  12. Li J, Buchner J (2013) Structure, function and regulation of the hsp90 machinery. Biomed J 36:106–117

    Article  Google Scholar 

  13. Miyata Y, Nakamoto H, Neckers L (2013) The therapeutic target Hsp90 and cancer hallmarks. Curr Pharm Des 19:347–365

    Article  CAS  Google Scholar 

  14. Pearl LH, Prodromou C (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 75:271–294

    Article  CAS  Google Scholar 

  15. Krukenberg KA, Street TO, Lavery LA et al (2011) Conformational dynamics of the molecular chaperone Hsp90. Q Rev Biophys 44:229–255

    Article  CAS  Google Scholar 

  16. Southworth DR, Agard DA (2008) Species-dependent ensembles of conserved conformational states define the Hsp90 chaperone ATPase cycle. Mol Cell 32:631–640

    Article  CAS  Google Scholar 

  17. Lavery LA, Partridge JR, Ramelot TA et al (2014) Structural asymmetry in the closed state of mitochondrial Hsp90 (TRAP1) supports a two-step ATP hydrolysis mechanism. Mol Cell 53:330–343

    Article  CAS  Google Scholar 

  18. Kirschke E, Goswami D, Southworth D et al (2014) Glucocorticoid receptor function regulated by coordinated action of the Hsp90 and Hsp70 chaperone cycles. Cell 157:1685–1697

    Article  CAS  Google Scholar 

  19. Powers MV, Clarke PA, Workman P (2009) Death by chaperone: HSP90, HSP70 or both? Cell Cycle 8:518–526

    Article  CAS  Google Scholar 

  20. Samant RS, Clarke PA, Workman P (2012) The expanding proteome of the molecular chaperone HSP90. Cell Cycle 11:1301–1308

    Article  CAS  Google Scholar 

  21. Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528

    Article  CAS  Google Scholar 

  22. Taipale M, Krykbaeva I, Koeva M et al (2012) Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150:987–1001

    Article  CAS  Google Scholar 

  23. Pratt WB, Morishima Y, Gestwicki JE et al (2014) A model in which heat shock protein 90 targets protein-folding clefts: rationale for a new approach to neuroprotective treatment of protein folding diseases. Exp Biol Med (Maywood) 239:1405–1413

    Article  CAS  Google Scholar 

  24. Connell P, Ballinger CA, Jiang J et al (2001) The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol 3:93–96

    Article  CAS  Google Scholar 

  25. Xu W, Mimnaugh EG, Kim JS et al (2002) Hsp90, not Grp94, regulates the intracellular trafficking and stability of nascent ErbB2. Cell Stress Chaperones 7:91–96

    Article  CAS  Google Scholar 

  26. Pearl LH, Prodromou C, Workman P (2008) The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem J 410:439–453

    Article  CAS  Google Scholar 

  27. Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772

    Article  CAS  Google Scholar 

  28. Chaudhury S, Welch TR, Blagg BS (2006) Hsp90 as a target for drug development. ChemMedChem 1:1331–1340

    Google Scholar 

  29. Schulte TW, Akinaga S, Soga S et al (1998) Antibiotic radicicol binds to the N-terminal domain of Hsp90 and shares important biologic activities with geldanamycin. Cell Stress Chaperones 3:100–108

    Article  CAS  Google Scholar 

  30. Schulte TW, Neckers LM (1998) The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol 42:273–279

    Article  CAS  Google Scholar 

  31. Whitesell L, Mimnaugh EG, De Costa B et al (1994) Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci U S A 91:8324–8328

    Article  CAS  Google Scholar 

  32. Donnelly A, Blagg BS (2008) Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket. Curr Med Chem 15:2702–2717

    Article  CAS  Google Scholar 

  33. Eskew JD, Sadikot T, Morales P et al (2011) Development and characterization of a novel C-terminal inhibitor of Hsp90 in androgen dependent and independent prostate cancer cells. BMC Cancer 11:468

    Article  CAS  Google Scholar 

  34. Patwardhan CA, Fauq A, Peterson LB et al (2013) Gedunin inactivates the co-chaperone p23 protein causing cancer cell death by apoptosis. J Biol Chem 288:7313–7325

    Article  CAS  Google Scholar 

  35. Pimienta G, Herbert KM, Regan L (2011) A compound that inhibits the HOP-Hsp90 complex formation and has unique killing effects in breast cancer cell lines. Mol Pharm 8:2252–2261

    Article  CAS  Google Scholar 

  36. Zhang T, Hamza A, Cao X et al (2008) A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells. Mol Cancer Ther 7:162–170

    Article  CAS  Google Scholar 

  37. Ardi VC, Alexander LD, Johnson VA et al (2011) Macrocycles that inhibit the binding between heat shock protein 90 and TPR-containing proteins. ACS Chem Biol 6:1357–1366

