Skip to main content

Architecture of Infection Thread Networks in Nitrogen-Fixing Root Nodules

  • Chapter
  • First Online:
Plant Cell Monographs

Part of the book series: Plant Cell Monographs

  • 6 Accesses

Abstract

During the development of nitrogen-fixing root nodules, symbiotic bacteria are often delivered to the nodule interior by a network of tubes formed by the invagination of plant cell wall and plasma membrane. These tubes, called infection threads, are cooperatively constructed by both the plant host and its symbiotic bacteria. This chapter outlines how infection threads develop in root hairs and in root cortical cells, and how the three-dimensional architecture of infection thread networks in nodules change during the course of nodule development. Three-dimensional reconstructions of infection thread networks inside M. truncatulanodules infected with Sinorhizobium melilotishow that the infection threads form relatively simple, treelike networks that exhibit changes in growth orientation as nodules mature. Questions concerning possible mechanisms that determine the direction of infection thread development in nodule tissue, and whether or not the mechanisms of infection thread construction in nodule tissue differ from those in root hairs, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ardourel M, Demont N, Debelle F, Maillet F, de Billy F, Prome JC, Denarie J, Truchet G (1994) Rhizobium melilotilipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell 6:1357–1374

    Article  PubMed  CAS  Google Scholar 

  • Batut J, Andersson SGE, O'Callaghan D (2004) The evolution of chronic infection strategies in the α-proteobacteria. Nat Rev Microbiol 2:933–945

    Article  PubMed  CAS  Google Scholar 

  • Bibikova TN, Blancaflor EB, Gilroy S (1999) Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana. Plant J 17:657–665

    Article  PubMed  CAS  Google Scholar 

  • Brewin NJ, 2002. Pods and nods: a new look at symbiotic nitrogen fixing. Biologist 49:1–5

    Google Scholar 

  • Cardenas L, Vidali L, Dominguez J, Perez H, Sanchez F, Hepler PK, Quinto C (1998) Rearrangement of actin microfilaments in plant root hairs responding to Rhizobium etlinodulation signals. Plant Physiol 116:871–877

    Article  CAS  Google Scholar 

  • Catoira R, Timmers ACJ, Maillet F, Galera C, Penmetsa RV, Cook D, Denarie J, Gough C (2001) The HCL gene of Medicago truncatulacontrols Rhizobium-induced root hair curling. Development 128:1507–1518

    PubMed  CAS  Google Scholar 

  • Chandler MR (1982) Infection and root-nodule development in Stylosanthesspecies by Rhizobium. J Exp Bot 33:47–57

    Article  Google Scholar 

  • Chandler MR (1978) Some observations on infection of Arachis hypogaeaL. by Rhizobium. J Exp Bot 29:749–755

    Article  Google Scholar 

  • Complainville A, Brocard L, Roberts I, Dax E, Sever N, Sauer N, Kondorosi A, Wolf S, Oparka K, Crespi M (2003) Nodule initiation involves the creation of a new symplasmic field in specific root cells of Medicagospecies. Plant Cell 15:2778–2791

    Article  PubMed  CAS  Google Scholar 

  • Cook D (2000). Medicago truncatula- a model in the making! Curr Opin Plant Biol 2:301–304

    Article  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  PubMed  CAS  Google Scholar 

  • Crawford KM, Zambryski PC (1999) Plasmodesmata signaling: many roles, sophisticated statutes. Curr Opin Plant Biol 2:382–387

    Article  PubMed  CAS  Google Scholar 

  • Cutler SR, Ehrhardt DW (2002) Polarized cytokinesis in vacuolate cells of Arabidopsis. Proc Natl Acad Sci USA 99:2812–2817

    Article  PubMed  ADS  CAS  Google Scholar 

  • De Faria SM, Hay GT, Sprent JI (1988) Entry of rhizobia into roots of Mimosa scabrellaBentham occurs between epidermal cells. J Gen Microbiol 134:2291–2296

    Google Scholar 

  • de Ruijter NCA, Rook MB, Bisseling T, Emons AMC (1998) Lipochito-oligosaccharides re-initiate root hair tip growth in Vicia sativawith high calcium and spectrin-like antigen at the tip. Plant J 13:341–350

    Article  Google Scholar 

  • Denarie J, Debelle F, Rosenberg C (1992) Signaling and host range in nodulation. Annu Rev Microbiol 46:497–525

    Article  PubMed  CAS  Google Scholar 

  • Dudley ME, Jacobs TW, Long SR (1987) Microscopic studies of cell divisions induced in alfalfa roots by Rhizobium meliloti. Planta 171:289–301

    Article  Google Scholar 

  • Esseling JJ, Lhuissier FG, Emons AM (2003) Nod factor-induced root hair curling: continuous polar growth towards the point of nod factor application. Plant Physiol 132:1982–1988

    Article  PubMed  CAS  Google Scholar 

  • Fahraeus G (1957) The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J Gen Microbiol 16:374–381

    PubMed  CAS  Google Scholar 

  • Gage DJ (2002) Analysis of infection thread development using Gfp- and DsRed-expressing Sinorhizobium meliloti. J. Bacteiol 184:7042–7046

    Article  CAS  Google Scholar 

  • Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300

    Article  PubMed  CAS  Google Scholar 

  • Gage DJ, Bobo T, Long SR (1996) Use of green fluorescent protein to visualize the early events of symbiosis between Rhizobium meliloti and alfalfa (Medicago sativa). J Bacteriol 178:7159–7166

    PubMed  CAS  Google Scholar 

  • Gonzalez-Sama A, Lucas MM, De Felipe MR, Peuyo JJ (2004) An unusual infection mechanism and nodule morphogenesis in white lupin (Lupinus albus). New Phytol 163:371–380

    Article  Google Scholar 

  • Goormachtig S, Capoen W, James EK, Holsters M (2004) Switch from intracellular to intercellular invasion during water stress-tolerant legume nodulation. Proc Natl Acad Sci USA 101:6303–6308

    Article  PubMed  ADS  CAS  Google Scholar 

  • Handberg K, Stougaard JS (1992) Lotus japonicus, an autogamous, diplod legume species for classical and molecular genetics. Plant J 2:487–496

    Article  Google Scholar 

  • Hepler PK, Vidali L, Cheung AY (2001) Polarized cell growth in higher plants. Annu Rev Cell Dev Biol 17:159–187

    Article  PubMed  CAS  Google Scholar 

  • Hirsch AM (1992) Developmental biology of legume nodulation. New Phytol 122:211–237

    Article  Google Scholar 

  • Jurgens G (2005) Cytokinesis in higher plants. Annu Rev Plant Biol 56:281–299

    Article  PubMed  CAS  Google Scholar 

  • Lhuisser FGP, De Ruijter NCA, Sieberer BJ, Esseling JJ,Emons AMC (2001) Time course of cell biological events evoked in legume root hairs by RhizobiumNod factors: state of the art. Ann Bot 87:289–302

    Article  CAS  Google Scholar 

  • Libbenga KR, Harkes PAA (1973) Initial proliferation of cortical cells in the formation of root nodules in Pisum sativum. Planta 114:17–28

    Article  Google Scholar 

  • Lloyd C, Pearce K, Rawlins DJ, Ridge RW, Shaw PJ (1987) Endoplasmic microtubules connect the advancing nucleus to the tip of legume root hairs, but F-actin is involved in basipetal migration. Cell Motil Cytoskeleton 8:27–36

    Article  Google Scholar 

  • Long SR, Fisher RF, Ogawa J, Swanson J, Ehrhardt DW, Atkinson EM, Schwedock J (1991) Rhizobium melilotinodulation gene regulation and molecular signals, p. 127–133. In: Hennecke H, Verma DPS (ed) Advances in molecular genetics of plant-microbe interactions, vol 1. Kluwer, Dordrecht

    Google Scholar 

  • Lotocka B, Kopcinska J, Gorecka M, Golinowski W (2000) Formation and abortion of root nodule primordia in Lupinus luteusL. Acta Biol Crac ser Bot 42:87–102

    Google Scholar 

  • Miller DD, de Ruijter NCA, Bisseling T, Emons AMC (1999) The role of actin in root hair morphogenesis: studies with lipochito-oligosaccharide as a growth stimulator and cytochalasin as an actin perturbing drug. Plant J 17:141–154

    Article  CAS  Google Scholar 

  • Miller DD, Leferink-ten Klooster HB, Emons AMC (2000) Lipochito-oligosaccharide nodulation factors stimulate cytoplasmic polarity with longitudinal endoplasmic reticulum and vesicles at the tip in vetch root hairs. Mol Plant-Microbe Interact 13:1385–1390

    Article  PubMed  CAS  Google Scholar 

  • Monahan-Giovanelli H, Arango-Pinedo C, Gage DJ (2006) Architecture of infection thread networks in developing root nodules induced by the symbiotic bacterium Sinorhizobium melilotion Medicago truncatula. Plant Physiol 104:661–670

    Article  CAS  Google Scholar 

  • Ndoye I, de Billy F, Vasse J, Dreyfus B, Truchet G (1994) Root nodulation of Sesbania rostrata. J Bacteriol 176:1060–1068

    PubMed  CAS  Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Micro Mol Biol Rev 164:180–201

    Article  Google Scholar 

  • Peterson RL, Farquhar ML (1996) Root hairs: specialized tubular cells extending root surfaces. Bot Rev 62:1–40

    Article  Google Scholar 

  • Rae AL, Bonfante-Fasolo P, Brewin NJ (1992) Structure and growth of infection threads in the legume symbiosis with Rhizobium leguminosarum. Plant J 2:385–395

    Article  Google Scholar 

  • Rae AL, Perrotto S, Knox JP, Kannenberg EL, Brewin NJ (1991) Expression of extracellular glycoproteins in the uninfected cells of developing pea nodule tissue. Mol Plant Microbe Interact 4:563–570

    Article  CAS  Google Scholar 

  • Rana D, Krishnan HB (1995) A new root-nodulating symbiont of the tropical legume Sesbania, Rhizobiumsp. SIN-1, is closely related to R. galegae, a species that nodulates temperate legumes. FEMS Microbiol Lett 134:19–25

    Article  PubMed  CAS  Google Scholar 

  • Sabry SRS, Saleh SA, Batchelor CA, Jones JD, Jotham J, Webster G, Kothari SL, Davey MR, Cocking EC (1997) Endophytic establishment of Azorhizobium caulinodansin wheat. Proc R Soc London Ser B 264:341–346

    Article  ADS  Google Scholar 

  • Schmelzer E (2002) Cell polarization, a crucial process in fungal defence. Trends Plant Sci 7:411–415

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Lefert P (2004) Knocking on heaven's wall: pathogenesis of and resistance to biotrophic fungi at the cell wall. Curr Opin Plant Biol 7:377–383

    Article  PubMed  CAS  Google Scholar 

  • Sharma SB, Signer ER (1990) Temporal and spatial regulation of the symbiotic genes of Rhizobium melilotiin planta revealed by transposon Tn5-gusA. Genes Dev 4:344–356

    Article  PubMed  CAS  Google Scholar 

  • Sieberer BJ, Ketelaar T, Esseling JJ, Emons AMC (2005) Microtubules guide root hair tip growth. New Phytol 167:711–719

    Article  PubMed  CAS  Google Scholar 

  • Sieberer BJ, Timmers ACJ, Lhuissier FGP, Emons AMC (2002) Endoplasmic microtubules configure the subapical cytoplasm and are required for fast growth of Medicago truncatularoot hairs. Plant Physiol 130:977–988

    Article  PubMed  CAS  Google Scholar 

  • Sinnott EW, Bloch R (1940) Cytoplasmic behavior during division of vacuolate plant cells. Proc Natl Acad Sci USA 26:223–227

    Article  PubMed  ADS  CAS  Google Scholar 

  • Smith LG (2001) Plant cell division: building walls in the right places. Nat Rev Mol Cell Biol 2:33–39

    Article  PubMed  CAS  Google Scholar 

  • Spaink HP (1995) The molecular basis of infection and nodulation by rhizobia: the ins and outs of sympathogenesis. Annu Rev Phytopathol 33:345–368

    Article  CAS  PubMed  Google Scholar 

  • Takemoto D, Hardham AR (2004) The cytoskeleton as a regulator and target of biotic interactions in plants. Plant Physiol 136:3864–3876

    Article  PubMed  CAS  Google Scholar 

  • Takemoto D, Jones DA, Hardham AR (2003) GFP-tagging of cell components reveals the dynamics of subcellular re-organization in response to infection of Arabidopsis by oomycete pathogens. Plant J 33:775–792

    Article  PubMed  CAS  Google Scholar 

  • Timmers AC, Auriac MC, Truchet G (1999) Refined analysis of early symbiotic steps of the Rhizobium-Medicagointeraction in relationship with microtubular cytoskeleton rearrangements. Development 126:3617–3628

    PubMed  CAS  Google Scholar 

  • Triplett E, Sadowsky MJ (1992) Genetics of competition for nodulation of legumes. Annu Rev Microbiol 46:399–428

    Article  PubMed  CAS  Google Scholar 

  • Truchet G (1978) Sur l'état diploide des cellules du mériteme des nodules radiculaires des légumineuses. Ann Sci Bot Paris 19:3–38

    Google Scholar 

  • Turgeon BG, Bauer WD (1985) Ultrastructure of infection-thread development during the infection of soybean by Rhizobium japonicum. Planta 163:328–349

    Article  Google Scholar 

  • Udvardi MK, Tabata S, Parniske M, Stougaard J (2005) Lotus japonicus: legume research in the fast lane. Trends Plant Sci 10:222–228

    Article  PubMed  CAS  Google Scholar 

  • van Brussel AAN, Bakhuizen R, van Spronsen PC, Spaink HP, Tak T, Lugtenberg BJJ, Kijne JW (1992) Induction of pre-infection thread structures in the leguminous host plant by mitogenic lipo-oligosaccharidess of Rhizobium. Science 257:70–72

    Article  PubMed  ADS  Google Scholar 

  • Van den Bosch KA, Bradley DJ, Knox JP, Perotto S, Butcher GW, Brewin NJ (1989) Common components of the infectgion thread matrix and intercellular space identified by immunocytochemical analysis of pea nodules and uninfected roots. EMBO J 8:335–342

    Google Scholar 

  • van Spronsen PC, Bakhuizen R, van Brussel AA, Kijne JW (1994) Cell wall degradation during infection thread formation by the root nodule bacterium Rhizobium leguminosarumis a two-step process. Eur J Cell Biol 64:88–94

    PubMed  Google Scholar 

  • Vasse J, de Billy F, Camut S, Truchet G (1990) Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol 172:4295–4306

    PubMed  CAS  Google Scholar 

  • Veereshlingam H, Haynes JG, Penmetsa RV, Cook DR, Sherrier DJ, Dickstein R (2004) nip, a symbiotic Medicago truncatulamutant that forms root nodules with aberrant infection threads and plant defense-like response. Plant Physiol 136:3692–3702

    Article  PubMed  CAS  Google Scholar 

  • Vijn I, das Neves L, van Kammen A, Franssen H, Bisseling T (1993) Nod factors and nodulation in plants. Science 260:1764–1765

    Article  PubMed  ADS  CAS  Google Scholar 

  • Vinardell JM, Fedorova E, Cebolla A, Kevei Z, Horvath G, Kelemen Z, Tarayre S, Roudier F, Mergaert P, Kondorosi A, Kondorosi E (2003) Endoreduplication mediated by the anaphase-promoting complex activator CCS52A is required for symbiotic cell differentiation in Medicago truncatulanodules. Plant Cell 15:2093–2105

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Gage .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this chapter

Cite this chapter

Gage, D.J. (2008). Architecture of Infection Thread Networks in Nitrogen-Fixing Root Nodules. In: Plant Cell Monographs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2008_5

Download citation

  • DOI: https://doi.org/10.1007/7089_2008_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics