Skip to main content

Retrograde Signalling

  • Chapter
  • First Online:
Plant Cell Monographs

Part of the book series: Plant Cell Monographs

Abstract

Plastids are organelles typical for plant cells. They are a metabolic and genetic compartment that is involved in most aspects of the life of a plant. Plastids were acquired by plants via endosymbiosis of a photosynthetically active prokaryotic ancestor. Establishment of this endosymbiosis required communication between the endosymbiont and the nucleus of the host cell. During evolution a complex network evolved that embedded development and function of the new organelle into that of the cell. Today the nucleus controls most functions of plastids by providing the essential proteins. However, there exists a backward flow of information from the plastid to the nucleus. This “retrograde” signalling represents a feedback control reporting the functional state of the organelle to the nucleus. By this means extensive communication between the two compartments is established. This helps the plant to perceive and respond properly to varying environmental influences and to developmental signals at the cellular level. Recent observations have extended our understanding of retrograde signalling. Models are presented that provide an overview of the different known pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdallah F, Salamini F, Leister D (2000) A prediction of the size and evolutionary origin of the proteome of chloroplasts of Arabidopsis. Trends Plant Sci 5:141–142

    PubMed  CAS  Google Scholar 

  • Acevedo-Hernandez GJ, Leon P, Herrera-Estrella LR(2005) Sugar and ABA responsiveness of a minimal RBCS light-responsive unit is mediated by direct binding of ABI4. Plant J 43:506–519

    PubMed  CAS  Google Scholar 

  • Alawady AE, Grimm B (2005) Tobacco Mg protoporphyrin IX methyltransferase is involved in inverse activation of Mg porphyrin and protoheme synthesis. Plant J 41:282–290

    PubMed  CAS  Google Scholar 

  • Albrecht V, Ingenfeld A, Apel K (2006) Characterization of the Snowy cotyledon 1 mutant of Arabidopsis thaliana.: The impact of chloroplast elongation factor G on chloroplast development and plant vitality Plant Mol Biol 60:507–518

    PubMed  CAS  Google Scholar 

  • Aluru MR, Yu F, Fu AG, Rodermel S (2006) Arabidopsis variegation mutants: new insights into chloroplast biogenesis. J Exp Bot 57:1871–1881

    PubMed  CAS  Google Scholar 

  • Anderson JM, Chow WS, Park Y-I(1995) The grand design of photosynthesis: Acclimation of the photosynthetic apparatus to environmental cues. Photosynth Res 46:129–139

    CAS  Google Scholar 

  • Ankele E, Kindgren P, Pesquet E, Strand A (2007) In vivo visualization of Mg-ProtoporphyrinIX, a coordinator of photosynthetic gene expression in the nucleus and the chloroplast. Plant Cell 19:1964–1979

    PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55:373–399.

    CAS  Google Scholar 

  • Baier M, Dietz KJ (2005) Chloroplasts as source and target of cellular redox regulation: a discussion on chloroplast redox signals in the context of plant physiology. J Exp Bot 56:1449–1462

    PubMed  CAS  Google Scholar 

  • Ball L, Accotto GP, Bechtold U, Creissen G, Funck D, Jimenez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H, Karpinski S, Mullineaux PM (2004) Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16:2448–2462

    PubMed  CAS  Google Scholar 

  • Beck CF (2005) Signaling pathways from the chloroplast to the nucleus. Planta 222:743–756

    PubMed  CAS  Google Scholar 

  • Bellafiore S, Bameche F, Peltier G, Rochaix JD (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433:892–895

    PubMed  ADS  CAS  Google Scholar 

  • Bolle C, Kusnetsov VV, Herrmann RG, Oelmüller R (1996) The spinach AtpC and AtpD genes contain elements for light-regulated, plastid-dependent and organ-specific expression in the vicinity of the transcription start sites. Plant J 9:21–30

    PubMed  CAS  Google Scholar 

  • Bonardi V, Pesaresi P, Becker T, Schleiff E, Wagner R, Pfannschmidt T, Jahns P, Leister D (2005) Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases. Nature 437:1179–1182