    Article  CAS  Google Scholar 

  38. Zuehlke A, Johnson JL (2010) Hsp90 and co-chaperones twist the functions of diverse client proteins. Biopolymers 93:211–217

    Article  CAS  Google Scholar 

  39. Li J, Soroka J, Buchner J (2012) The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochim Biophys Acta 1823:624–635

    Article  CAS  Google Scholar 

  40. Kamal A, Thao L, Sensintaffar J et al (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425:407–410

    Article  CAS  Google Scholar 

  41. Rohl A, Rohrberg J, Buchner J (2013) The chaperone Hsp90: changing partners for demanding clients. Trends Biochem Sci 38:253–262

    Article  CAS  Google Scholar 

  42. Vasko RC, Rodriguez RA, Cunningham CN et al (2010) Mechanistic studies of Sansalvamide A-amide: an allosteric modulator of Hsp90. ACS Med Chem Lett 1:4–8

    Article  CAS  Google Scholar 

  43. McConnell JR, Alexander LA, McAlpine SR (2014) A heat shock protein 90 inhibitor that modulates the immunophilins and regulates hormone receptors without inducing the heat shock response. Bioorg Med Chem Lett 24:661–666

    Article  CAS  Google Scholar 

  44. Bertelsen EB, Chang L, Gestwicki JE et al (2009) Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc Natl Acad Sci U S A 106:8471–8476

    Article  CAS  Google Scholar 

  45. Bork P, Sander C, Valencia A (1992) An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc Natl Acad Sci U S A 89:7290–7294

    Article  CAS  Google Scholar 

  46. Massey AJ (2010) ATPases as drug targets: insights from heat shock proteins 70 and 90. J Med Chem 53:7280–7286

    Article  CAS  Google Scholar 

  47. Wang H, Kurochkin AV, Pang Y et al (1998) NMR solution structure of the 21 kDa chaperone protein DnaK substrate binding domain: a preview of chaperone-protein interaction. Biochemistry 37:7929–7940

    Article  CAS  Google Scholar 

  48. Smock RG, Rivoire O, Russ WP et al (2010) An interdomain sector mediating allostery in Hsp70 molecular chaperones. Mol Syst Biol 6:414

    Article  CAS  Google Scholar 

  49. Swain JF, Dinler G, Sivendran R et al (2007) Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker. Mol Cell 26:27–39

    Article  CAS  Google Scholar 

  50. Zuiderweg ER, Bertelsen EB, Rousaki A et al (2013) Allostery in the Hsp70 chaperone proteins. Top Curr Chem 328:99–153

    Article  CAS  Google Scholar 

  51. Zhang Y, Zuiderweg ER (2004) The 70-kDa heat shock protein chaperone nucleotide-binding domain in solution unveiled as a molecular machine that can reorient its functional subdomains. Proc Natl Acad Sci U S A 101:10272–10277

    Article  CAS  Google Scholar 

  52. Ahmad A, Bhattacharya A, McDonald RA et al (2011) Heat shock protein 70 kDa chaperone/DnaJ cochaperone complex employs an unusual dynamic interface. Proc Natl Acad Sci U S A 108:18966–18971

    Article  CAS  Google Scholar 

  53. Mayer MP, Schroder H, Rudiger S et al (2000) Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nat Struct Biol 7:586–593

    Article  CAS  Google Scholar 

  54. Vogel M, Bukau B, Mayer MP (2006) Allosteric regulation of Hsp70 chaperones by a proline switch. Mol Cell 21:359–367

    Article  CAS  Google Scholar 

  55. General IJ, Liu Y, Blackburn ME et al (2014) ATPase subdomain IA is a mediator of interdomain allostery in Hsp70 molecular chaperones. PLoS Comput Biol 10, e1003624

    Article  CAS  Google Scholar 

  56. Assimon VA, Gillies AT, Rauch JN et al (2013) Hsp70 protein complexes as drug targets. Curr Pharm Des 19:404–417

    Article  CAS  Google Scholar 

  57. Rauch JN, Gestwicki JE (2014) Binding of human nucleotide exchange factors to heat shock protein 70 (Hsp70) generates functionally distinct complexes in vitro. J Biol Chem 289:1402–1414

    Article  CAS  Google Scholar 

  58. Sondermann H, Scheufler C, Schneider C et al (2001) Structure of a Bag/Hsc70 complex: convergent functional evolution of Hsp70 nucleotide exchange factors. Science 291:1553–1557

    Article  CAS  Google Scholar 

  59. Liu FH, Wu SJ, Hu SM et al (1999) Specific interaction of the 70-kDa heat shock cognate protein with the tetratricopeptide repeats. J Biol Chem 274:34425–34432

