Skip to main content

Blood–Brain Barrier and Stroke

  • Chapter
  • First Online:
The Blood Brain Barrier (BBB)

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 10))

Abstract

Stroke disintegrates communications within a highly dynamic and regulated ensemble of cells that constitutes the blood–brain barrier (BBB), endothelial cells, astrocytic end feet that surround blood vessels, the basement membrane (BM)/extracellular matrix (ECM), and pericytes, inducing and propagating injury. We discuss the effects of experimental stroke on individual cell constituents of the BBB and how these changes affect structural and functional integrity of the BBB in relation to acute injury and repair. The age at the time of stroke, from the newborn period to adulthood and older, can markedly affect the particulars of deregulation, processes that we also discuss in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cummins PM (2012) Occludin: one protein, many forms. Mol Cell Biol 32:242–250

    CAS  Google Scholar 

  2. Asahi M, Wang X, Mori T, Sumii T, Jung JC, Moskowitz MA, Fini ME, Lo EH (2001) Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood–brain barrier and white matter components after cerebral ischemia. J Neurosci 21:7724–7732

    CAS  Google Scholar 

  3. Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA (2007) Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 27:697–709

    CAS  Google Scholar 

  4. Liu J, Jin X, Liu KJ, Liu W (2012) Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood–brain barrier damage in early ischemic stroke stage. J Neurosci 32:3044–3057

    CAS  Google Scholar 

  5. Petty MA, Lo EH (2002) Junctional complexes of the blood–brain barrier: permeability changes in neuroinflammation. Prog Neurobiol 68:311–323

    CAS  Google Scholar 

  6. Dejana E, Giampietro C (2012) Vascular endothelial-cadherin and vascular stability. Curr Opin Hematol 19:218–223

    CAS  Google Scholar 

  7. Paolinelli R, Corada M, Orsenigo F, Dejana E (2011) The molecular basis of the blood brain barrier differentiation and maintenance. Is it still a mystery? Pharmacol Res 63:165–171

    CAS  Google Scholar 

  8. Wacker BK, Freie AB, Perfater JL, Gidday JM (2012) Junctional protein regulation by sphingosine kinase 2 contributes to blood–brain barrier protection in hypoxic preconditioning-induced cerebral ischemic tolerance. J Cereb Blood Flow Metab 32:1014–1023

    CAS  Google Scholar 

  9. Freeman LR, Keller JN (1822) Oxidative stress and cerebral endothelial cells: regulation of the blood–brain barrier and antioxidant based interventions. Biochim Biophys Acta 2012:822–829

    Google Scholar 

  10. Rizzo MT, Leaver HA (2010) Brain endothelial cell death: modes, signaling pathways, and relevance to neural development, homeostasis, and disease. Mol Neurobiol 42:52–63

    CAS  Google Scholar 

  11. Fernandez Lopez D, Faustino J, Daneman R, Zhou L, Lee SY, Derugin N, Wendland MF, Vexler ZS (2012) Blood–brain barrier permeability is increased after acute adult stroke but not neonatal stroke. J Neurosci 32:9588–9600

    CAS  Google Scholar 

  12. Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood–brain barrier. Nature 468:557–561

    CAS  Google Scholar 

  13. Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468:562–566

    CAS  Google Scholar 

  14. Winkler EA, Bell RD, Zlokovic BV (2011) Central nervous system pericytes in health and disease. Nat Neurosci 14:1398–1405

    CAS  Google Scholar 

  15. Bonkowski D, Katyshev V, Balabanov RD, Borisov A, Dore-Duffy P (2011) The CNS microvascular pericyte: pericyte–astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS 8:8

    Google Scholar 

  16. Liu S, Agalliu D, Yu C, Fisher M (2012) The role of pericytes in blood–brain barrier function and stroke. Curr Pharm Des 18:3653–3662

    CAS  Google Scholar 

  17. Duz B, Oztas E, Erginay T, Erdogan E, Gonul E (2007) The effect of moderate hypothermia in acute ischemic stroke on pericyte migration: an ultrastructural study. Cryobiology 55:279–284

    Google Scholar 

  18. Gonul E, Duz B, Kahraman S, Kayali H, Kubar A, Timurkaynak E (2002) Early pericyte response to brain hypoxia in cats: an ultrastructural study. Microvasc Res 64:116–119

    Google Scholar 

  19. Fernandez-Klett F, Potas JR, Hilpert D, Blazej K, Radke J, Huck J, Engel O, Stenzel W, Genove G, Priller J (2013) Early loss of pericytes and perivascular stromal cell-induced scar formation after stroke. J Cereb Blood Flow Metab 33:428–439

    CAS  Google Scholar 

  20. Fukuda S, Fini CA, Mabuchi T, Koziol JA, Eggleston LL Jr, del Zoppo GJ (2004) Focal cerebral ischemia induces active proteases that degrade microvascular matrix. Stroke 35:998–1004

    CAS  Google Scholar 

  21. Takata F, Dohgu S, Matsumoto J, Takahashi H, Machida T, Wakigawa T, Harada E, Miyaji H, Koga M, Nishioku T, Yamauchi A, Kataoka Y (2011) Brain pericytes among cells constituting the blood–brain barrier are highly sensitive to tumor necrosis factor-alpha, releasing matrix metalloproteinase-9 and migrating in vitro. J Neuroinflammation 8:106

    CAS  Google Scholar 

  22. Skalli O, Pelte MF, Peclet MC, Gabbiani G, Gugliotta P, Bussolati G, Ravazzola M, Orci L (1989) Alpha-smooth muscle actin, a differentiation marker of smooth muscle cells, is present in microfilamentous bundles of pericytes. J Histochem Cytochem 37:315–321

    CAS  Google Scholar 

  23. Yemisci M, Gursoy-Ozdemir Y, Vural A, Can A, Topalkara K, Dalkara T (2009) Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med 15:1031–1037

    CAS  Google Scholar 

  24. Dalkara T, Gursoy-Ozdemir Y, Yemisci M (2011) Brain microvascular pericytes in health and disease. Acta Neuropathol 122:1–9

    Google Scholar 

  25. Zechariah A, Elali A, Doeppner TR, Jin F, Hasan MR, Helfrich I, Mies G, Hermann DM (2013) Vascular endothelial growth factor promotes pericyte coverage of brain capillaries, improves cerebral blood flow during subsequent focal cerebral ischemia, and preserves the metabolic penumbra. Stroke 44(6):1690–1697

    Google Scholar 

  26. Rash JE, Yasumura T, Hudson CS, Agre P, Nielsen S (1998) Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci U S A 95:11981–11986

    CAS  Google Scholar 

  27. Nagelhus EA, Mathiisen TM, Ottersen OP (2004) Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with kir4.1. Neuroscience 129:905–913

    CAS  Google Scholar 

  28. Neely JD, Amiry-Moghaddam M, Ottersen OP, Froehner SC, Agre P, Adams ME (2001) Syntrophin-dependent expression and localization of aquaporin-4 water channel protein. Proc Natl Acad Sci U S A 98:14108–14113

    CAS  Google Scholar 

  29. Zador Z, Stiver S, Wang V, Manley GT (2009) Role of aquaporin-4 in cerebral edema and stroke. Handb Exp Pharmacol 190:159–170

    Google Scholar 

  30. Zelaznik HN, Vaughn AJ, Green JT, Smith AL, Hoza B, Linnea K (2012) Motor timing deficits in children with attention-deficit/hyperactivity disorder. Hum Mov Sci 31:255–265

    Google Scholar 

  31. Manley GT, Binder DK, Papadopoulos MC, Verkman AS (2004) New insights into water transport and edema in the central nervous system from phenotype analysis of aquaporin-4 null mice. Neuroscience 129:983–991

    CAS  Google Scholar 

  32. Papadopoulos MC, Manley GT, Krishna S, Verkman AS (2004) Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J 18:1291–1293

    CAS  Google Scholar 

  33. Tagaya M, Haring HP, Stuiver I, Wagner S, Abumiya T, Lucero J, Lee P, Copeland BR, Seiffert D, del Zoppo GJ (2001) Rapid loss of microvascular integrin expression during focal brain ischemia reflects neuron injury. J Cereb Blood Flow Metab 21:835–846

    CAS  Google Scholar 

  34. Steiner E, Enzmann GU, Lin S, Ghavampour S, Hannocks MJ, Zuber B, Ruegg MA, Sorokin L, Engelhardt B (2012) Loss of astrocyte polarization upon transient focal brain ischemia as a possible mechanism to counteract early edema formation. Glia 60:1646–1659

    Google Scholar 

  35. Ezan P, Andre P, Cisternino S, Saubamea B, Boulay AC, Doutremer S, Thomas MA, Quenech'du N, Giaume C, Cohen-Salmon M (2012) Deletion of astroglial connexins weakens the blood–brain barrier. J Cereb Blood Flow Metab 32:1457–1467

    CAS  Google Scholar 

  36. Engelhardt B, Sorokin L (2009) The blood–brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol 31:497–511

    Google Scholar 

  37. Wang J, Milner R (2006) Fibronectin promotes brain capillary endothelial cell survival and proliferation through alpha5beta1 and alphavbeta3 integrins via map kinase signalling. J Neurochem 96:148–159

    CAS  Google Scholar 

  38. Willis CL, Leach L, Clarke GJ, Nolan CC, Ray DE (2004) Reversible disruption of tight junction complexes in the rat blood–brain barrier, following transitory focal astrocyte loss. Glia 48:1–13

    Google Scholar 

  39. Goetz JG, Joshi B, Lajoie P, Strugnell SS, Scudamore T, Kojic LD, Nabi IR (2008) Concerted regulation of focal adhesion dynamics by galectin-3 and tyrosine-phosphorylated caveolin-1. J Cell Biol 180:1261–1275

    CAS  Google Scholar 

  40. Gould DB, Phalan FC, Breedveld GJ, van Mil SE, Smith RS, Schimenti JC, Aguglia U, van der Knaap MS, Heutink P, John SW (2005) Mutations in col4a1 cause perinatal cerebral hemorrhage and porencephaly. Science 308:1167–1171

    CAS  Google Scholar 

  41. Labelle-Dumais C, Dilworth DJ, Harrington EP, de Leau M, Lyons D, Kabaeva Z, Manzini MC, Dobyns WB, Walsh CA, Michele DE, Gould DB (2011) Col4a1 mutations cause ocular dysgenesis, neuronal localization defects, and myopathy in mice and walker-warburg syndrome in humans. PLoS Genet 7:e1002062

    CAS  Google Scholar 

  42. Kuo DS, Labelle-Dumais C, Gould DB (2012) Col4a1 and col4a2 mutations and disease: insights into pathogenic mechanisms and potential therapeutic targets. Hum Mol Genet 21:R97–R110

    CAS  Google Scholar 

  43. Colognato H, Yurchenco PD (2000) Form and function: the laminin family of heterotrimers. Dev Dyn 218:213–234

    CAS  Google Scholar 

  44. Yu WM, Chen ZL, North AJ, Strickland S (2009) Laminin is required for schwann cell morphogenesis. J Cell Sci 122:929–936

    CAS  Google Scholar 

  45. Carlson KB, Singh P, Feaster MM, Ramnarain A, Pavlides C, Chen ZL, Yu WM, Feltri ML, Strickland S (2011) Mesenchymal stem cells facilitate axon sorting, myelination, and functional recovery in paralyzed mice deficient in Schwann cell-derived laminin. Glia 59:267–277

    Google Scholar 

  46. Han Q, Li B, Feng H, Xiao Z, Chen B, Zhao Y, Huang J, Dai J (2011) The promotion of cerebral ischemia recovery in rats by laminin-binding BDNF. Biomaterials 32:5077–5085

    CAS  Google Scholar 

  47. Rosenberg GA, Estrada EY, Dencoff JE (1998) Matrix metalloproteinases and TIMPs are associated with blood–brain barrier opening after reperfusion in rat brain. Stroke 29:2189–2195

    CAS  Google Scholar 

  48. Rosenberg GA, Yang Y (2007) Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurg Focus 22:E4

    Google Scholar 

  49. McColl BW, Rose N, Robson FH, Rothwell NJ, Lawrence CB. Increased brain microvascular mmp-9 and incidence of haemorrhagic transformation in obese mice after experimental stroke. J Cereb Blood Flow Metab.30:267-272

    Google Scholar 

  50. Asahi M, Asahi K, Jung JC, del Zoppo GJ, Fini ME, Lo EH (2000) Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab 20:1681–1689

    CAS  Google Scholar 

  51. Asahi M, Sumii T, Fini ME, Itohara S, Lo EH (2001) Matrix metalloproteinase 2 gene knockout has no effect on acute brain injury after focal ischemia. Neuroreport 12:3003–3007

    CAS  Google Scholar 

  52. Suofu Y, Clark JF, Broderick JP, Kurosawa Y, Wagner KR, Lu A (2012) Matrix metalloproteinase-2 or -9 deletions protect against hemorrhagic transformation during early stage of cerebral ischemia and reperfusion. Neuroscience 212:180–189

    CAS  Google Scholar 

  53. McColl BW, Rothwell NJ, Allan SM (2008) Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. J Neurosci 28:9451–9462

    CAS  Google Scholar 

  54. Gidday JM, Gasche YG, Copin JC, Shah AR, Perez RS, Shapiro SD, Chan PH, Park TS (2005) Leukocyte-derived matrix metalloproteinase-9 mediates blood–brain barrier breakdown and is proinflammatory after transient focal cerebral ischemia. Am J Physiol Heart Circ Physiol 289:H558–H568

    CAS  Google Scholar 

  55. Zhao BQ, Wang S, Kim HY, Storrie H, Rosen BR, Mooney DJ, Wang X, Lo EH (2006) Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med 12:441–445

    CAS  Google Scholar 

  56. Cunningham LA, Wetzel M, Rosenberg GA (2005) Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia 50:329–339

    Google Scholar 

  57. Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17:796–808

    CAS  Google Scholar 

  58. Osborn L, Hession C, Tizard R, Vassallo C, Luhowskyj S, Chi-Rosso G, Lobb R (1989) Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell 59:1203–1211

    CAS  Google Scholar 

  59. Stanimirovic DB, Wong J, Shapiro A, Durkin JP (1997) Increase in surface expression of ICAM-1, VCAM-1 and e-selectin in human cerebromicrovascular endothelial cells subjected to ischemia-like insults. Acta Neurochir Suppl 70:12–16

    CAS  Google Scholar 

  60. Lindsberg PJ, Sairanen T, Strbian D, Kaste M (2012) Current treatment of basilar artery occlusion. Ann N Y Acad Sci 1268:35–44

    Google Scholar 

  61. Ransohoff RM, Kivisakk P, Kidd G (2003) Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 3:569–581

    CAS  Google Scholar 

  62. Datta YH, Ewenstein BM (2001) Regulated secretion in endothelial cells: biology and clinical implications. Thromb Haemost 86:1148–1155

    CAS  Google Scholar 

  63. del Zoppo GJ, Hallenbeck JM (2000) Advances in the vascular pathophysiology of ischemic stroke. Thromb Res 98:73–81

    Google Scholar 

  64. Williams MR, Azcutia V, Newton G, Alcaide P, Luscinskas FW (2011) Emerging mechanisms of neutrophil recruitment across endothelium. Trends Immunol 32:461–469

    CAS  Google Scholar 

  65. Yamasaki Y, Matsuo Y, Matsuura N, Onodera H, Itoyama Y, Kogure K (1995) Transient increase of cytokine-induced neutrophil chemoattractant, a member of the interleukin-8 family, in ischemic brain areas after focal ischemia in rats. Stroke 26:318–322, discussion 322-313

    CAS  Google Scholar 

  66. Baggiolini M (2001) Chemokines in pathology and medicine. J Intern Med 250:91–104

    CAS  Google Scholar 

  67. Gerard C, Rollins BJ (2001) Chemokines and disease. Nat Immunol 2:108–115

    CAS  Google Scholar 

  68. Kochanek PM, Hallenbeck JM (1992) Polymorphonuclear leukocytes and monocytes/macrophages in the pathogenesis of cerebral ischemia and stroke. Stroke 23:1367–1379

    CAS  Google Scholar 

  69. del Zoppo GJ, Schmid-Schonbein GW, Mori E, Copeland BR, Chang CM (1991) Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke 22:1276–1283

    Google Scholar 

  70. Garcia JH, Liu KF, Yoshida Y, Lian J, Chen S, del Zoppo GJ (1994) Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am J Pathol 144:188–199

    CAS  Google Scholar 

  71. Matsuo Y, Kihara T, Ikeda M, Ninomiya M, Onodera H, Kogure K (1995) Role of neutrophils in radical production during ischemia and reperfusion of the rat brain: effect of neutrophil depletion on extracellular ascorbyl radical formation. J Cereb Blood Flow Metab 15:941–947

    CAS  Google Scholar 

  72. Zhang L, Zhang ZG, Zhang RL, Lu M, Krams M, Chopp M (2003) Effects of a selective CD11b/CD18 antagonist and recombinant human tissue plasminogen activator treatment alone and in combination in a rat embolic model of stroke. Stroke 34:1790–1795

    CAS  Google Scholar 

  73. Yamasaki Y, Matsuo Y, Zagorski J, Matsuura N, Onodera H, Itoyama Y, Kogure K (1997) New therapeutic possibility of blocking cytokine-induced neutrophil chemoattractant on transient ischemic brain damage in rats. Brain Res 759:103–111

    CAS  Google Scholar 

  74. Dunstan CA, Salafranca MN, Adhikari S, Xia Y, Feng L, Harrison JK (1996) Identification of two rat genes orthologous to the human interleukin-8 receptors. J Biol Chem 271:32770–32776

    CAS  Google Scholar 

  75. Murphy PM, Tiffany HL (1991) Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science 253:1280–1283

    CAS  Google Scholar 

  76. Holmes WE, Lee J, Kuang WJ, Rice GC, Wood WI (1991) Structure and functional expression of a human interleukin-8 receptor. Science 253:1278–1280

    CAS  Google Scholar 

  77. Gu L, Tseng SC, Rollins BJ (1999) Monocyte chemoattractant protein-1. Chem Immunol 72:7–29

    CAS  Google Scholar 

  78. Mahad DJ, Ransohoff RM (2003) The role of MCP-1 (CCL2) and CCR2 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Semin Immunol 15:23–32

    CAS  Google Scholar 

  79. Huo Y, Weber C, Forlow SB, Sperandio M, Thatte J, Mack M, Jung S, Littman DR, Ley K (2001) The chemokine KC, but not monocyte chemoattractant protein-1, triggers monocyte arrest on early atherosclerotic endothelium. J Clin Invest 108:1307–1314

    CAS  Google Scholar 

  80. Glabinski AR, Tani M, Strieter RM, Tuohy VK, Ransohoff RM (1997) Synchronous synthesis of alpha- and beta-chemokines by cells of diverse lineage in the central nervous system of mice with relapses of chronic experimental autoimmune encephalomyelitis. Am J Pathol 150:617–630

    CAS  Google Scholar 

  81. Horuk R, Martin AW, Wang Z, Schweitzer L, Gerassimides A, Guo H, Lu Z, Hesselgesser J, Perez HD, Kim J, Parker J, Hadley TJ, Peiper SC (1997) Expression of chemokine receptors by subsets of neurons in the central nervous system. J Immunol 158:2882–2890

    CAS  Google Scholar 

  82. Giovannelli A, Limatola C, Ragozzino D, Mileo AM, Ruggieri A, Ciotti MT, Mercanti D, Santoni A, Eusebi F (1998) CXC chemokines interleukin-8 (IL-8) and growth-related gene product alpha (groalpha) modulate purkinje neuron activity in mouse cerebellum. J Neuroimmunol 92:122–132

    CAS  Google Scholar 

  83. Wiekowski MT, Chen SC, Zalamea P, Wilburn BP, Kinsley DJ, Sharif WW, Jensen KK, Hedrick JA, Manfra D, Lira SA (2001) Disruption of neutrophil migration in a conditional transgenic model: evidence for CXCR2 desensitization in vivo. J Immunol 167:7102–7110

    CAS  Google Scholar 

  84. Tani M, Fuentes ME, Peterson JW, Trapp BD, Durham SK, Loy JK, Bravo R, Ransohoff RM, Lira SA (1996) Neutrophil infiltration, glial reaction, and neurological disease in transgenic mice expressing the chemokine N51/KC in oligodendrocytes. J Clin Invest 98:529–539

    CAS  Google Scholar 

  85. Belayev L, Busto R, Zhao W, Ginsberg MD (1996) Quantitative evaluation of blood–brain barrier permeability following middle cerebral artery occlusion in rats. Brain Res 739:88–96

    CAS  Google Scholar 

  86. Zhang RL, Chopp M, Chen H, Garcia JH (1994) Temporal profile of ischemic tissue damage, neutrophil response, and vascular plugging following permanent and transient (2 h) middle cerebral artery occlusion in the rat. J Neurol Sci 125:3–10

    CAS  Google Scholar 

  87. Jiang N, Chopp M, Chahwala S (1998) Neutrophil inhibitory factor treatment of focal cerebral ischemia in the rat. Brain Res 788:25–34

    CAS  Google Scholar 

  88. Emerich DF, Dean RL 3rd, Bartus RT (2002) The role of leukocytes following cerebral ischemia: pathogenic variable or bystander reaction to emerging infarct? Exp Neurol 173:168–181

    Google Scholar 

  89. Mori E, del Zoppo GJ, Chambers JD, Copeland BR, Arfors KE (1992) Inhibition of polymorphonuclear leukocyte adherence suppresses no-reflow after focal cerebral ischemia in baboons. Stroke 23:712–718

    CAS  Google Scholar 

  90. Tonai T, Shiba K, Taketani Y, Ohmoto Y, Murata K, Muraguchi M, Ohsaki H, Takeda E, Nishisho T (2001) A neutrophil elastase inhibitor (ono-5046) reduces neurologic damage after spinal cord injury in rats. J Neurochem 78:1064–1072

    CAS  Google Scholar 

  91. Afshar-Kharghan V, Thiagarajan P (2006) Leukocyte adhesion and thrombosis. Curr Opin Hematol 13:34–39

    CAS  Google Scholar 

  92. Akopov SE, Simonian NA, Grigorian GS (1996) Dynamics of polymorphonuclear leukocyte accumulation in acute cerebral infarction and their correlation with brain tissue damage. Stroke 27:1739–1743

    CAS  Google Scholar 

  93. Tang Y, Xu H, Du X, Lit L, Walker W, Lu A, Ran R, Gregg JP, Reilly M, Pancioli A, Khoury JC, Sauerbeck LR, Carrozzella JA, Spilker J, Clark J, Wagner KR, Jauch EC, Chang DJ, Verro P, Broderick JP, Sharp FR (2006) Gene expression in blood changes rapidly in neutrophils and monocytes after ischemic stroke in humans: a microarray study. J Cereb Blood Flow Metab 26:1089–1102

    Google Scholar 

  94. Krams M, Lees KR, Hacke W, Grieve AP, Orgogozo JM, Ford GA (2003) Acute stroke therapy by inhibition of neutrophils (ASTIN): an adaptive dose-response study of uk-279,276 in acute ischemic stroke. Stroke 34:2543–2548

    CAS  Google Scholar 

  95. Harlan JM, Winn RK (2002) Leukocyte-endothelial interactions: clinical trials of anti-adhesion therapy. Crit Care Med 30:S214–S219

    CAS  Google Scholar 

  96. Catania A, Lipton JM (1998) Peptide modulation of fever and inflammation within the brain. Ann N Y Acad Sci 856:62–68

    CAS  Google Scholar 

  97. Gliem M, Mausberg AK, Lee JI, Simiantonakis I, van Rooijen N, Hartung HP, Jander S (2012) Macrophages prevent hemorrhagic infarct transformation in Murine stroke models. Ann Neurol 71:743–752

    CAS  Google Scholar 

  98. Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S, Peri F, Wilson SW, Ruhrberg C (2010) Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116:829–840

    CAS  Google Scholar 

  99. Hurtado O, Lizasoain I, Fernandez-Tome P, Alvarez-Barrientos A, Leza JC, Lorenzo P, Moro MA (2002) TACE/ADAM17-TNF-alpha pathway in rat cortical cultures after exposure to oxygen–glucose deprivation or glutamate. J Cereb Blood Flow Metab 22:576–585

    CAS  Google Scholar 

  100. Swanson RA, Ying W, Kauppinen TM (2004) Astrocyte influences on ischemic neuronal death. Curr Mol Med 4:193–205

    CAS  Google Scholar 

  101. Stephenson D, Yin T, Smalstig EB, Hsu MA, Panetta J, Little S, Clemens J (2000) Transcription factor nuclear factor-kappa B is activated in neurons after focal cerebral ischemia. J Cereb Blood Flow Metab 20:592–603

    CAS  Google Scholar 

  102. Smith JA, Das A, Ray SK, Banik NL (2012) Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 87:10–20

    CAS  Google Scholar 

  103. Defilippi P, Silengo L, Tarone G (1992) Alpha 6.Beta 1 integrin (laminin receptor) is down-regulated by tumor necrosis factor alpha and interleukin-1 beta in human endothelial cells. J Biol Chem 267:18303–18307

    CAS  Google Scholar 

  104. Defilippi P, Bozzo C, Geuna M, Rossino P, Silengo L, Tarone G (1992) Modulation of extracellular matrix receptors (integrins) on human endothelial cells by cytokines. EXS 61:193–197

    CAS  Google Scholar 

  105. Chaitanya GV, Cromer W, Wells S, Jennings M, Mathis JM, Minagar A, Alexander JS (2012) Metabolic modulation of cytokine-induced brain endothelial adhesion molecule expression. Microcirculation 19:155–165

    CAS  Google Scholar 

  106. Gottschall PE, Deb S (1996) Regulation of matrix metalloproteinase expressions in astrocytes, microglia and neurons. Neuroimmunomodulation 3:69–75

    CAS  Google Scholar 

  107. Simi A, Tsakiri N, Wang P, Rothwell NJ (2007) Interleukin-1 and inflammatory neurodegeneration. Biochem Soc Trans 35:1122–1126

    CAS  Google Scholar 

  108. Lambertsen KL, Clausen BH, Babcock AA, Gregersen R, Fenger C, Nielsen HH, Haugaard LS, Wirenfeldt M, Nielsen M, Dagnaes-Hansen F, Bluethmann H, Faergeman NJ, Meldgaard M, Deierborg T, Finsen B (2009) Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. J Neurosci 29:1319–1330

    CAS  Google Scholar 

  109. Chen Y, Hallenbeck JM, Ruetzler C, Bol D, Thomas K, Berman NE, Vogel SN (2003) Overexpression of monocyte chemoattractant protein 1 in the brain exacerbates ischemic brain injury and is associated with recruitment of inflammatory cells. J Cereb Blood Flow Metab 23:748–755

    Google Scholar 

  110. Dimitrijevic OB, Stamatovic SM, Keep RF, Andjelkovic AV (2006) Effects of the chemokine CCL2 on blood–brain barrier permeability during ischemia-reperfusion injury. J Cereb Blood Flow Metab 26:797–810

    CAS  Google Scholar 

  111. Dimitrijevic OB, Stamatovic SM, Keep RF, Andjelkovic AV (2007) Absence of the chemokine receptor CCR2 protects against cerebral ischemia/reperfusion injury in mice. Stroke 38:1345–1353

    CAS  Google Scholar 

  112. Stamatovic SM, Dimitrijevic OB, Keep RF, Andjelkovic AV (2006) Protein kinase Calpha-Rhoa cross-talk in CCL2-induced alterations in brain endothelial permeability. J Biol Chem 281:8379–8388

    CAS  Google Scholar 

  113. Min KJ, Jou I, Joe E (2003) Plasminogen-induced IL-1beta and TNF-alpha production in microglia is regulated by reactive oxygen species. Biochem Biophys Res Commun 312:969–974

    CAS  Google Scholar 

  114. Davalos D, Ryu JK, Merlini M, Baeten KM, Le Moan N, Petersen MA, Deerinck TJ, Smirnoff DS, Bedard C, Hakozaki H, Gonias Murray S, Ling JB, Lassmann H, Degen JL, Ellisman MH, Akassoglou K (2012) Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat Commun 3:1227

    Google Scholar 

  115. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    CAS  Google Scholar 

  116. Faustino J, Wang X, Jonhson C, Klibanov A, Derugin N, Wendland M, Vexler ZS (2011) Microglial cells contribute to endogenous brain defenses after acute neonatal focal stroke. J Neurosci 31:12992–13001

    CAS  Google Scholar 

  117. Fernandez-Lopez D, Faustino J, Derugin N, Vexler ZS (2013) Acute and chronic vascular responses to experimental focal arterial stroke in the neonate rat. Transl Stroke Res 4:179–188

    CAS  Google Scholar 

  118. Bauer J, Ruuls SR, Huitinga I, Dijkstra CD (1996) The role of macrophage subpopulations in autoimmune disease of the central nervous system. Histochem J 28:83–97

    CAS  Google Scholar 

  119. Angelov DN, Walther M, Streppel M, Guntinas-Lichius O, van Dam AM, Stennert E, Neiss WF (1998) ED2-positive perivascular phagocytes produce interleukin-1beta during delayed neuronal loss in the facial nucleus of the rat. J Neurosci Res 54:820–827

    CAS  Google Scholar 

  120. Angelov DN, Walther M, Streppel M, Guntinas-Lichius O, Neiss WF (1998) The cerebral perivascular cells. Adv Anat Embryol Cell Biol 147:1–87

    CAS  Google Scholar 

  121. Becher B, Bechmann I, Greter M (2006) Antigen presentation in autoimmunity and cns inflammation: how T lymphocytes recognize the brain. J Mol Med (Berl) 84:532–543

    CAS  Google Scholar 

  122. Polfliet MM, van de Veerdonk F, Dopp EA, van Kesteren-Hendrikx EM, van Rooijen N, Dijkstra CD, van den Berg TK (2002) The role of perivascular and meningeal macrophages in experimental allergic encephalomyelitis. J Neuroimmunol 122:1–8

    CAS  Google Scholar 

  123. Lindsberg PJ, Strbian D, Karjalainen-Lindsberg ML (2010) Mast cells as early responders in the regulation of acute blood–brain barrier changes after cerebral ischemia and hemorrhage. J Cereb Blood Flow Metab 30:689–702

    Google Scholar 

  124. Strbian D, Karjalainen-Lindsberg ML, Kovanen PT, Tatlisumak T, Lindsberg PJ (2007) Mast cell stabilization reduces hemorrhage formation and mortality after administration of thrombolytics in experimental ischemic stroke. Circulation 116:411–418

    CAS  Google Scholar 

  125. Strbian D, Karjalainen-Lindsberg ML, Tatlisumak T, Lindsberg PJ (2006) Cerebral mast cells regulate early ischemic brain swelling and neutrophil accumulation. J Cereb Blood Flow Metab 26:605–612

    Google Scholar 

  126. Zhang RL, Zhang ZG, Chopp M (2005) Neurogenesis in the adult ischemic brain: generation, migration, survival, and restorative therapy. Neuroscientist 11:408–416

    CAS  Google Scholar 

  127. Beck H, Plate KH (2009) Angiogenesis after cerebral ischemia. Acta Neuropathol 117:481–496

    Google Scholar 

  128. Greenberg DA, Jin K (2005) From angiogenesis to neuropathology. Nature 438:954–959

    CAS  Google Scholar 

  129. Distler JH, Hirth A, Kurowska-Stolarska M, Gay RE, Gay S, Distler O (2003) Angiogenic and angiostatic factors in the molecular control of angiogenesis. Q J Nucl Med 47:149–161

    CAS  Google Scholar 

  130. Abumiya T, Lucero J, Heo JH, Tagaya M, Koziol JA, Copeland BR, del Zoppo GJ (1999) Activated microvessels express vascular endothelial growth factor and integrin alpha(V)beta3 during focal cerebral ischemia. J Cereb Blood Flow Metab 19:1038–1050

    CAS  Google Scholar 

  131. Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, Bruggen N, Chopp M (2000) Vegf enhances angiogenesis and promotes blood–brain barrier leakage in the ischemic brain. J Clin Invest 106:829–838

    CAS  Google Scholar 

  132. Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, Greenberg DA (2003) Vegf-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 111:1843–1851

    CAS  Google Scholar 

  133. Li B, Sharpe EE, Maupin AB, Teleron AA, Pyle AL, Carmeliet P, Young PP (2006) VEGF and PLGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB J 20:1495–1497

    CAS  Google Scholar 

  134. Lee SR, Kim HY, Rogowska J, Zhao BQ, Bhide P, Parent JM, Lo EH (2006) Involvement of matrix metalloproteinase in neuroblast cell migration from the subventricular zone after stroke. J Neurosci 26:3491–3495

    CAS  Google Scholar 

  135. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970

    CAS  Google Scholar 

  136. Parent JM, Vexler ZS, Gong C, Derugin N, Ferriero DM (2002) Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol 52:802–813

    Google Scholar 

  137. Carmichael ST (2006) Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann Neurol 59:735–742

    CAS  Google Scholar 

  138. Ohab JJ, Fleming S, Blesch A, Carmichael ST (2006) A neurovascular niche for neurogenesis after stroke. J Neurosci 26:13007–13016

    CAS  Google Scholar 

  139. Wang L, Zhang Z, Wang Y, Zhang R, Chopp M (2004) Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke 35:1732–1737

    CAS  Google Scholar 

  140. Shimamura M, Sato N, Sata M, Kurinami H, Takeuchi D, Wakayama K, Hayashi T, Iida H, Morishita R (2007) Delayed postischemic treatment with fluvastatin improved cognitive impairment after stroke in rats. Stroke 38:3251–3258

    CAS  Google Scholar 

  141. Xiong Y, Mahmood A, Chopp M (2010) Angiogenesis, neurogenesis and brain recovery of function following injury. Curr Opin Investig Drugs 11:298–308

    CAS  Google Scholar 

  142. Li L, Jiang Q, Zhang L, Ding G, Gang Zhang Z, Li Q, Ewing JR, Lu M, Panda S, Ledbetter KA, Whitton PA, Chopp M (2007) Angiogenesis and improved cerebral blood flow in the ischemic boundary area detected by MRI after administration of sildenafil to rats with embolic stroke. Brain Res 1132:185–192

    CAS  Google Scholar 

  143. Battista D, Ferrari CC, Gage FH, Pitossi FJ (2006) Neurogenic niche modulation by activated microglia: transforming growth factor beta increases neurogenesis in the adult dentate gyrus. Eur J Neurosci 23:83–93

    Google Scholar 

  144. Watanabe H, Abe H, Takeuchi S, Tanaka R (2000) Protective effect of microglial conditioning medium on neuronal damage induced by glutamate. Neurosci Lett 289:53–56

    CAS  Google Scholar 

  145. Lu YZ, Lin CH, Cheng FC, Hsueh CM (2005) Molecular mechanisms responsible for microglia-derived protection of sprague-dawley rat brain cells during in vitro ischemia. Neurosci Lett 373:159–164

    CAS  Google Scholar 

  146. Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S, Martino G, Schwartz M (2006) Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci 31:149–160

    CAS  Google Scholar 

  147. Lobov IB, Rao S, Carroll TJ, Vallance JE, Ito M, Ondr JK, Kurup S, Glass DA, Patel MS, Shu W, Morrisey EE, McMahon AP, Karsenty G, Lang RA (2005) WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature 437:417–421

    CAS  Google Scholar 

  148. Tammela T, Zarkada G, Wallgard E, Murtomaki A, Suchting S, Wirzenius M, Waltari M, Hellstrom M, Schomber T, Peltonen R, Freitas C, Duarte A, Isoniemi H, Laakkonen P, Christofori G, Yla-Herttuala S, Shibuya M, Pytowski B, Eichmann A, Betsholtz C, Alitalo K (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454:656–660

    CAS  Google Scholar 

  149. Colton CA (2009) Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 4:399–418

    Google Scholar 

  150. Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, Lu M, Gautam SC, Chopp M (2003) Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res 73:778–786

    CAS  Google Scholar 

  151. Zacharek A, Chen J, Cui X, Li A, Li Y, Roberts C, Feng Y, Gao Q, Chopp M (2007) Angiopoietin1/TIE2 and VEGF/FLK1 induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke. J Cereb Blood Flow Metab 27:1684–1691

    CAS  Google Scholar 

  152. Zhang J, Li Y, Chen J, Yang M, Katakowski M, Lu M, Chopp M (2004) Expression of insulin-like growth factor 1 and receptor in ischemic rats treated with human marrow stromal cells. Brain Res 1030:19–27

    CAS  Google Scholar 

  153. Horie N, Pereira MP, Niizuma K, Sun G, Keren-Gill H, Encarnacion A, Shamloo M, Hamilton SA, Jiang K, Huhn S, Palmer TD, Bliss TM, Steinberg GK (2011) Transplanted stem cell-secreted vascular endothelial growth factor effects poststroke recovery, inflammation, and vascular repair. Stem Cells 29:274–285

    CAS  Google Scholar 

  154. Daadi MM, Davis AS, Arac A, Li Z, Maag AL, Bhatnagar R, Jiang K, Sun G, Wu JC, Steinberg GK (2010) Human neural stem cell grafts modify microglial response and enhance axonal sprouting in neonatal hypoxic-ischemic brain injury. Stroke 41:516–523

    Google Scholar 

  155. Bliss TM, Andres RH, Steinberg GK (2010) Optimizing the success of cell transplantation therapy for stroke. Neurobiol Dis 37:275–283

    Google Scholar 

  156. Shen LH, Li Y, Gao Q, Savant-Bhonsale S, Chopp M (2008) Down-regulation of neurocan expression in reactive astrocytes promotes axonal regeneration and facilitates the neurorestorative effects of bone marrow stromal cells in the ischemic rat brain. Glia 56:1747–1754

    Google Scholar 

  157. van Velthoven CT, Kavelaars A, van Bel F, Heijnen CJ (2011) Mesenchymal stem cell transplantation changes the gene expression profile of the neonatal ischemic brain. Brain Behav Immun 25:1342–1348

    Google Scholar 

  158. Saunders NR, Daneman R, Dziegielewska KM, Liddelow SA (2013) Transporters of the blood–brain and blood–CSF interfaces in development and in the adult. Mol Aspects Med 34:742–752

    CAS  Google Scholar 

  159. Saunders NR, Habgood MD, Dziegielewska KM (1999) Barrier mechanisms in the brain. II. Immature brain. Clin Exp Pharmacol Physiol 26:85–91

    CAS  Google Scholar 

  160. Kniesel U, Risau W, Wolburg H (1996) Development of blood–brain barrier tight junctions in the rat cortex. Brain Res Dev Brain Res 96:229–240

    CAS  Google Scholar 

  161. Engelhardt B (2003) Development of the blood–brain barrier. Cell Tissue Res 314:119–129

    CAS  Google Scholar 

  162. Anthony DC, Bolton SJ, Fearn S, Perry VH (1997) Age-related effects of interleukin-1 beta on polymorphonuclear neutrophil-dependent increases in blood–brain barrier permeability in rats. Brain 120(Pt 3):435–444

    Google Scholar 

  163. Bona E, Andersson AL, Blomgren K, Gilland E, Puka-Sundvall M, Gustafson K, Hagberg H (1999) Chemokine and inflammatory cell response to hypoxia-ischemia in immature rats. Pediatr Res 45:500–509

    CAS  Google Scholar 

  164. Hudome S, Palmer C, Roberts RL, Mauger D, Housman C, Towfighi J (1997) The role of neutrophils in the production of hypoxic-ischemic brain injury in the neonatal rat. Pediatr Res 41:607–616

    CAS  Google Scholar 

  165. Denker S, Ji S, Lee SY, Dingman A, Derugin N, Wendland M, Vexler ZS (2007) Macrophages are comprised of resident brain microglia not infiltrating peripheral monocytes acutely after neonatal stroke. J Neurochem 100:893–904

    CAS  Google Scholar 

  166. Iwai M, Cao G, Yin W, Stetler RA, Liu J, Chen J (2007) Erythropoietin promotes neuronal replacement through revascularization and neurogenesis after neonatal hypoxia/ischemia in rats. Stroke 38:2795–2803

    CAS  Google Scholar 

  167. Ogunshola OO, Stewart WB, Mihalcik V, Solli T, Madri JA, Ment LR (2000) Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain. Brain Res Dev Brain Res 119:139–153

    CAS  Google Scholar 

  168. Robertson PL, Du Bois M, Bowman PD, Goldstein GW (1985) Angiogenesis in developing rat brain: an in vivo and in vitro study. Brain Res 355:219–223

    CAS  Google Scholar 

  169. Hayashi T, Noshita N, Sugawara T, Chan PH (2003) Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. J Cereb Blood Flow Metab 23:166–180

    CAS  Google Scholar 

  170. Marti HJ, Bernaudin M, Bellail A, Schoch H, Euler M, Petit E, Risau W (2000) Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J Pathol 156:965–976

    CAS  Google Scholar 

  171. Ghabriel MN, Zhu C, Hermanis G, Allt G (2000) Immunological targeting of the endothelial barrier antigen (EBA) in vivo leads to opening of the blood–brain barrier. Brain Res 878:127–135

    CAS  Google Scholar 

  172. Lu H, Demny S, Zuo Y, Rea W, Wang L, Chefer SI, Vaupel DB, Yang Y, Stein EA (2010) Temporary disruption of the rat blood–brain barrier with a monoclonal antibody: a novel method for dynamic manganese-enhanced MRI. Neuroimage 50:7–14

    Google Scholar 

  173. Saubamea B, Cochois-Guegan V, Cisternino S, Scherrmann JM. Heterogeneity in the rat brain vasculature revealed by quantitative confocal analysis of endothelial barrier antigen and p-glycoprotein expression. J Cereb Blood Flow Metab. 2011

    Google Scholar 

  174. Rosenstein JM, Krum JM, Sternberger LA, Pulley MT, Sternberger NH (1992) Immunocytochemical expression of the endothelial barrier antigen (EBA) during brain angiogenesis. Brain Res Dev Brain Res 66:47–54

    CAS  Google Scholar 

  175. Sternberger NH, Sternberger LA (1987) Blood–brain barrier protein recognized by monoclonal antibody. Proc Natl Acad Sci U S A 84:8169–8173

    CAS  Google Scholar 

Download references

Acknowledgements

The authors have been supported by RO1 NS55915 (Z.S.V), RO1 NS44025 (Z.S.V), R21 NS80015 (Z.S.V), NS35902 (Z.S.V), AHA GIA 0855235F (Z.S.V), Ramon Areces Foundation, Madrid, Spain (D.F.L), and AHA postdoctoral fellowship (D.F.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zinaida S. Vexler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fernández-López, D., Vexler, Z.S. (2013). Blood–Brain Barrier and Stroke. In: Fricker, G., Ott, M., Mahringer, A. (eds) The Blood Brain Barrier (BBB). Topics in Medicinal Chemistry, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7355_2013_23

Download citation

Publish with us

Policies and ethics