    PubMed  ADS  CAS  Google Scholar 

  • Bradbeer JW, Atkinson YE, Börner T, Hagemann R (1979) Cytoplasmic synthesis of plastid polypeptides may be controlled by plastid synthesized RNA. Nature 279:816–817

    ADS  CAS  Google Scholar 

  • Bräutigam K, Dietzel L, Pfannschmidt T (2007) Plastid-nucleus communication: anterograde and retrograde signalling in development and function of plastids. In: Bock R (ed) Cell and molecular biology of plastids. Springer, Berlin, pp 409–455

    Google Scholar 

  • Buchanan BB, Balmer Y (2005) Redox regulation: a broadening horizon. Ann Rev Plant Biol 56:187–220

    CAS  Google Scholar 

  • Buchanan BBGruissem WJones RL (2002) Biochemistry and molecular biology of plantsWileySomerset

    Google Scholar 

  • Burger G, Gray MW, Lang BF (2003) Mitochondrial genomes: anything goes. Trends Genet 19:709–716

    PubMed  CAS  Google Scholar 

  • Chamovitz D, Pecker I, Hirschberg J (1991) The molecular-basis of resistance to the herbicide norflurazon. Plant Mol Biol 16:967–974

    PubMed  CAS  Google Scholar 

  • Chandok MR, Sopory SK, Oelmüller R (2001) Cytoplasmic kinase and phosphatase activities can induce PsaF gene expression in the absence of functional plastids: evidence that phosphorylation/dephosphorylation events are involved in interorganellar crosstalk. Mol Gen Genet 264:819–826

    PubMed  CAS  Google Scholar 

  • Chen YB, Durnford DG, Koblizek M, Falkowski PG (2004) Plastid regulation of Lhcb1 transcription in the chlorophyte alga Dunaliella tertiolecta. Plant Physiol 136:3737–3750

    PubMed  CAS  Google Scholar 

  • Cottage AJ, Mott EK, Wang JH, Sullivan JA, MacLean D, Tran L, Choy MK, Newell CA, Kavanagh TA, Aspinall S, Gray JC (2007) GUN1 (GENOMES UNCOUPLED1) encodes a pentatricopeptide repeat (PPR) protein involved in plastid protein synthesis-responsive retrograde signaling to the nucleus. Photosynth Res 91:276–276.

    Google Scholar 

  • Danon A, Miersch O, Felix G, den Camp RGLO, Apel K (2005) Concurrent activation of cell deathregulating signaling pathways by singlet oxygen in Arabidopsis thaliana. Plant J 41:68–80

    PubMed  CAS  Google Scholar 

  • Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–281

    PubMed  CAS  Google Scholar 

  • Desikan R, Mackerness SAH, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172

    PubMed  CAS  Google Scholar 

  • Dietzel L, Bräutigam K, Pfannschmidt T (2008) Photosynthetic acclimation: State transitions and adjustment of photosystem stoichiometry – functional relationships between short-term and long-term light quality acclimation in plants. FEBS J 275:1080–1088

    PubMed  CAS  Google Scholar 

  • Dong HL, Deng Y, Mu JY, Lu QT, Wang YQ, Xu YY, Chu CC, Chong K, Lu CM, Zuo JR (2007) The Arabidopsis. spontaneous Cell Death1 gene, encoding a zeta-carotene desaturase essential for carotenoid biosynthesis, is involved in chloroplast development, photoprotection and retrograde signalling Cell Res 17:458–470

    PubMed  CAS  Google Scholar 

  • Durnford DG, Falkowski PG (1997) Chloroplast redox regulation of nuclear gene transcription during photoacclimation. Photosynth Res 53:229–241

    CAS  Google Scholar 

  • Escoubas JM, Lomas M, Laroche J, Falkowski PG (1995) Light-intensity regulation of cab gene-transcription is signaled by the redox state of the plastoquinone pool. Proc Natl Acad Sci USA 92:10237–10241

    PubMed  ADS  CAS  Google Scholar 

  • Fey V, Wagner R, Brautigam K, Wirtz M, Hell R, Dietzmann A, Leister D, Oelmüller R, Pfannschmidt T (2005) Retrograde plastid redox signals in the expression of nuclear genes for chloroplast proteins of Arabidopsis thaliana. J Biol Chem 280:5318–5328

    PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (1999) Plant biology – leaves in the dark see the light. Science 284:599–601

    PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    PubMed  CAS  Google Scholar 

  • Frances S, White MJ, Edgerton MD, Jones AM, Elliott RC, Thompson WF (1992) Initial characterization of a pea mutant with light-independent photomorphogenesis. Plant Cell 4:1519–1530

    PubMed  CAS  Google Scholar 

  • Fryer MJ, Ball L, Oxborough K, Karpinski S, Mullineaux PM, Baker NR (2003) Control of ascorbate peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis. leaves Plant J 33:691–705

    PubMed  CAS  Google Scholar 

  • Goslings D, Meskauskiene R, Kim CH, Lee KP, Nater M, Apel K (2004) Concurrent interactions of heme and FLU with Glu tRNA reductase (HEMA1), the target of metabolic feedback inhibition of tetrapyrrole biosynthesis, in dark- and light-grown Arabidopsis plants. Plant J 40:957–967

    PubMed  CAS  Google Scholar 

  • Gray JC, Sornarajah R, Zabron AA, Duckett CM, Khan MS (1995) Chloroplast control of nuclear gene expression. In: Mathis P (ed) Photosynthesis, from light to biosphere. Kluwer, Dordrecht, pp 543–550

    Google Scholar 

  • Gray JC, Sullivan JA, Wang JH, Jerome CA, MacLean D (2003) Coordination of plastid and nuclear gene expression. Phil Trans R Soc Lond B 358:135–144

    CAS  Google Scholar 

  • Hanaoka M , Kanamaru K , Takahashi H , Tanaka K (2003) Molecular genetic analysis of chloroplast gene promoters dependent on SIG2, a nucleus-encoded sigma factor for the plastid-encoded RNA polymerase, in Arabidopsis thaliana. Nucleic Acids Res 31:7090–7098

    PubMed  CAS  Google Scholar 

  • Heiber I, Stroher E, Raatz B, Busse I, Kahmann U, Bevan MW, Dietz KJ, Baier M (2007) The redox imbalanced mutants of Arabidopsis differentiate signaling pathways for redox regulation of chloroplast antioxidant enzymes. Plant Physiol 143:1774–1788

    PubMed  CAS  Google Scholar 

  • Hess WR, Muller A, Nagy F, Borner T (1994) Ribosome-deficient plastids affect transcription of light-induced nuclear genes – genetic-evidence for a plastid-derived signal. Mol Gen Genet 242:305–312

    PubMed  CAS  Google Scholar 

  • Hess WR, Prombona A, Fieder B, Subramanian AR, Borner T (1993) Chloroplast rps15 and the rpoB/C1/C2 gene-cluster are strongly transcribed in ribosome-deficient plastids – evidence for a functioning non-chloroplast-encoded RNA-polymerase. EMBO J 12:563–571

    PubMed  CAS  Google Scholar 

  • Hess WR, Schendel R, Borner T, Rudiger W (1991) Reduction of messenger-RNA level for 2 nuclear encoded light regulated genes in the barley mutant albostrians. is not correlated with phytochrome content and activity J Plant Physiol 138:292–298

    CAS  Google Scholar 

  • Hess WR, Schendel R, Rudiger W, Fieder B, Borner T (1992) Components of chlorophyll biosynthesis in a barley albino mutant unable to synthesize delta-aminolevulinic-acid by utilizing the transfer-RNA for glutamic-acid. Planta 188:19–27

    CAS  Google Scholar 

  • Ishikawa A , Okamoto H , Iwasaki Y , Asahi T (2001) A deficiency of coproporphyrinogen III oxidase causes lesion formation in Arabidopsis. Plant J 27:89–99

    PubMed  CAS  Google Scholar 

  • Jarvis P (2001) Intracellular signalling: the chloroplast talks! Curr Biol 11:R307–R310

    PubMed  CAS  Google Scholar 

  • Jiao YL, Lau OS, Deng XW (2007) Light-regulated transcriptional networks in higher plants. Nat Rev Genet 8:217–230

