Skip to main content

Muscarinic Acetylcholine Receptor Activators

  • Chapter
  • First Online:
Small Molecule Therapeutics for Schizophrenia

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 13))

Abstract

Modulation of muscarinic acetylcholine receptors (mAChRs) is one of the most attractive therapeutic strategies for the treatment of schizophrenia. Pilot clinical studies of the M1/M4 mAChR-preferring agonist xanomeline as well as animal studies using M1–M5 mAChR knockout mice suggest that selective activation of M1 and/or M4 mAChRs is a key concept in the treatment of psychosis and cognitive deficits in patients with schizophrenia. However, over the past two decades, clinical development of mAChR agonists has not been successful mainly due to these agents’ narrow safety margin caused by the lack of true subtype selectivity. However, recent advances in medicinal chemistry might enable researchers to overcome the hurdles that earlier mAChR agonists failed to pass. Here, we describe recent advances in the development of subtype-selective mAChR activators for treatment of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[123I]-IQNB:

[123I]-iodoquinuclidinyl benzilate

ACh:

Acetylcholine

AD:

Alzheimer’s disease

BA:

Bioavailability

BQCA:

Benzylquinolone carboxylic acid

BuTAC:

[5R-(exo)]-6-[4-butylthio-1,2,5-thiadiazol-3-yl]-1-azabicyclo-[3.2.1]-octane

CNS:

Central nervous system

EPS:

Extrapyramidal side effects

Et:

Ethyl

GPCR:

G-protein-coupled receptor

hERG:

Human ether-a-go-go related gene

HTS:

High throughput screening

IA:

Intrinsic activity

mAChR:

Muscarinic acetylcholine receptor

Me:

Methyl

NAM:

Negative allosteric modulator

NDMC:

N-desmethylclozapine

NMDA:

N-methyl-d-aspartate

PAM:

Positive allosteric modulator

PANSS:

Positive and negative syndrome scale

PK:

Pharmacokinetic

PPI:

Prepulse inhibition

TBPB:

1-(1′-(2-tolyl)-1,4′-bipedidin-4-yl)-1H-benzo[d]imidazol-2-(3H)-one

References

  1. Andreasen NC, Flaum M, Swayze VW et al (1990) Positive and negative symptoms in schizophrenia. A critical reappraisal. Arch Gen Psychiatry 47:615–621

    Article  CAS  Google Scholar 

  2. Meltzer HY (1999) Treatment of schizophrenia and spectrum disorders: pharmacotherapy, psychosocial treatments, and neurotransmitter interactions. Biol Psychiatry 46:1321–1327

    Article  CAS  Google Scholar 

  3. Casey DE (1996) Extrapyramidal syndromes and new antipsychotic drugs: findings in patients and non-human primate models. Br J Psychiatry Suppl 29:32–39

    Google Scholar 

  4. Hirsch S, Barnes TRE (1995) The clinical treatment of schizophrenia with antipsychotic medication. In: Hirsch SR, Weinberger DR (eds) Schizophrenia. Blackwell, Oxford

    Google Scholar 

  5. Leucht S, Corves C, Arbter D et al (2009) Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta-analysis. Lancet 373:31–41

    Article  CAS  Google Scholar 

  6. Woodward ND, Purdon SE, Meltzer HY et al (2005) A meta-analysis of neuropsychological change to clozapine, olanzapine, quetiapine, and risperidone in schizophrenia. Int J Neuropsychopharmacol 8:457–472

    Article  CAS  Google Scholar 

  7. Raedler TJ, Bymaster FP, Tandon R et al (2007) Towards a muscarinic hypothesis of schizophrenia. Mol Psychiatry 12:232–246

    CAS  Google Scholar 

  8. Shekhar A, Potter WZ, Lightfoot J et al (2008) Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am J Psychiatry 165:1033–1039

    Article  Google Scholar 

  9. Wess J, Eglen RM, Gautam D (2007) Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov 6:721–733

    Article  CAS  Google Scholar 

  10. Caulfield MP, Birdsall NJ (1998) International union of pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50:279–290

    CAS  Google Scholar 

  11. Eglen RM (2005) Muscarinic receptor subtype pharmacology and physiology. Prog Med Chem 43:105–136

    Article  CAS  Google Scholar 

  12. Eglen RM (2012) Overview of muscarinic receptor subtypes. Handb Exp Pharmacol 208:3–28

    Article  CAS  Google Scholar 

  13. Hulme EC, Birdsall NJ, Buckley NJ (1990) Muscarinic receptor subtypes. Annu Rev Pharmacol Toxicol 30:633–673

    Article  CAS  Google Scholar 

  14. Raedler TJ, Knable MB, Jones DW et al (2003) In vivo determination of muscarinic acetylcholine receptor availability in schizophrenia. Am J Psychiatry 160:118–127

    Article  Google Scholar 

  15. Crook JM, Tomaskovic-Crook E, Copolov DL et al (2000) Decreased muscarinic receptor binding in subjects with schizophrenia: a study of the human hippocampal formation. Biol Psychiatry 48:381–388

    Article  CAS  Google Scholar 

  16. Dean B, McLeod M, Keriakous D et al (2002) Decreased muscarinic1 receptors in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol Psychiatry 7:1083–1091

    Article  CAS  Google Scholar 

  17. Zavitsanou K, Katsifis A, Mattner F et al (2004) Investigation of M1/M4 muscarinic receptors in the anterior cingulate cortex in schizophrenia, bipolar disorder, and major depression disorder. Neuropsychopharmacology 29:619–625

    Article  CAS  Google Scholar 

  18. Scarr E, Sundram S, Keriakous D et al (2007) Altered hippocampal muscarinic M4, but not M1, receptor expression from subjects with schizophrenia. Biol Psychiatry 61:1161–1170

    Article  CAS  Google Scholar 

  19. Scarr E, Keriakous D, Crossland N et al (2006) No change in cortical muscarinic M2, M3 receptors or [35S]GTPγS binding in schizophrenia. Life Sci 78:1231–1237

    Article  CAS  Google Scholar 

  20. Scarr E, Cowie TF, Kanellakis S et al (2009) Decreased cortical muscarinic receptors define a subgroup of subjects with schizophrenia. Mol Psychiatry 14:1017–1023

    Article  CAS  Google Scholar 

  21. Bubser M, Byun N, Wood MR et al (2012) Muscarinic receptor pharmacology and circuitry for the modulation of cognition. Handb Exp Pharmacol 208:121–166

    Article  CAS  Google Scholar 

  22. Miyakawa T, Yamada M, Duttaroy A et al (2001) Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor. J Neurosci 21:5239–5250

    CAS  Google Scholar 

  23. Anagnostaras SG, Murphy GG, Hamilton SE et al (2003) Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neuroscience 6:51–58

    Article  CAS  Google Scholar 

  24. Bartko SJ, Romberg C, White B et al (2011) Intact attentional processing but abnormal responding in M1 muscarinic receptor-deficient mice using an automated touchscreen method. Neuropharmacology 61:1366–1378

    Article  CAS  Google Scholar 

  25. Keefe RSE (2000) Working memory dysfunction and its relevance to schizophrenia. In: Sharma T, Harvey P (eds) Cognition in schizophrenia. Oxford University Press, Oxford, pp 16–50

    Google Scholar 

  26. Chudasama Y, Robbins TW (2006) Functions of frontostriatal systems in cognition: comparative neuropsychopharmacological studies in rats, monkeys and humans. Biol Psychol 73:19–38

    Article  CAS  Google Scholar 

  27. Gerber DJ, Sotnikova TD, Gainetdinov RR et al (2001) Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice. Proc Natl Acad Sci USA 98:15312–15317

    Article  CAS  Google Scholar 

  28. Gomeza J, Zhang L, Kostenis E et al (1999) Enhancement of D1 dopamine receptor-mediated locomotor stimulation in M4 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 96:10483–10488

    Article  CAS  Google Scholar 

  29. Koshimizu H, Leiter LM, Miyakawa T (2012) M4 muscarinic receptor knockout mice display abnormal social behavior and decreased prepulse inhibition. Mol Brain 5:10

    Article  CAS  Google Scholar 

  30. Tzavara ET, Bymaster FP, Davis RJ et al (2004) M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: relevance to the pathophysiology and treatment of related central nervous system pathologies. FASEB J 18:1410–1412

    CAS  Google Scholar 

  31. Tzavara ET, Bymaster FP, Felder CC et al (2003) Dysregulated hippocampal acetylcholine neurotransmission and impaired cognition in M2, M4 and M2/M4 muscarinic receptor knockout mice. Mol Psychiatry 8:673–679

    Article  CAS  Google Scholar 

  32. Floresco SB, Geyer MA, Gold LH et al (2005) Developing predictive animal models and establishing a preclinical trials network for assessing treatment effects on cognition in schizophrenia. Schizophr Bull 31:888–894

    Article  Google Scholar 

  33. Forster GL, Yeomans JS, Takeuchi J et al (2001) M5 muscarinic receptors are required for prolonged accumbal dopamine release after electrical stimulation of the pons in mice. J Neurosci 21:RC190

    Google Scholar 

  34. Wang H, Ng K, Hayes D et al (2004) Decreased amphetamine-induced locomotion and improved latent inhibition in mice mutant for the M5 muscarinic receptor gene found in the human 15q schizophrenia region. Neuropsychopharmacology 29:2126–2139

    Article  CAS  Google Scholar 

  35. Weiner I (2003) The “two-headed” latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology 169:257–297

    Article  CAS  Google Scholar 

  36. Fisher A, Pittel Z, Haring R et al (2003) M1 muscarinic agonists can modulate some of the hallmarks in Alzheimer's disease: implications in future therapy. J Mol Neurosci 20:349–356

    Article  CAS  Google Scholar 

  37. McArthur RA, Gray J, Schreiber R (2010) Cognitive effects of muscarinic M1 functional agonists in non-human primates and clinical trials. Curr Opin Investig Drugs 11:740–760

    CAS  Google Scholar 

  38. Bodick NC, Offen WW, Levey AI et al (1997) Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol 54:465–473

    Article  CAS  Google Scholar 

  39. Bolbecker AR, Shekhar A (2012) Muscarinic agonists and antagonists in schizophrenia: recent therapeutic advances and future directions. Handb Exp Pharmacol 208:167–190

    Article  CAS  Google Scholar 

  40. Shannon HE, Hart JC, Bymaster FP et al (1999) Muscarinic receptor agonists, like dopamine receptor antagonist antipsychotics, inhibit conditioned avoidance response in rats. J Pharmacol Exp Ther 290:901–907

    CAS  Google Scholar 

  41. Shannon HE, Rasmussen K, Bymaster FP et al (2000) Xanomeline, an M1/M4 preferring muscarinic cholinergic receptor agonist, produces antipsychotic-like activity in rats and mice. Schizophr Res 42:249–259

    Article  CAS  Google Scholar 

  42. Stanhope KJ, Mirza NR, Bickerdike MJ et al (2001) The muscarinic receptor agonist xanomeline has an antipsychotic-like profile in the rat. J Pharmacol Exp Ther 299:782–792

    CAS  Google Scholar 

  43. Heinrich JN, Butera JA, Carrick T et al (2009) Pharmacological comparison of muscarinic ligands: historical versus more recent muscarinic M1-preferring receptor agonists. Eur J Pharmacol 605:53–56

    Article  CAS  Google Scholar 

  44. Watson J, Brough S, Coldwell MC et al (1998) Functional effects of the muscarinic receptor agonist, xanomeline, at 5-HT1 and 5-HT2 receptors. Br J Pharmacol 125:1413–1420

    Article  CAS  Google Scholar 

  45. Woolley ML, Carter HJ, Gartlon JE et al (2009) Attenuation of amphetamine-induced activity by the non-selective muscarinic receptor agonist, xanomeline, is absent in muscarinic M4 receptor knockout mice and attenuated in muscarinic M1 receptor knockout mice. Eur J Pharmacol 603:147–149

    Article  CAS  Google Scholar 

  46. Dencker D, Wörtwein G, Weikop P et al (2011) Involvement of a subpopulation of neuronal M4 muscarinic acetylcholine receptors in the antipsychotic-like effects of the M1/M4 preferring muscarinic receptor agonist xanomeline. J Neurosci 31:5905–5908

    Article  CAS  Google Scholar 

  47. Watt ML, Rorick-Kehn L, Shaw DB et al (2013) The muscarinic acetylcholine receptor agonist BuTAC mediates antipsychotic-like effects via the M4 subtype. Neuropsychopharmacology 38:2717–2726

    Article  CAS  Google Scholar 

  48. Li Z, Snigdha S, Roseman AS et al (2008) Effect of muscarinic receptor agonists xanomeline and sabcomeline on acetylcholine and dopamine efflux in the rat brain; comparison with effects of 4-[3-(4-butylpiperidin-1-yl)-propyl]-7-fluoro-4H-benzo[1,4]oxazin-3-one (AC260584) and N-desmethylclozapine. Eur J Pharmacol 596:89–97

    Article  CAS  Google Scholar 

  49. Perry KW, Nisenbaum LK, George CA et al (2001) The muscarinic agonist xanomeline increases monoamine release and immediate early gene expression in the rat prefrontal cortex. Biol Psychiatry 49:716–725

    Article  CAS  Google Scholar 

  50. Enomoto T, Noda Y, Nabeshima T (2007) Phencyclidine and genetic animal models of schizophrenia developed in relation to the glutamate hypothesis. Methods Find Exp Clin Pharmacol 29:291–301

    Article  CAS  Google Scholar 

  51. Tseng KY, Chambers RA, Lipska BK (2009) The neonatal ventral hippocampal lesion as a heuristic neurodevelopmental model of schizophrenia. Behav Brain Res 204:295–305

    Article  Google Scholar 

  52. Enomoto T, Floresco SB (2009) Disruptions in spatial working memory, but not short-term memory, induced by repeated ketamine exposure. Prog Neuropsychopharmacol Biol Psychiatry 33:668–675

    Article  CAS  Google Scholar 

  53. Floresco SB, Zhang Y, Enomoto T (2009) Neural circuits subserving behavioral flexibility and their relevance to schizophrenia. Behav Brain Res 204:396–409

    Article  Google Scholar 

  54. Sedman AJ, Bockbrader H, Schwarz RD (1995) Preclinical and phase 1 clinical characterization of CI-979/RU35926, a novel muscarinic agonist for the treatment of Alzheimer’s disease. Life Sci 56:877–882

    Article  CAS  Google Scholar 

  55. Thal LJ, Forrest M, Loft H et al (2000) Lu 25-109, a muscarinic agonist, fails to improve cognition in Alzheimer's disease. Lu25-109 Study Group. Neurology 54:421–426

    Article  CAS  Google Scholar 

  56. Sumiyoshi T, Enomoto T, Takai K et al (2013) Discovery of N-substituted oxindoles as selective M1 and M4 muscarinic acetylcholine receptors partial agonists. ACS Med Chem Lett 4:244–248

    Article  CAS  Google Scholar 

  57. Carlsson A, Hansson LO, Waters N et al (1999) A glutamatergic deficiency model of schizophrenia. Br J Psychiatry Suppl 37:2–6

    Google Scholar 

  58. Marino MJ, Rouse ST, Levey AI et al (1998) Activation of the genetically defined m1 muscarinic receptor potentiates N-methyl-d-aspartate (NMDA) receptor currents in hippocampal pyramidal cells. Proc Natl Acad Sci USA 95:11465–11470

    Article  CAS  Google Scholar 

  59. Davies MA, Compton-Toth BA, Hufeisen SJ et al (2005) The highly efficacious actions of N-desmethylclozapine at muscarinic receptors are unique and not a common property of either typical or atypical antipsychotic drugs: is M1 agonism a pre-requisite for mimicking clozapine's actions? Psychopharmacology 178:451–460

    Article  CAS  Google Scholar 

  60. Sur C, Mallorga PJ, Wittmann M et al (2003) N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-d-aspartate receptor activity. Proc Natl Acad Sci USA 100:13674–13679

    Article  CAS  Google Scholar 

  61. Weiner DM, Meltzer HY, Veinbergs I et al (2004) The role of M1 muscarinic receptor agonism of N-desmethylclozapine in the unique clinical effects of clozapine. Psychopharmacology 177:207–216

    Article  CAS  Google Scholar 

  62. ACADIA Pharmaceuticals (2008) ACADIA pharmaceuticals announces results from ACP-104 phase IIb schizophrenia trial. http://www.acadia-pharm.com/. Accessed 8 March 2014

  63. Melancon BJ, Tarr JC, Panarese JD et al (2013) Allosteric modulation of the M1 muscarinic acetylcholine receptor: improving cognition and a potential treatment for schizophrenia and Alzheimer’s disease. Drug Discovery Today 18:1185–1199

    Article  CAS  Google Scholar 

  64. Spalding TA, Trotter C, Skjærbæk N et al (2002) Discovery of an ectopic activation site on the M1 muscarinic receptor. Mol Pharmacol 61:1297–1302

    Article  CAS  Google Scholar 

  65. Spalding TA, Ma J-N, Ott TR et al (2006) Structural requirements of transmenbrane domain 3 for activation by the M1 muscarinic receptor agonists, AC-42, AC-260584, clozapine, and N-desmethylclozapine: evidence for three distinct models of receptor activation. Mol Pharmacol 70:1974–1983

    Article  CAS  Google Scholar 

  66. Bradley SR, Lameh J, Ohrmund L et al (2010) AC-260584, an orally bioavailable M1 muscarinic receptor allosteric agonist, improves cognitive performance in an animal model. Neuropharmacology 58:365–373

    Article  CAS  Google Scholar 

  67. Langmead CJ, Austin NE, Branch CL et al (2008) Characterization of a CNS penetrant, selective M1 muscarinic receptor agonist, 77-LH-28-1. Br J Pharmacol 154:1104–1115

    Article  CAS  Google Scholar 

  68. Avlani VA, Langmead CJ, Guida E et al (2010) Orthosteric and allosteric modes of interaction of novel selective agonists of the M1 muscarinic acetylcholine receptor. Mol Pharmacol 78:94–104

    Article  CAS  Google Scholar 

  69. Sams AG, Hentzer M, Mikkelsen GK et al (2010) Discovery of N-{1-[3-(3-Oxo-2,3-dihydrobenzo[1,4]oxazin-4-yl)propyl]piperidin-4-yl}-2-phenylacetamide (Lu AE51090): an allosteric muscarinic M1 receptor agonist with unprecedented selectivity and procognitive potential. J Med Chem 53:6386–6397

    Article  CAS  Google Scholar 

  70. Jones CK, Brady AE, Davis AA et al (2008) Novel selective allosteric activator of the M1 muscarinic acetylcholine receptor regulates amyloid processing and produces antipsychotic-like activity in rats. J Neurosci 28:10422–10433

    Article  CAS  Google Scholar 

  71. Keov P, Valant C, Devine SM et al (2013) Reverse engineering of the selective agonist TBPB unveils both orthosteric and allosteric modes of action at the M1 muscarinic acetylcholine receptor. Mol Pharmacol 84:425–437

    Article  CAS  Google Scholar 

  72. Budzik B, Garzya V, Shi D et al (2010) Novel N-substituted benzimidazolones as potent, selective, CNS-penetrant, and orally active M1 mAChR agonists. ACS Med Chem Lett 1:244–248

    Article  CAS  Google Scholar 

  73. Huiban M, Pampols-Maso S, Passchier J (2011) Fully automated synthesis of the M1 receptor agonist [11C] GSK1034702 for clinical use on an Eckert & Ziegler Modular Lab system. Appl Radiat Isotopes 69:1390–1394

    Article  CAS  Google Scholar 

  74. Nathan PJ, Watson J, Lund J et al (2013) The potent M1 receptor allosteric agonist GSK1034702 improves episodic memory in humans in the nicotine abstinence model of cognitive dysfunction. Int J Neuropsychopharmacol 16:721–731

    Article  CAS  Google Scholar 

  75. Johnson DJ, Forbes IT, Watson SP et al (2010) The discovery of a series of N-substituted 3-(4-piperidinyl)-1,3-benzoxazolinones and oxindoles as highly brain penetrant, selective muscarinic M1 agonists. Bioorg Med Chem Lett 20:5434–5438

    Article  CAS  Google Scholar 

  76. Budzik B, Garzya V, Shi D et al (2010) Biaryl amides as novel and subtype selective M1 agonists. Part II: Further optimization and profiling. Bioorg Med Chem Lett 20:3545–3549

    Article  CAS  Google Scholar 

  77. Lebois EP, Bridges TM, Lewis LM et al (2010) Discovery and characterization of novel subtype-selective allosteric agonists for the investigation of M1 receptor function in the central nervous system. ACS Chem Neurosci 1:104–121

    Article  CAS  Google Scholar 

  78. Lebois EP, Digby GJ, Sheffler DJ et al (2011) Development of a highly selective, orally bioavailable and CNS penetrant M1 agonist derived from the MLPCN probe ML071. Bioorg Med Chem Lett 21:6451–6455

    Article  CAS  Google Scholar 

  79. Melancon BJ, Gogliotti RD, Tarr JC et al (2012) Continued optimizationn of the MLPCN probe ML071 into highly potent agonists of the hM1 muscarinic acetylcholine receptor. Bioorg Med Chem Lett 22:3467–3472

    Article  CAS  Google Scholar 

  80. Conn PJ, Christopoulos A, Lindsley CW (2009) Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat Rev Drug Discov 8:41–54

    Article  CAS  Google Scholar 

  81. Birdsall NJM, Farries T, Gharagozloo P et al (1997) Selective allosteric enhancement of the binding and actions of acetylcholine at muscarinic receptor subtypes. Life Sci 60:1047–1052

    Article  CAS  Google Scholar 

  82. Ma L, Seager MA, Wittman M et al (2009) Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation Proc Natl Acad Sci USA 106:15950–15955

    Google Scholar 

  83. Shirey JK, Brady AE, Jones PJ et al (2009) A selective allosteric potentiator of the M1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and restores impairments in reversal learning. J Neurosci 29:14271–14286

    Article  CAS  Google Scholar 

  84. Yang FV, Shipe WD, Bunda JL et al (2010) Parallel synthesis of N-biaryl quinolone carboxylic acids as selective M1 positive allosteric modulators. Bioorg Med Chem Lett 20:531–536

    Article  CAS  Google Scholar 

  85. Kuduk SD, Di Marco CN, Cofre V et al (2010) N-Heterocyclic derived M1 positive allosteric modulators. Bioorg Med Chem Lett 20:1334–1337

    Article  CAS  Google Scholar 

  86. Kuduk SD, Di Marco CN, Chang RK et al (2010) Heterocyclic fused pyridone carboxylic acid M1 positive allosteric modulators. Bioorg Med Chem Lett 20:2533–2537

    Article  CAS  Google Scholar 

  87. Kuduk SD, Di Marco CN, Cofre V et al (2011) Fused heterocyclic M1 positive allosteric modulators. Bioorg Med Chem Lett 21:2769–2772

    Article  CAS  Google Scholar 

  88. Kuduk SD, Chang RK, Di Marco CN et al (2010) Quinolizidinone carboxylic acids as CNS penetrant, selective M1 allosteric muscarinic receptor modulators. ACS Med Chem Lett 1:263–267

    Article  CAS  Google Scholar 

  89. Kuduk SD, Chang RK, Di Marco CN et al (2011) Discovery of a selective allosteric M1 receptor modulator with suitable development properties based on a quinolizidinone carboxylic acid scaffold. J Med Chem 54:4773–4780

    Article  CAS  Google Scholar 

  90. Kuduk SD, Chang RK, Greshock TJ et al (2012) Dentification of amides as carboxylic acid surrogates for quinolizidinone-based M1 positive allosteric modulators. ACS Med Chem Lett 3:1070–1074

    Article  CAS  Google Scholar 

  91. Sakamoto H, Sugimoto T (2013) WO2013/129,622

    Google Scholar 

  92. Kuduk SD, Di Marco CN, Saffold JR et al (2014) Identification of a methoxynaphthalene scaffold as a core replacement in quinolizidinone amide M1 positive allosteric modulators. Bioorg Med Chem Lett 24:1417–1420

    Article  CAS  Google Scholar 

  93. Kuduk SD, Beshore DC (2012) Novel M1 allosteric ligands: a patent review. Expert Opin Ther Patents 22:1385–1398

    Article  CAS  Google Scholar 

  94. Kuduk SD, Di Marco CN,Yang ZQ et al (2012) WO2012/158,474

    Google Scholar 

  95. Kuduk SD, Gilvert KF (2011) WO2011/159,554

    Google Scholar 

  96. Kuduk SD, Chang RK, Greshock TJ (2012) WO2012/047,702

    Google Scholar 

  97. Beshore DC, Kuduk SD (2010) WO2010/096,338

    Google Scholar 

  98. Kuduk SD, Di Marco CN, Beshore DC (2012) WO2012/158,473

    Google Scholar 

  99. Kuduk SD, Beshore DC, Yang Z et al (2012) WO2012/003,147

    Google Scholar 

  100. Kuduk SD, Skudlarek JW (2012) WO2011/159,553

    Google Scholar 

  101. Kuduk SD, Beshore DC, Yang ZQ et al (2012) WO2012/158,475

    Google Scholar 

  102. Kuduk SD, Beshore DC, Di Marco CN et al (2011) WO2011/084,371

    Google Scholar 

  103. Beshore DC, Kuduk SD (2011) WO2011/137,049

    Google Scholar 

  104. Kuduk SD, Beshore DC, Di Marco CN (2010) WO2010/059,773

    Google Scholar 

  105. Yang ZQ, Shu Y, Ma L et al (2014) Discovery of naphthyl-fused 5-member lactams as a new class of M1 positive allosteric modulators. ACS Med Chem Lett. doi:10.1021/ml500055h

  106. Swinnen D, Montagne C, Pomel V et al (2013) WO2013/091,773

    Google Scholar 

  107. Beher D, Quattropani A, Osen-Sand A et al (2013) Potent M1 muscarinic acetylcholine receptor positive allosteric modulators as potential therapeutics for Alzheimer’s disease. Soc Neurosci Abst 41:02

    Google Scholar 

  108. Marlo JE, Niswender CM, Days EL et al (2009) Discovery and characterization of novel allosteric potentiators of M1 muscarinic receptors reveals multiple modes of activity. Mol Pharmacol 75:577–588

    Article  CAS  Google Scholar 

  109. Bridges TM, Kennedy JP, Noetzel MJ et al (2010) Chemical lead optimization of a pan Gq mAChR M1, M3, M5 positive allosteric modulator (PAM) lead. Part II: development of a potent and highly selective M1 PAM. Bioorg Med Chem Lett 20:1972–1975

    Article  CAS  Google Scholar 

  110. Reid PR, Bridges TM, Sheffler DJ et al (2011) Discovery and optimization of a novel, selective and brain penetrant M1 positive allosteric modulator (PAM): the development of ML169, an MLPCN probe. Bioorg Med Chem Lett 21:2697–2701

    Article  CAS  Google Scholar 

  111. Tarr JC, Turlington ML, Reid PR et al (2012) Targeting selective activation of M1 for the treatment of Alzheimer’s disease: further chemical optimization and pharmacological characterization of the M1 positive allosteric modulator ML169. ACS Chem Neurosci 3:884–895

    Article  CAS  Google Scholar 

  112. Lindsley CW, Conn PJ, Wood MR et al (2013) WO2013/063,549

    Google Scholar 

  113. Foster DJ, Choi DL, Conn PJ et al (2014) Activation of M1 and M4 muscarinic receptors as potential treatments for Alzheimer’s disease and schizophrenia. Neuropsychiatr Dis Treat 10:183–191

    CAS  Google Scholar 

  114. Takai K, Inoue Y, Konishi Y et al (2013) Identification of N-substituted 8-azatetrahydroquinolone derivatives as selective and orally active M1 and M4 muscarinic acetylcholine receptors agonists. Bioorg Med Chem Lett 23:4644–4647

    Article  CAS  Google Scholar 

  115. Makings L, Garcia-Guzman Blanco M, Hurley DJ et al (2006) WO 2006/023,852

    Google Scholar 

  116. Yamakawa T, Ando M, Ohwaki K et al (2001) WO 01/27,104

    Google Scholar 

  117. Shirey JK, Xiang Z, Orton D et al (2008) An allosteric potentiator of M4 mAChR modulates hippocampal synaptic transmission. Nat Chem Biol 4:42–50

    Article  CAS  Google Scholar 

  118. Chan WY, McKinzie DL, Bose S et al (2008) Allosteric modulation of the muscarinic M4 receptor as an approach to treating schizophrenia. Proc Natl Acad Sci USA 105:10978–10983

    Article  CAS  Google Scholar 

  119. Brady AE, Jones CK, Bridges TM et al (2008) Centrally active allosteric potentiators of the M4 muscarinic acetylcholine receptor reverse amphetamine-induced hyperlocomotor activity in rats. J Pharm Exp Ther 327:941−953

    Google Scholar 

  120. Kennedy JP, Bridges TM, Gentry PR et al (2009) Synthesis and structure–activity relationships of allosteric potentiators of the M4 muscarinic acetylcholine receptor. Chem Med Chem 4:1600–1607

    Article  CAS  Google Scholar 

  121. Le U, Melancon BJ, Bridges TM et al (2013) Discovery of a selective M4 positive allosteric modulator based on the 3-amino-thieno[2,3-b]pyridine-2-carboxamide scaffold: development of ML253, a potent and brain penetrant compound that is active in a preclinical model of schizophrenia. Bioorg Med Chem Lett 23:346–350

    Article  CAS  Google Scholar 

  122. Huynh T, Valant C, Crosby IT et al (2013) Probing structural requirements of positive allosteric modulators of the M4 muscarinic receptor. J Med Chem 56:8196–8200

    Article  CAS  Google Scholar 

  123. Salovich JM, Vinson PN, Sheffler DJ et al (2012) Discovery of N-(4-methoxy-7-methylbenzo[d]thiazol-2-yl)isonicatinamide, ML293, as a novel, selective and brain penetrant positive allosteric modulator of the muscarinic 4 (M4) receptor. Bioorg Med Chem Lett 22:5084–5088

    Article  CAS  Google Scholar 

  124. Grant MK, El-Fakahany EE (2013) Persistent binding and functional antagonism by xanomeline at the muscarinic M5 receptor. J Pharmacol Exp Ther 315:313–319

    Article  CAS  Google Scholar 

  125. Zheng G, Smith AM, Huang X et al (2013) Structural modifications to tetrahydropyridine-3-carboxylate esters en route to the discovery of M5-preferring muscarinic receptor orthosteric antagonists. J Med Chem 56:1693–1703

    Article  CAS  Google Scholar 

  126. Gentry PR, Kokubo M, Bridges TM et al (2013) Discovery of the first M5-selective and CNS penetrant negative allosteric modulator (NAM) of a muscarinic acetylcholine receptor: (S)-9b-(4-chlorophenyl)-1-(3,4-difluorobenzoyl)-2,3-dihydro-1H-imidazo[2,1-a]isoindol-5(9bH)-one (ML375). J Med Chem 56:9351–9355

    Article  CAS  Google Scholar 

  127. Mohr K, Schmitz J, Schrage R et al (2013) Molecular alliance–from orthosteric and allosteric ligands to dualsteric/bitopic agonists at G protein coupled receptors. Angew Chem Int Ed 52:508–516

    Article  CAS  Google Scholar 

  128. Davie BJ, Christopolos A, Scammells PJ (2013) Development of M1 mAChR allosteric and bitopic ligands: prospective therapeutics for the treatment of cognitive deficits. ACS Chem Nerosci 4:1026–1048

    Article  CAS  Google Scholar 

  129. Robertson N, Jazayeri A, Errey J et al (2011) The properties of thermostabilised G protein-coupled receptors (StaRs) and their use in drug discovery. Neuropharmacology 60:36–44

    Article  CAS  Google Scholar 

  130. Haga K, Kruse AC, Asada H et al (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482:547–552

    Article  CAS  Google Scholar 

  131. Kruse AC, Hu J, Pan AC et al (2012) Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482:552–559

    Article  CAS  Google Scholar 

  132. Heptares Therapeutics (2013) Heptares initiates clinical study with first selective muscarinic M1 receptor agonist for improving cognition in patients with Alzheimer’s disease. http://www.heptares.com/. Accessed 8 March 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaaki Sumiyoshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sumiyoshi, T., Enomoto, T. (2014). Muscarinic Acetylcholine Receptor Activators. In: Celanire, S., Poli, S. (eds) Small Molecule Therapeutics for Schizophrenia. Topics in Medicinal Chemistry, vol 13. Springer, Cham. https://doi.org/10.1007/7355_2014_47

Download citation

Publish with us

Policies and ethics