    Article  CAS  Google Scholar 

  60. Connarn JN, Assimon VA, Reed RA et al (2014) The molecular chaperone Hsp70 activates protein phosphatase 5 (PP5) by binding the tetratricopeptide repeat (TPR) domain. J Biol Chem 289:2908–2917

    Article  CAS  Google Scholar 

  61. Smith MC, Scaglione KM, Assimon VA et al (2013) The E3 ubiquitin ligase CHIP and the molecular chaperone Hsc70 form a dynamic, tethered complex. Biochemistry 52:5354–5364

    Article  CAS  Google Scholar 

  62. Cortajarena AL, Regan L (2006) Ligand binding by TPR domains. Protein Sci 15:1193–1198

    Article  CAS  Google Scholar 

  63. Chen S, Smith DF (1998) Hop as an adaptor in the heat shock protein 70 (Hsp70) and hsp90 chaperone machinery. J Biol Chem 273:35194–35200

    Article  CAS  Google Scholar 

  64. Johnson BD, Schumacher RJ, Ross ED et al (1998) Hop modulates Hsp70/Hsp90 interactions in protein folding. J Biol Chem 273:3679–3686

    Article  CAS  Google Scholar 

  65. Ballinger CA, Connell P, Wu Y et al (1999) Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 19:4535–4545

    Article  CAS  Google Scholar 

  66. Hohfeld J, Cyr DM, Patterson C (2001) From the cradle to the grave: molecular chaperones that may choose between folding and degradation. EMBO Rep 2:885–890

    Article  CAS  Google Scholar 

  67. Muller P, Ruckova E, Halada P et al (2012) C-terminal phosphorylation of Hsp70 and Hsp90 regulates alternate binding to co-chaperones CHIP and HOP to determine cellular protein folding/degradation balances. Oncogene. doi:10.1038/onc.2012.314

    Google Scholar 

  68. Rudiger S, Germeroth L, Schneider-Mergener J et al (1997) Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J 16:1501–1507

    Article  CAS  Google Scholar 

  69. Zhu X, Zhao X, Burkholder WF et al (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272:1606–1614

    Article  CAS  Google Scholar 

  70. Srinivasan SR, Gillies AT, Chang L et al (2012) Molecular chaperones DnaK and DnaJ share predicted binding sites on most proteins in the E. coli proteome. Mol BioSyst 8:2323–2333

    Article  CAS  Google Scholar 

  71. Koren J 3rd, Jinwal UK, Jin Y et al (2010) Facilitating Akt clearance via manipulation of Hsp70 activity and levels. J Biol Chem 285:2498–2505

    Article  CAS  Google Scholar 

  72. Meng L, Hunt C, Yaglom JA et al (2011) Heat shock protein Hsp72 plays an essential role in Her2-induced mammary tumorigenesis. Oncogene 30:2836–2845

    Article  CAS  Google Scholar 

  73. Powers MV, Clarke PA, Workman P (2008) Dual targeting of HSC70 and HSP72 inhibits HSP90 function and induces tumor-specific apoptosis. Cancer Cell 14:250–262

    Article  CAS  Google Scholar 

  74. Powers MV, Jones K, Barillari C et al (2010) Targeting HSP70: the second potentially druggable heat shock protein and molecular chaperone? Cell Cycle 9:1542–1550

    Article  CAS  Google Scholar 

  75. Walerych D, Olszewski MB, Gutkowska M et al (2009) Hsp70 molecular chaperones are required to support p53 tumor suppressor activity under stress conditions. Oncogene 28:4284–4294

    Article  CAS  Google Scholar 

  76. Barouch W, Prasad K, Greene LE et al (1994) ATPase activity associated with the uncoating of clathrin baskets by Hsp70. J Biol Chem 269:28563–28568

    CAS  Google Scholar 

  77. Jaattela M (1999) Heat shock proteins as cellular lifeguards. Ann Med 31:261–271

    Article  CAS  Google Scholar 

  78. Sherman MY, Gabai VL (2014) Hsp70 in cancer: back to the future. Oncogene. doi:10.1038/onc.2014.349

    Google Scholar 

  79. Jaattela M (1995) Over-expression of hsp70 confers tumorigenicity to mouse fibrosarcoma cells. Int J Cancer 60:689–693

    Article  CAS  Google Scholar 

  80. Ran Q, Wadhwa R, Kawai R et al (2000) Extramitochondrial localization of mortalin/mthsp70/PBP74/GRP75. Biochem Biophys Res Commun 275:174–179

    Article  CAS  Google Scholar 

  81. Lu WJ, Lee NP, Kaul SC et al (2011) Mortalin-p53 interaction in cancer cells is stress dependent and constitutes a selective target for cancer therapy. Cell Death Differ 18:1046–1056

    Article  CAS  Google Scholar 

  82. Knittler MR, Dirks S, Haas IG (1995) Molecular chaperones involved in protein degradation in the endoplasmic reticulum: quantitative interaction of the heat shock cognate protein BiP with partially folded immunoglobulin light chains that are degraded in the endoplasmic reticulum. Proc Natl Acad Sci U S A 92:1764–1768

    Article  CAS  Google Scholar 

  83. Deocaris CC, Widodo N, Shrestha BG et al (2007) Mortalin sensitizes human cancer cells to MKT-077-induced senescence. Cancer Lett 252:259–269

    Article  CAS  Google Scholar 

  84. Wadhwa R, Sugihara T, Yoshida A et al (2000) Selective toxicity of MKT-077 to cancer cells is mediated by its binding to the hsp70 family protein mot-2 and reactivation of p53 function. Cancer Res 60:6818–6821

    CAS  Google Scholar 

  85. Nylandsted J, Brand K, Jaattela M (2000) Heat shock protein 70 is required for the survival of cancer cells. Ann N Y Acad Sci 926:122–125

    Article  CAS  Google Scholar 

  86. Rohde M, Daugaard M, Jensen MH et al (2005) Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes Dev 19:570–582

    Article  CAS  Google Scholar 

  87. Nanbu K, Konishi I, Mandai M et al (1998) Prognostic significance of heat shock proteins HSP70 and HSP90 in endometrial carcinomas. Cancer Detect Prev 22:549–555

    Article  CAS  Google Scholar 

  88. Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10:86–103

    Article  CAS  Google Scholar 

  89. Jaattela M (1993) Overexpression of major heat shock protein hsp70 inhibits tumor necrosis factor-induced activation of phospholipase A2. J Immunol 151:4286–4294

    CAS  Google Scholar 

  90. Chalmin F, Ladoire S, Mignot G et al (2010) Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest 120:457–471

    CAS  Google Scholar 

  91. Park HS, Lee JS, Huh SH et al (2001) Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase. EMBO J 20:446–456

    Article  CAS  Google Scholar 

  92. Saleh A, Srinivasula SM, Balkir L et al (2000) Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2:476–483

    Article  CAS  Google Scholar 

  93. Ravagnan L, Gurbuxani S, Susin SA et al (2001) Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 3:839–843

    Article  CAS  Google Scholar 

  94. Guo F, Sigua C, Bali P et al (2005) Mechanistic role of heat shock protein 70 in Bcr-Abl-mediated resistance to apoptosis in human acute leukemia cells. Blood 105:1246–1255

    Article  CAS  Google Scholar 

  95. Gotoh T, Terada K, Oyadomari S et al (2004) hsp70-DnaJ chaperone pair prevents nitric oxide- and CHOP-induced apoptosis by inhibiting translocation of Bax to mitochondria. Cell Death Differ 11:390–402

    Article  CAS  Google Scholar 

  96. Stankiewicz AR, Lachapelle G, Foo CP et al (2005) Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. J Biol Chem 280:38729–38739

    Article  CAS  Google Scholar 

  97. Colvin TA, Gabai VL, Gong J et al (2014) Hsp70-Bag3 interactions regulate cancer-related signaling networks. Cancer Res 74:4731–4740

    Article  CAS  Google Scholar 

  98. Kabakov AE, Gabai VL (1995) Heat shock-induced accumulation of 70-kDa stress protein (HSP70) can protect ATP-depleted tumor cells from necrosis. Exp Cell Res 217:15–21

    Article  CAS  Google Scholar 

  99. Leu JI, Pimkina J, Frank A et al (2009) A small molecule inhibitor of inducible heat shock protein 70. Mol Cell 36:15–27

    Article  CAS  Google Scholar 

  100. Evans CG, Chang L, Gestwicki JE (2010) Heat shock protein 70 (hsp70) as an emerging drug target. J Med Chem 53:4585–4602

    Article  CAS  Google Scholar 

  101. Patury S, Miyata Y, Gestwicki JE (2009) Pharmacological targeting of the Hsp70 chaperone. Curr Top Med Chem 9:1337–1351

    Article  CAS  Google Scholar 

  102. Brodsky JL, Chiosis G (2006) Hsp70 molecular chaperones: emerging roles in human disease and identification of small molecule modulators. Curr Top Med Chem 6:1215–1225

    Article  CAS  Google Scholar 

  103. Repalli J, Meruelo D (2015) Screening strategies to identify HSP70 modulators to treat Alzheimer's disease. Drug Des Devel Ther 9:321–331

    Article  Google Scholar 

  104. Leu JI, Zhang P, Murphy ME et al (2014) Structural basis for the inhibition of HSP70 and DnaK chaperones by small-molecule targeting of a C-terminal allosteric pocket. ACS Chem Biol 9:2508–2516

    Article  CAS  Google Scholar 

  105. Balaburski GM, Leu JI, Beeharry N et al (2013) A modified HSP70 inhibitor shows broad activity as an anticancer agent. Mol Cancer Res 11:219–229

    Article  CAS  Google Scholar 

  106. Leu JI, Pimkina J, Pandey P et al (2011) HSP70 inhibition by the small-molecule 2-phenylethynesulfonamide impairs protein clearance pathways in tumor cells. Mol Cancer Res 9:936–947

    Article  CAS  Google Scholar 

  107. Kaiser M, Kuhnl A, Reins J et al (2011) Antileukemic activity of the HSP70 inhibitor pifithrin-mu in acute leukemia. Blood Cancer J 1, e28

    Article  CAS  Google Scholar 

  108. Kirkegaard T, Roth AG, Petersen NH et al (2010) Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology. Nature 463:549–553

    Article  CAS  Google Scholar 

  109. Davis MJ, Gregorka B, Gestwicki JE et al (2012) Inducible renitence limits Listeria monocytogenes escape from vacuoles in macrophages. J Immunol 189:4488–4495

    Article  CAS  Google Scholar 

  110. Schmitt E, Maingret L, Puig PE et al (2006) Heat shock protein 70 neutralization exerts potent antitumor effects in animal models of colon cancer and melanoma. Cancer Res 66:4191–4197

    Article  CAS  Google Scholar 

  111. Umezawa H, Kondo S, Iinuma H et al (1981) Structure of an antitumor antibiotic, spergualin. J Antibiot (Tokyo) 34:1622–1624

    Article  CAS  Google Scholar 

  112. Nishikawa K, Shibasaki C, Takahashi K et al (1986) Antitumor activity of spergualin, a novel antitumor antibiotic. J Antibiot (Tokyo) 39:1461–1466

    Article  CAS  Google Scholar 

  113. Nemoto K, Abe F, Takita T et al (1987) Suppression of experimental allergic encephalomyelitis in guinea pigs by spergualin and 15-deoxyspergualin. J Antibiot (Tokyo) 40:1193–1194

    Article  CAS  Google Scholar 

  114. Nemoto K, Hayashi M, Abe F et al (1987) Suppression of humoral immunity in mice by spergualin. Transplant Proc 19:4638–4640

    CAS  Google Scholar 

  115. Nishizawa R, Takei Y, Yoshida M et al (1988) Synthesis and biological activity of spergualin analogues. I J Antibiot (Tokyo) 41:1629–1643

    Article  CAS  Google Scholar 

  116. Lebreton L, Annat J, Derrepas P et al (1999) Structure-immunosuppressive activity relationships of new analogues of 15-deoxyspergualin. 1. Structural modifications of the hydroxyglycine moiety. J Med Chem 42:277–290

    Article  CAS  Google Scholar 

  117. Krieger NR, Emre S (2004) Novel immunosuppressants. Pediatr Transplant 8:594–599

    Article  CAS  Google Scholar 

  118. Kaufman DB, Gores PF, Kelley S et al (1996) 15-Deoxyspergualin: Immunotherapy in solid organ and cellular transplantation. Transplant Rev 10:160–174

    Article  Google Scholar 

  119. Elices MJ (2001) Tresperimus (Laboratoires Fournier). Curr Opin Investig Drugs 2:372–374

    CAS  Google Scholar 

  120. Nadler SG, Dischino DD, Malacko AR et al (1998) Identification of a binding site on Hsc70 for the immunosuppressant 15-deoxyspergualin. Biochem Biophys Res Commun 253:176–180

    Article  CAS  Google Scholar 

  121. Nadler SG, Tepper MA, Schacter B et al (1992) Interaction of the immunosuppressant deoxyspergualin with a member of the Hsp70 family of heat shock proteins. Science 258:484–486

    Article  CAS  Google Scholar 

  122. Umeda Y, Moriguchi M, Ikai K et al (1987) Synthesis and antitumor activity of spergualin analogues. III. Novel method for synthesis of optically active 15-deoxyspergualin and 15-deoxy-11-O-methylspergualin. J Antibiot (Tokyo) 40:1316–1324

    Article  CAS  Google Scholar 

  123. Havlin KA, Kuhn JG, Koeller J et al (1995) Deoxyspergualin: phase I clinical, immunologic and pharmacokinetic study. Anticancer Drugs 6:229–236

    Article  CAS  Google Scholar 

  124. Hassan AQ, Kirby CA, Zhou W et al (2015) The novolactone natural product disrupts the allosteric regulation of hsp70. Chem Biol 22:87–97

    Article  CAS  Google Scholar 

  125. Kragol G, Lovas S, Varadi G et al (2001) The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40:3016–3026

    Article  CAS  Google Scholar 

  126. Cellitti J, Zhang Z, Wang S et al (2009) Small molecule DnaK modulators targeting the beta-domain. Chem Biol Drug Des 74:349–357

    Article  CAS  Google Scholar 

  127. Williams DR, Ko SK, Park S et al (2008) An apoptosis-inducing small molecule that binds to heat shock protein 70. Angew Chem Int Ed Engl 47:7466–7469

    Article  CAS  Google Scholar 

  128. Cho HJ, Gee HY, Baek KH et al (2011) A small molecule that binds to an ATPase domain of Hsc70 promotes membrane trafficking of mutant cystic fibrosis transmembrane conductance regulator. Journal of the American Chemical Society 133:20267–20276

    Article  CAS  Google Scholar 

  129. Williamson DS, Borgognoni J, Clay A et al (2009) Novel adenosine-derived inhibitors of 70 kDa heat shock protein, discovered through structure-based design. J Med Chem 52:1510–1513

    Article  CAS  Google Scholar 

  130. Macias AT, Williamson DS, Allen N et al (2011) Adenosine-derived inhibitors of 78 kDa glucose regulated protein (Grp78) ATPase: insights into isoform selectivity. J Med Chem 54:4034–4041

    Article  CAS  Google Scholar 

  131. Fewell SW, Smith CM, Lyon MA et al (2004) Small molecule modulators of endogenous and co-chaperone-stimulated Hsp70 ATPase activity. J Biol Chem 279:51131–51140

    Article  CAS  Google Scholar 

  132. Wisen S, Bertelsen EB, Thompson AD et al (2010) Binding of a small molecule at a protein-protein interface regulates the chaperone activity of hsp70-hsp40. ACS chemical biology 5:611–622

    Article  CAS  Google Scholar 

  133. Jinwal UK, Miyata Y, Koren J 3rd et al (2009) Chemical manipulation of hsp70 ATPase activity regulates tau stability. J Neurosci 29:12079–12088

    Article  CAS  Google Scholar 

  134. Wisen S, Androsavich J, Evans CG et al (2008) Chemical modulators of heat shock protein 70 (Hsp70) by sequential, microwave-accelerated reactions on solid phase. Bioorg Med Chem Lett 18:60–65

    Article  CAS  Google Scholar 

  135. Chang L, Bertelsen EB, Wisén S et al (2008) High-throughput screen for small molecules that modulate the ATPase activity of the molecular chaperone DnaK. Anal Biochem 372:167–176

    Article  CAS  Google Scholar 

  136. Wright CM, Chovatiya RJ, Jameson NE et al (2008) Pyrimidinone-peptoid hybrid molecules with distinct effects on molecular chaperone function and cell proliferation. Bioorg Med Chem 16:3291–3301

    Article  CAS  Google Scholar 

  137. Wisen S, Gestwicki JE (2008) Identification of small molecules that modify the protein folding activity of heat shock protein 70. Anal Biochem 374:371–377

    Article  CAS  Google Scholar 

  138. Braunstein MJ, Scott SS, Scott CM et al (2011) Antimyeloma Effects of the Heat Shock Protein 70 Molecular Chaperone Inhibitor MAL3-101. J Oncol 2011:232037

    Article  CAS  Google Scholar 

  139. Adam C, Baeurle A, Brodsky JL et al (2014) The HSP70 modulator MAL3-101 inhibits Merkel cell carcinoma. PLoS One 9, e92041

    Article  CAS  Google Scholar 

  140. Huryn DM, Brodsky JL, Brummond KM et al (2011) Chemical methodology as a source of small-molecule checkpoint inhibitors and heat shock protein 70 (Hsp70) modulators. Proc Natl Acad Sci U S A 108:6757–6762

    Article  CAS  Google Scholar 

  141. Chiba Y, Kubota T, Watanabe M et al (1998) MKT-077, localized lipophilic cation: antitumor activity against human tumor xenografts serially transplanted into nude mice. Anticancer Res 18:1047–1052

    CAS  Google Scholar 

  142. Chiba Y, Kubota T, Watanabe M et al (1998) Selective antitumor activity of MKT-077, a delocalized lipophilic cation, on normal cells and cancer cells in vitro. J Surg Oncol 69:105–110

    Article  CAS  Google Scholar 

  143. Koya K, Li Y, Wang H et al (1996) MKT-077, a novel rhodacyanine dye in clinical trials, exhibits anticarcinoma activity in preclinical studies based on selective mitochondrial accumulation. Cancer Res 56:538–543

    CAS  Google Scholar 

  144. Rousaki A, Miyata Y, Jinwal UK et al (2011) Allosteric drugs: the interaction of antitumor compound MKT-077 with human Hsp70 chaperones. J Mol Biol 411:614–632

    Article  CAS  Google Scholar 

  145. Abisambra J, Jinwal UK, Miyata Y et al (2013) Allosteric Heat Shock Protein 70 Inhibitors Rapidly Rescue Synaptic Plasticity Deficits by Reducing Aberrant Tau. Biol Psychiatry. doi:10.1016/j.biopsych.2013.02.027

    Google Scholar 

  146. Wang AM, Miyata Y, Klinedinst S et al (2013) Activation of Hsp70 reduces neurotoxicity by promoting polyglutamine protein degradation. Nat Chem Biol 9:112–118

    Article  CAS  Google Scholar 

  147. Miyata Y, Li X, Lee HF et al (2013) Synthesis and initial evaluation of YM-08, a blood-brain barrier permeable derivative of the heat shock protein 70 (Hsp70) inhibitor MKT-077. Which reduces Tau levels. ACS Chem Neurosci. doi:10.1021/cn300210g

    Google Scholar 

  148. Koren J 3rd, Miyata Y, Kiray J et al (2012) Rhodacyanine derivative selectively targets cancer cells and overcomes tamoxifen resistance. PLoS One 7, e35566

    Article  CAS  Google Scholar 

  149. Li X, Srinivasan SR, Connarn J et al (2013) Analogs of the allosteric heat shock protein 70 (Hsp70) inhibitor, MKT-077, as anti-cancer agents. ACS Med Chem Lett 2013:4

    Google Scholar 

  150. Miyata Y, Koren J, Kiray J et al (2011) Molecular chaperones and regulation of tau quality control: strategies for drug discovery in tauopathies. Future Med Chem 3:1523–1537

    Article  CAS  Google Scholar 

  151. Kawakami M, Koya K, Ukai T et al (1998) Structure-activity of novel rhodacyanine dyes as antitumor agents. J Med Chem 41:130–142

    Article  CAS  Google Scholar 

  152. Takasu K, Terauchi H, Inoue H et al (2003) Parallel synthesis of antimalarial rhodacyanine dyes by the combination of three components in one pot. J Comb Chem 5:211–214

    Article  CAS  Google Scholar 

  153. Kasmi-Mir S, Djafri A, Hamelin J et al (2007) Synthesis of new rhodacyanines analogous to MKT-077 under microwave irradiation. Synt Commun 37:4017–4034

    Article  CAS  Google Scholar 

  154. Tatsuta N, Suzuki N, Mochizuki T et al (1999) Pharmacokinetic analysis and antitumor efficacy of MKT-077, a novel antitumor agent. Cancer Chemother Pharmacol 43:295–301

    Article  CAS  Google Scholar 

  155. Li X, Colvin T, Rauch JN et al (2015) Validation of the Hsp70-Bag3 protein–protein interaction as a potential therapeutic target in cancer. Mol Cancer Ther. doi:10.1158/1535-7163.MCT-14-0650

    Google Scholar 

  156. Rodina A, Patel PD, Kang Y et al (2013) Identification of an allosteric pocket on human hsp70 reveals a mode of inhibition of this therapeutically important protein. Chem Biol 20:1469–1480

    Article  CAS  Google Scholar 

  157. Miyata Y, Rauch JN, Jinwal UK et al (2012) Cysteine reactivity distinguishes redox sensing by the heat-inducible and constitutive forms of heat shock protein 70. Chem Biol 19:1391–1399

    Article  CAS  Google Scholar 

  158. Wang Y, Gibney PA, West JD et al (2012) The yeast Hsp70 Ssa1 is a sensor for activation of the heat shock response by thiol-reactive compounds. Mol Biol Cell 23:3290–3298

    Article  CAS  Google Scholar 

  159. Rodina A, Taldone T, Kang Y et al (2014) Affinity purification probes of potential use to investigate the endogenous Hsp70 interactome in cancer. ACS Chem Biol 9:1698–1705

    Article  CAS  Google Scholar 

  160. Taldone T, Kang Y, Patel HJ et al (2014) Heat shock protein 70 inhibitors. 2. 2,5'-thiodipyrimidines, 5-(phenylthio)pyrimidines, 2-(pyridin-3-ylthio)pyrimidines, and 3-(phenylthio)pyridines as reversible binders to an allosteric site on heat shock protein 70. J Med Chem 57:1208–1224

    Article  CAS  Google Scholar 

  161. Howe MK, Bodoor K, Carlson DA et al (2014) Identification of an allosteric small-molecule inhibitor selective for the inducible form of heat shock protein 70. Chem Biol 21:1648–1659

    Article  CAS  Google Scholar 

  162. Daguer JP, Zambaldo C, Ciobanu M et al (2015) DNA display of fragment pairs as a tool for the discovery of novel biologically active small molecules. Chem Rev 6:739–744

    CAS  Google Scholar 

  163. McNamara AV, Barclay M, Watson AJ et al (2012) Hsp90 inhibitors sensitise human colon cancer cells to topoisomerase I poisons by depletion of key anti-apoptotic and cell cycle checkpoint proteins. Biochem Pharmacol 83:355–367

    Article  CAS  Google Scholar 

  164. Stingl L, Stuhmer T, Chatterjee M et al (2010) Novel HSP90 inhibitors, NVP-AUY922 and NVP-BEP800, radiosensitise tumour cells through cell-cycle impairment, increased DNA damage and repair protraction. Br J Cancer 102:1578–1591

    Article  CAS  Google Scholar 

  165. Wainberg ZA, Anghel A, Rogers AM et al (2013) Inhibition of HSP90 with AUY922 induces synergy in HER2-amplified trastuzumab-resistant breast and gastric cancer. Mol Cancer Ther 12:509–519

    Article  CAS  Google Scholar 

  166. Lu X, Xiao L, Wang L et al (2012) Hsp90 inhibitors and drug resistance in cancer: the potential benefits of combination therapies of Hsp90 inhibitors and other anti-cancer drugs. Biochem Pharmacol 83:995–1004

    Article  CAS  Google Scholar 

  167. Tatokoro M, Koga F, Yoshida S et al (2012) Potential role of Hsp90 inhibitors in overcoming cisplatin resistance of bladder cancer-initiating cells. Int J Cancer 131:987–996

    Article  CAS  Google Scholar 

  168. Zhang H, Neely L, Lundgren K et al (2010) BIIB021, a synthetic Hsp90 inhibitor, has broad application against tumors with acquired multidrug resistance. Int J Cancer 126:1226–1234

    Article  CAS  Google Scholar 

  169. Goloudina AR, Demidov ON, Garrido C (2012) Inhibition of HSP70: a challenging anti-cancer strategy. Cancer Lett 325:117–124

    Article  CAS  Google Scholar 

  170. Davenport EL, Zeisig A, Aronson LI et al (2010) Targeting heat shock protein 72 enhances Hsp90 inhibitor-induced apoptosis in myeloma. Leukemia 24:1804–1807

    Article  CAS  Google Scholar 

  171. Wang Y, McAlpine SR (2015) Regulating the cytoprotective response in cancer cells using simultaneous inhibition of Hsp90 and Hsp70. Org Biomol Chem 13:2108–2116

    Article  CAS  Google Scholar 

  172. Wang Y, McAlpine SR (2015) N-terminal and C-terminal modulation of Hsp90 produce dissimilar phenotypes. Chem Commun (Camb) 51:1410–1413

    Article  CAS  Google Scholar 

  173. Crawford LJ, Walker B, Irvine AE (2011) Proteasome inhibitors in cancer therapy. J Cell Commun Signal 5:101–110

    Article  Google Scholar 

  174. Mathew R, Karantza-Wadsworth V, White E (2007) Role of autophagy in cancer. Nat Rev Cancer 7:961–967

    Article  CAS  Google Scholar 

  175. Gaspar N, Sharp SY, Pacey S et al (2009) Acquired resistance to 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin) in glioblastoma cells. Cancer Res 69:1966–1975

    Article  CAS  Google Scholar 

  176. Kummar S, Gutierrez ME, Gardner ER et al (2010) Phase I trial of 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), a heat shock protein inhibitor, administered twice weekly in patients with advanced malignancies. Eur J Cancer 46:340–347

    Article  CAS  Google Scholar 

  177. Lancet JE, Gojo I, Burton M et al (2010) Phase I study of the heat shock protein 90 inhibitor alvespimycin (KOS-1022, 17-DMAG) administered intravenously twice weekly to patients with acute myeloid leukemia. Leukemia 24:699–705

    Article  CAS  Google Scholar 

  178. Budina-Kolomets A, Balaburski GM, Bondar A et al (2014) Comparison of the activity of three different HSP70 inhibitors on apoptosis, cell cycle arrest, autophagy inhibition and HSP90 inhibition. Cancer Biol Ther 15:1–6

    Article  CAS  Google Scholar 

  179. Bercovich B, Stancovski I, Mayer A et al (1997) Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. J Biol Chem 272:9002–9010

    Article  CAS  Google Scholar 

  180. Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70:603–647

    Article  CAS  Google Scholar 

  181. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332

    Article  CAS  Google Scholar 

  182. Kettern N, Rogon C, Limmer A et al (2011) The Hsc/Hsp70 co-chaperone network controls antigen aggregation and presentation during maturation of professional antigen presenting cells. PLoS One 6, e16398

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Our work on Hsp70 is funded by the NIH (NS059690). We thank the members of our group for useful feedback and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason E. Gestwicki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Srinivasan, S.R., Shao, H., Li, X., Gestwicki, J.E. (2015). Allosteric Inhibitors of Hsp70: Drugging the Second Chaperone of Tumorigenesis. In: McAlpine, S., Edkins, A. (eds) Heat Shock Protein Inhibitors. Topics in Medicinal Chemistry, vol 19. Springer, Cham. https://doi.org/10.1007/7355_2015_88

Download citation

Publish with us

Policies and ethics