    PubMed  CAS  Google Scholar 

  • Johanningmeier U, Howell SH (1984) Regulation of light-harvesting chlorophyll-binding protein messenger-RNA accumulation in Chlamydomonas-reinhardtii. – possible involvement of chlorophyll synthesis precursors J Biol Chem 259:3541–3549

    Google Scholar 

  • Kanervo E, Suorsa M, Aro EM (2005) Functional flexibility and acclimation of the thylakoid membrane. Photochem Photobiol Sci 4:1072–1080

    PubMed  CAS  Google Scholar 

  • Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis. during excess light stress Plant Cell 9:627–640

    PubMed  CAS  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657

    PubMed  ADS  CAS  Google Scholar 

  • Kittsteiner U, Brunner H, Rudiger W (1991) The greening process in cress seedlings 2. Complexing agents and 5-aminolevulinate inhibit accumulation of cab-messenger-RNA coding for the light-harvesting chlorophyll a-b protein. Physiol Plant 81:190–196

    CAS  Google Scholar 

  • Kleffmann T, Russenberger D, von Zychlinski A, Christopher W, Sjolander K, Gruissem W, Baginsky S (2004) The Arabidopsis thaliana. chloroplast proteome reveals pathway abundance and novel protein functions Curr Biol 14:354–362

    PubMed  CAS  Google Scholar 

  • Koncz C , Mayerhofer R , Konczkalman Z , Nawrath C , Reiss B , Redei GP , Schell J (1990) Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging in Arabidopsis-thaliana. EMBO J 9:1337–1346

    PubMed  CAS  Google Scholar 

  • Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M, Lim IJ, Mittler R, Chory J (2007) Signals from chloroplasts converge to regulate nuclear gene expression. Science 316:715–719

    PubMed  ADS  CAS  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940–2945

    PubMed  ADS  CAS  Google Scholar 

  • Kropat J, Oster U, Rudiger W, Beck CF (1997) Chlorophyll precursors are signals of chloroplast origin involved in light induction of nuclear heat-shock genes. Proc Natl Acad Sci USA 94:14168–14172

    PubMed  ADS  CAS  Google Scholar 

  • Kurth J, Varotto C, Pesaresi P, Biehl A, Richly E, Salamini F, Leister D (2002) Gene-sequence-tag expression analyses of 1,800 genes related to chloroplast functions. Planta 215:101–109

    PubMed  CAS  Google Scholar 

  • Kusnetsov V, Bolle C, Lubberstedt T, Sopory S, Herrmann RG, Oelmüller R (1996) Evidence that the plastid signal and light operate via the same cis.-acting elements in the promoters of nuclear genes for plastid proteins Mol Gen Genet 252:631–639

    PubMed  CAS  Google Scholar 

  • Larkin RM, Alonso JM, Ecker JR, Chory J (2003) GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299:902–906

    PubMed  ADS  CAS  Google Scholar 

  • Lee KP, Kim C, Landgraf F, Apel K (2007) EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc Natl Acad Sci USA 104:10270–10275

    PubMed  ADS  CAS  Google Scholar 

  • Lopez-Juez E, Jarvis RP, Takeuchi A, Page AM, Chory J (1998) New Arabidopsis. cue mutants suggest a close connection between plastid- and phytochrome regulation of nuclear gene expression Plant Physiol 118:803–815.

    PubMed  CAS  Google Scholar 

  • Lukens JH, Mathews DE, Durbin RD (1987) Effect of tagetitoxin on the levels of ribulose 1,5-bisphosphate carboxylase, ribosomes, and RNA in plastids of wheat leaves. Plant Physiol 84:808–813

    Article  PubMed  CAS  Google Scholar 

  • Maxwell DP , Laudenbach DE , Huner NPA (1995) Redox regulation of light-harvesting complex-II and cab messenger-RNA abundance in Dunaliella-salina. Plant Physiol 109:787–795

    PubMed  CAS  Google Scholar 

  • Mayfield SP, Taylor WC (1984) Carotenoid-deficient maize seedlings fail to accumulate light-harvesting chlorophyll a/b binding-protein (LhcP) messenger-RNA. Eur J Biochem 144:79–84

    PubMed  CAS  Google Scholar 

  • McCormac AC, Terry MJ (2004) The nuclear genes Lhcb and HEMA1 are differentially sensitive to plastid signals and suggest distinct roles for the GUN1 and GUN5 plastid-signalling pathways during de-etiolation. Plant J 40:672–685

    PubMed  CAS  Google Scholar 

  • Meskauskiene R , Nater M , Goslings D , Kessler F , den Camp RO , Apel K (2001) FLU: A negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 98:12826–12831

    PubMed  ADS  CAS  Google Scholar 

  • Mochizuki N, Brusslan JA, Larkin R, Nagatani A, Chory J (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci USA 98:2053–2058

    PubMed  ADS  CAS  Google Scholar 

  • Motohashi R, Yamazaki T, Myouga F, Ito T, Ito K, Satou M, Kobayashi M, Nagata N, Yoshida S, Nagashima A, Tanaka K, Takahashi S, Shinozaki K (2007) Chloroplast ribosome release factor 1 (AtcpRF1) is essential for chloroplast development. Plant Mol Biol 64:481–497

    PubMed  CAS  Google Scholar 

  • Mullineaux PM, Rausch T (2005) Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth Res 86:459–474

    PubMed  CAS  Google Scholar 

  • Nott A, Jung HS, Koussevitzky S, Chory J (2006) Plastid-to-nucleus retrograde signaling. Ann Rev Plant Biol 57:739–759

    CAS  Google Scholar 

  • Oelmüller R (1989) Photooxidative destruction of chloroplasts and its effect on nuclear gene-expression and extraplastidic enzyme levels. Photochem Photobiol 49:229–239

    Google Scholar 

  • Oelmüller R, Mohr H (1986) Photooxidative destruction of chloroplasts and its consequences for expression of nuclear genes. Planta 167:106–113

    Google Scholar 

  • op den Camp RGL, Przybyla D, Ochsenbein C, Laloi C, Kim CH, Danon A, Wagner D, Hideg E, Gobel C, Feussner I, Nater M, Apel K (2003) Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15:2320–2332

    PubMed  CAS  Google Scholar 

  • Oswald O, Martin T, Dominy PJ, Graham IA (2001) Plastid redox state and sugars: Interactive regulators of nuclear-encoded photosynthetic gene expression. Proc Natl Acad Sci USA 98:2047–2052

    PubMed  ADS  CAS  Google Scholar 

  • Papenbrock J, Grimm B (2001) Regulatory network of tetrapyrrole biosynthesis – studies of intracellular signalling involved in metabolic and developmental control of plastids. Planta 213:667–681

    PubMed  CAS  Google Scholar 

  • Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G, Foyer CH (2003) Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell 15:939–951

    PubMed  CAS  Google Scholar 

  • Pesaresi P, Masiero S, Eubel H, Braun HP, Bhushan S, Glaser E, Salamini F, Leister D (2006) Nuclear photosynthetic gene expression is synergistically modulated by rates of protein synthesis in chloroplasts and mitochondria. Plant Cell 18:970–991

    PubMed  CAS  Google Scholar 

  • Pesaresi P, Schneider A, Kleine T, Leister D (2007) Interorganellar communication. Curr Opin Plant Biol 10:600–606

    PubMed  CAS  Google Scholar 

  • Petracek ME, Dickey LF, Huber SC, Thompson WF (1997) Light-regulated changes in abundance and polyribosome association of ferredoxin mRNA are dependent on photosynthesis. Plant Cell 9:2291–2300

    PubMed  CAS  Google Scholar 

  • Petracek ME, Dickey LF, Nguyen TT, Gatz C, Sowinski DA, Allen GC, Thompson WF (1998) Ferredoxin-1 mRNA is destabilized by changes in photosynthetic electron transport. Proc Natl Acad Sci USA 95:9009–9013

    PubMed  ADS  CAS  Google Scholar 

  • Pfalz J, Liere K, Kandlbinder A, Dietz KJ, Oelmüller R (2006) PTAC2,-6, and-12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression. Plant Cell 18:176–197

    PubMed  CAS  Google Scholar 

  • Pfannschmidt T (2003) Chloroplast redox signals: how photosynthesis controls its own genes. Trends Plant Sci 8:33–41

    PubMed  CAS  Google Scholar 

  • Pfannschmidt T, Link G (1997) The A and B forms of plastid DNA-dependent RNA polymerase from mustard (Sinapis alba. L.) transcribe the same genes in a different developmental context Mol Gen Genet 257:35–44

    PubMed  CAS  Google Scholar 

  • Pfannschmidt T, Schutze K, Brost M, Oelmüller R (2001) A novel mechanism of nuclear photosynthesis gene regulation by redox signals from the chloroplast during photosystem stoichiometry adjustment. J Biol Chem 276:36125–36130

    PubMed  CAS  Google Scholar 

  • Piippo M, Allahverdiyeva Y, Paakkarinen V, Suoranta UM, Battchikova N, Aro EM (2006) Chloroplast-mediated regulation of nuclear genes in Arabidopsis thaliana. in the absence of light stress Physiol Genom 25:142–152

    CAS  Google Scholar 

  • Puente P , Wei N , Deng XW (1996) Combinatorial interplay of promoter elements constitutes the minimal determinants for light and developmental control of gene expression in Arabidopsis. EMBO J 15:3732–3743

    PubMed  CAS  Google Scholar 

  • Pursiheimo S, Mulo P, Rintamaki E, Aro EM (2001) Coregulation of light-harvesting complex II phosphorylation and lhcb mRNA accumulation in winter rye. Plant J 26:317–327

    PubMed  CAS  Google Scholar 

  • Rapp JC, Mullet JE (1991) Chloroplast transcription is required to express the nuclear genes rbcS and cab plastid DNA copy number is regulated independently. Plant Mol Biol 17:813–823

    PubMed  CAS  Google Scholar 

  • Reinbothe C, Bartsch S, Eggink LL, Hoober JK, Brusslan J, Andrade-Paz R, Monnet J, Reinbothe S (2006) A role for chlorophyllide a oxygenase in the regulated import and stabilization of light-harvesting chlorophyll a/b proteins. Proc Natl Acad Sci USA 103:4777–4782

    PubMed  ADS  CAS  Google Scholar 

  • Rhoads DM, Subbaiah CC (2007) Mitochondrial retrograde regulation in plants. Mitochondrion 7:177–194

    PubMed  CAS  Google Scholar 

  • Richly E, Dietzmann A, Biehl A, Kurth J, Laloi C, Apel K, Salamini F, Leister D (2003) Covariations in the nuclear chloroplast transcriptome reveal a regulatory master-switch. EMBO Rep 4:491–498

    PubMed  CAS  Google Scholar 

  • Rochaix JD (2007) Role of thylakoid protein kinases in photosynthetic acclimation. FEBS Lett 581:2768–2775

    PubMed  CAS  Google Scholar 

  • Rodermel S (2001) Pathways of plastid-to-nucleus signaling. Trends Plant Sci 6:471–478

    PubMed  CAS  Google Scholar 

  • Rolland N, Ferro M, Seigneurin-Berny D, Garin J, Block M, Joyard J (2008) The chloroplast envelope proteome and lipidome. Plant Cell Monogr., doi:10.1007/7089_2008_33

    Google Scholar 

  • Ruckle ME, DeMarco SM, Larkin RM (2007) Plastid signals remodel light signaling networks and are essential for efficient chloroplast biogenesis in Arabidopsis. Plant Cell 19:3944–3960

    PubMed  CAS  Google Scholar 

  • Rüdiger W, Grimm B (2006) Chlorophyll metabolism, an overview. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Advances in photosynthesis and respiration. Springer, Dordrecht, pp 133–146

    Google Scholar 

  • Saha D, Prasad AM, Srinivasan R (2007) Pentatricopeptide repeat proteins and their emerging roles in plants. Plant Physiol Biochem 45:521–534

    PubMed  CAS  Google Scholar 

  • Sakamoto W (2003) Leaf-variegated mutations and their responsible genes in Arabidopsis thaliana. Gen Genet Syst 78:1–9

    CAS  Google Scholar 

  • Seo M, Koshiba T (2002) Complex regulation of ABA biosynthesis in plants. Trends Plant Sci 7:41–48

    PubMed  CAS  Google Scholar 

  • Shao N, Vallon O, Dent R, Niyogi KK, Beck CF (2006) Defects in the cytochrome b(6)/f complex prevent light-induced expression of nuclear genes involved in chlorophyll biosynthesis. Plant Physiol 141:1128–1137

    PubMed  CAS  Google Scholar 

  • Shen YY, Wang XF, Wu FQ, Du SY, Cao Z, Shang Y, Wang XL, Peng CC, Yu XC, Zhu SY, Fan RC, Xu YH, Zhang DP (2006) The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443:823–826

    PubMed  ADS  CAS  Google Scholar 

  • Sherameti I, Sopory SK, Trebicka A, Pfannschmidt T, Oelmüller R (2002) Photosynthetic electron transport determines nitrate reductase gene expression and activity in higher plants. J Biol Chem 277:46594–46600

    PubMed  CAS  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    PubMed  CAS  Google Scholar 

  • Staneloni RJ, Rodriguez-Batiller MJ, Casal JJ (2008) Abscisic acid, high-light, and oxidative stress down-regulate a photosynthetic gene via a promoter motif not involved in phytochrome-mediated transcriptional regulation. Mol Plant 1:75–83

    CAS  PubMed  Google Scholar 

  • Stoebe B, Maier UG (2002) One, two, three: nature’s tool box for building plastids. Protoplasma 219:123–130

    PubMed  Google Scholar 

  • Strand A (2004) Plastid-to-nucleus signalling. Curr Opin Plant Biol 7:621–625

    PubMed  CAS  Google Scholar 

  • Strand A, Asami T, Alonso J, Ecker JR, Chory J (2003) Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX. Nature 421:79–83

    PubMed  ADS  CAS  Google Scholar 

  • Streatfield SJ, Weber A, Kinsman EA, Hausler RE, Li JM, Post-Beittenmiller D, Kaiser WM, Pyke KA, Flugge UI, Chory J (1999) The phosphoenolpyruvate/phosphate translocator is required for phenolic metabolism, palisade cell development, and plastid-dependent nuclear gene expression. Plant Cell 11:1609–1621

    PubMed  CAS  Google Scholar 

  • Sugiura M (1992) The chloroplast genome. Plant Mol Biol 19:149–168

    PubMed  CAS  Google Scholar 

  • Sullivan JA, Gray JC (1999) Plastid translation is required for the expression of nuclear photosynthesis genes in the dark and in roots of the pea lip1 mutant. Plant Cell 11:901–910

    PubMed  CAS  Google Scholar 

  • Sullivan JA, Gray JC (2002) Multiple plastid signals regulate the expression of the pea plastocyanin gene in pea and transgenic tobacco plants. Plant J 32:763–774

    PubMed  CAS  Google Scholar 

  • Surpin M, Larkin RM, Chory J (2002) Signal transduction between the chloroplast and the nucleus. Plant Cell 14:S327–S338

    PubMed  CAS  Google Scholar 

  • Susek RE, Ausubel FM, Chory J (1993) Signal-transduction mutants of Arabidopsis. uncouple nuclear cab and rbcS gene-expression from chloroplast development Cell 74:787–799

    PubMed  CAS  Google Scholar 

  • Taylor WC (1989) Regulatory interactions between nuclear and plastid genomes. Ann Rev Plant Physiol Plant Mol Biol 40:211–233

    CAS  Google Scholar 

  • Terzaghi WB, Cashmore AR (1995) Light-regulated transcription. Ann Rev Plant Physiol Plant Mol Biol 46:445–474

    CAS  Google Scholar 

  • Tikkanen M, Piippo M, Suorsa M, Sirpio S, Mulo P, Vainonen J, Vener AV, Allahverdiyeva Y, Aro EM (2006) State transitions revisited – a buffering system for dynamic low light acclimation of Arabidopsis. Plant Mol Biol 62:779–793

    PubMed  Google Scholar 

  • Tiller K, Link G (1993) Phosphorylation and dephosphorylation affect functional characteristics of chloroplast and etioplast transcription systems from mustard (Sinapis alba. L) EMBO J 12:1745–1753

    PubMed  CAS  Google Scholar 

  • Tottey S, Block MA, Allen M, Westergren T, Albrieux C, Scheller HV, Merchant S, Jensen PE (2003) Arabidopsis. CHL27, located in both envelope and thylakoid membranes, is required for the synthesis of protochlorophyllide Proc Natl Acad Sci USA 100:16119–16124

    PubMed  ADS  CAS  Google Scholar 

  • van Wijk KJ(2000) Proteomics of the chloroplast: experimentation and prediction. Trends Plant Sci 5:420–425

    Google Scholar 

  • Vandenabeele S , Vanderauwera S , Vuylsteke M , Rombauts S , Langebartels C , Seidlitz HK , Zabeau M , Van Montagu M , Inze D , Van Breusegem F (2004) Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. Plant J 39:45–58

    PubMed  CAS  Google Scholar 

  • von Gromoff ED, Schroda M, Oster U, Beck CF (2006) Identification of a plastid response element that acts as an enhancer within the Chlamydomonas. HSP70A promoter Nucleic Acids Res 34:4767–4779

    PubMed  CAS  Google Scholar 

  • von Gromoff ED , Alawady A , Meinecke L , Grimm B , Beck CF (2008) Heme, a plastid-derived regulator of nuclear gene expression in Chlamydomonas. Plant Cell 20:552–567

    PubMed  CAS  Google Scholar 

  • Wachter A , Wolf S , Steininger H , Bogs J , Rausch T (2005) Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant J 41:15–30

    PubMed  CAS  Google Scholar 

  • Wagner D , Przybyla D , Camp ROD , Kim C , Landgraf F , Lee KP , Wursch M , Laloi C , Nater M , Hideg E , Apel K (2004) The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science 306:1183–1185

    PubMed  ADS  CAS  Google Scholar 

  • Walters RG (2005) Towards an understanding of photosynthetic acclimation. J Exp Bot 56:435–447

    PubMed  CAS  Google Scholar 

  • Wilde A, Mikolajczyk S, Alawady A, Lokstein H, Grimm B (2004) The gun4 gene is essential for cyanobacterial porphyrin metabolism. FEBS Lett 571:119–123

    PubMed  CAS  Google Scholar 

  • Willows R, Hansson M (2003) Mechanism, structure, and regulation of magnesium chelatase. In: Kadish KM, Smith K, Guilard RThe tetrapyrrole handbook II. Academic Press, San Diego, pp 1–48

    Google Scholar 

  • Woitsch S, Romer S (2003) Expression of xanthophyll biosynthetic genes during light-dependent chloroplast differentiation. Plant Physiol 132:1508–1517

    PubMed  CAS  Google Scholar 

  • Yabuta Y, Maruta T, Yoshimura K, Ishikawa T, Shigeoka S (2004) Two distinct redox signaling pathways for cytosolic APX induction under photooxidative stress. Plant Cell Physiol 45:1586–1594

    PubMed  CAS  Google Scholar 

  • Yang DH, Andersson B, Aro EM, Ohad I (2001) The redox state of the plastoquinone pool controls the level of the light-harvesting chlorophyll a/b binding protein complex II (LHC II) during photoacclimation – Cytochrome b(6)f deficient Lemna perpusilla. plants are locked in a state of high-light acclimation Photosynth Res 68:163–174

    PubMed  CAS  Google Scholar 

  • Yoshida R, Sato T, Kanno A, Kameya T (1998) Streptomycin mimics the cool temperature response in rice plants. J Exp Bot 49:221–227

    CAS  Google Scholar 

Download references

Acknowledgements

Our work was supported by grants from the DFG, the “NWP” and “Excellence in Science” programmes of Thuringia to T.P. and to the DFG research group FOR 387.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Pfannschmidt* .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London

About this chapter

Cite this chapter

Dietzel, L., Steiner, S., Schröter, Y., Pfannschmidt*, T. (2008). Retrograde Signalling. In: Plant Cell Monographs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2008_41

Download citation

  • DOI: https://doi.org/10.1007/7089_2008_41

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics