Skip to main content

Integration of Agrobacterium T-DNA in Plant Cells

  • Chapter
  • First Online:
Plant Cell Monographs

Part of the book series: Plant Cell Monographs

  • 17 Accesses

Abstract

Agrobacterium-mediated genetic transformation is a process by which the bacterium delivers a specific DNA molecule into plant cells. The transferred DNA molecule (T-DNA) stably integrates into the host genome and is expressed there. Agrobacterium-mediated genetic transformation is widely used for the production of transgenic plants useful for basic plant research and biotechnology, yet the mechanisms by which the T-DNA integrates into the host genome are still poorly understood. Furthermore, we have only recently begun to reveal the important functions of plant factors in the integration process. In this chapter, we describe the current knowledge on the bacterial and host factors and the cellular mechanisms that govern the integration of T-DNA molecules into plant cells. We follow the long line of genetic, functional, and biochemical studies which have paved the way for establishing the different integration models, and we describe possibilities for controlling the T-DNA integration process in order to achieve the most desirable gene-targeting technology for plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ds:

double-stranded

DSB:

double-strand breaks

GT:

gene targeting

HR:

homologous recombination

NHEJ:

non homologous end joining

ss:

single-stranded

T-DNA:

transferred DNA

T-strand:

the single-stranded DNA form of the T-DNA

ZFNs:

zinc-finger nucleases

References

  • Abu-Arish A, Frenkiel-Krispin D, Fricke T, Tzfira T, Citovsky V, Grayer Wolf S, Elbaum M (2004) Three-dimensional reconstruction of Agrobacterium. VirE2 protein with single-stranded DNA J Biol Chem 279:25359–25363

    PubMed  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    PubMed  ADS  Google Scholar 

  • An S, Park S, Jeong DH, Lee DY, Kang HG, Yu JH, Hur J, Kim SR, Kim YH, Lee M, Han S, Kim SJ, Yang J, Kim E, Wi SJ, Chung HS, Hong JP, Choe V, Lee HK, Choi JH, Nam J, Park PB, Park KY, Kim WT, Choe S, Lee CB, An G (2003) Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol 133:2040–2047

    PubMed  CAS  Google Scholar 

  • Anand A, Krichevsky A, Schornack S, Lahaye T, Tzfira T, Tang Y, Citovsky V, Mysore KS (2007) Arabidopsis. VIRE2 INTERACTING PROTEIN2 is required for Agrobacterium T-DNA integration in plants Plant Cell 19:1695–1708

    PubMed  CAS  Google Scholar 

  • Atmakuri K, Christie PJ (2008) Translocation of oncogenic T-DNA and effector proteins to plant cells. In: Tzfira T, Citovsky V (eds) Agrobacterium. Springer, New York, pp 315–364

    Google Scholar 

  • Avivi Y, Morad V, Ben-Meir H, Zhao J, Kashkush K, Tzfira T, Citovsky V, Grafi G (2004) Reorganization of specific chromosomal domains and activation of silent genes in plant cells acquiring pluripotentiality. Dev Dyn 230:12–22

    PubMed  CAS  Google Scholar 

  • Babiychuk E, Cottrill PB, Storozhenko S, Fuangthong M, Chen Y, O’Farrell MK, Van Montagu M, Inze D, Kushnir S (1998) Higher plants possess two structurally different poly(ADP-ribose) polymerases. Plant J 15:635–645

    PubMed  CAS  Google Scholar 

  • Bakkeren G, Koukolikova-Nicola Z, Grimsley N, Hohn B (1989) Recovery of Agrobacterium tumefaciens. T-DNA molecules from whole plants early after transfer Cell 57:847–857

    PubMed  CAS  Google Scholar 

  • Bako L, Umeda M, Tiburcio AF, Schell J, Koncz C (2003) The VirD2 pilot protein of Agrobacterium.-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants Proc Natl Acad Sci USA 100:10108–10113

    PubMed  ADS  CAS  Google Scholar 

  • Ballas N, Citovsky V (1997) Nuclear localization signal binding protein from Arabidopsis. mediates nuclear import of Agrobacterium VirD2 protein Proc Natl Acad Sci USA 94:10723–10728

    PubMed  ADS  CAS  Google Scholar 

  • Banta LM, Montenegro M (2008) Agrobacterium. In: and plant biotechnologyTzfira T, Citovsky V (eds) Agrobacterium. Springer, New York, pp 73–147

    Google Scholar 

  • Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300:764

    PubMed  CAS  Google Scholar 

  • Bray CM, West CE (2005) DNA repair mechanisms in plants: crucial sensors and effectors for the maintenance of genome integrity. New Phytol 168:511–528

    PubMed  CAS  Google Scholar 

  • Britt AB, May GD (2003) Re-engineering plant gene targeting. Trends Plant Sci 8:90–95

    PubMed  CAS  Google Scholar 

  • Brunaud V, Balzergue S, Dubreucq B, Aubourg S, Samson F, Chauvin S, Bechtold N, Cruaud C, DeRose R, Pelletier G, Lepiniec L, Caboche M, Lecharny A (2002) T-DNA integration into the Arabidopsis. genome depends on sequences of pre-insertion sites EMBO Rep 3:1152–1157

    PubMed  CAS  Google Scholar 

  • Bundock P, Hooykaas PJJ (1996) Integration of Agrobacterium tumefaciens. T-DNA in the Saccharomyces cerevisiae genome by illegitimate recombination Proc Natl Acad Sci USA 93:15272–15275

    PubMed  ADS  CAS  Google Scholar 

  • Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas PJJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens. to Saccharomyces cerevisiae EMBO J 14:3206–3214

    PubMed  CAS  Google Scholar 

  • Chateau S, Sangwan RS, Sangwan-Norreel BS (2000) Competence of Arabidopsis thaliana. genotypes and mutants for Agrobacterium tumefaciens-mediated gene transfer: role of phytohormones J Exp Bot 51:1961–1968

    PubMed  CAS  Google Scholar 

  • Chen S, Jin W, Wang M, Zhang F, Zhou J, Jia Q, Wu Y, Liu F, Wu P (2003) Distribution and characterization of over 1,000 T-DNA tags in rice genome. Plant J 36:105–113

    PubMed  CAS  Google Scholar 

  • Chilton M-DM, Que Q (2003) Targeted integration of T-DNA into the tobacco genome at double-strand breaks: new insights on the mechanism of T-DNA integration. Plant Physiol 133:956–965

    PubMed  CAS  Google Scholar 

  • Christie PJ, Atmakuri K, Krishnamoorthy V, Jakubowski S, Cascales E (2005) Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59:451–485

    PubMed  CAS  Google Scholar 

  • Citovsky V, Wong ML, Zambryski PC (1989) Cooperative interaction of Agrobacterium. VirE2 protein with single stranded DNA: implications for the T-DNA transfer process Proc Natl Acad Sci USA 86:1193–1197

    PubMed  ADS  CAS  Google Scholar 

  • Citovsky V, Zupan J, Warnick D, Zambryski PC (1992) Nuclear localization of Agrobacterium. VirE2 protein in plant cells Science 256:1802–1805

    PubMed  ADS  CAS  Google Scholar 

  • Citovsky V, Guralnick B, Simon MN, Wall JS (1997) The molecular structure of Agrobacterium. VirE2-single stranded DNA complexes involved in nuclear import J Mol Biol 271:718–727

    PubMed  CAS  Google Scholar 

  • Citovsky V, Kozlovsky SV, Lacroix B, Zaltsman A, Dafny-Yelin M, Vyas S, Tovkach A, Tzfira T (2007) Biological systems of the host cell involved in Agrobacterium. infection Cell Microbiol 9:9–20

    PubMed  CAS  Google Scholar 

  • Dafny-Yelin M, Levy A, Tzfira T (2008) The ongoing saga of Agrobacterium–-host interactions Trends Plant Sci13102–105.

    PubMed  CAS  Google Scholar 

  • De Block M, Debrouwer D (1991) Two T-DNA’s co-transformed into Brassica napus. by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus Theor Appl Genet 82:257–263

    CAS  Google Scholar 

  • De Buck S, Jacobs A, Van Montagu M, Depicker A (1999) The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration. Plant J 20:295–304

    PubMed  CAS  Google Scholar 

  • de Cleene M, de Ley J (1976) The host range of crown gall. Bot Rev 42:389–466

    Google Scholar 

  • de Groot MJ, Bundock P, Hooykaas PJJ, Beijersbergen AG (1998) Agrobacterium tumefaciens.-mediated transformation of filamentous fungi Nat Biotechnol 16:839–842

    PubMed  CAS  Google Scholar 

  • De Neve M, De Buck S, Jacobs A, Van Montagu M, Depicker A (1997) T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs. Plant J 11:15–29

    PubMed  CAS  Google Scholar 

  • Deng W, Chen L, Wood DW, Metcalfe T, Liang X, Gordon MP, Comai L, Nester EW (1998) Agrobacterium. VirD2 protein interacts with plant host cyclophilins Proc Natl Acad Sci USA 95:7040–7045

    PubMed  ADS  CAS  Google Scholar 

  • D’Halluin K, Vanderstraeten C, Stals E, Cornelissen M, Ruiter R (2008) Homologous recombination: a basis for targeted genome optimization in crop species such as maize. Plant Biotechnol J 6:93–102

    PubMed  CAS  Google Scholar 

  • Djamei A, Pitzschke A, Nakagami H, Rajh I, Hirt H (2007) Trojan horse strategy in Agrobacterium. transformation: abusing MAPK defense signaling Science 318:453–456

    PubMed  ADS  CAS  Google Scholar 

  • Duckely M, Hohn B (2003) The VirE2 protein of Agrobacterium tumefaciens.: the Yin and Yang of T-DNA transfer FEMS Microbiol Lett 223:1–6

    PubMed  CAS  Google Scholar 

  • Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 33:5978–5990

    PubMed  CAS  Google Scholar 

  • Endo M, Ishikawa Y, Osakabe K, Nakayama S, Kaya H, Araki T, Shibahara K, Abe K, Ichikawa H, Valentine L, Hohn B, Toki S (2006) Increased frequency of homologous recombination and T-DNA integration in Arabidopsis. CAF-1 mutants EMBO J 25:5579–5590

    PubMed  CAS  Google Scholar 

  • Forsbach A, Schubert D, Lechtenberg B, Gils M, Schmidt R (2003) A comprehensive characterization of single-copy T-DNA insertions in the Arabidopsis thaliana. genome Plant Mol Biol 52:161–176

    PubMed  CAS  Google Scholar 

  • Francis KE, Spiker S (2005) Identification of Arabidopsis thaliana. transformants without selection reveals a high occurrence of silenced T-DNA integrations Plant J 41:464–477

    Article  PubMed  CAS  Google Scholar 

  • Friesner J, Britt AB (2003) Ku80.- and DNA ligase IV-deficient plants are sensitive to ionizing radiation and defective in T-DNA integration Plant J 34:427–440

    PubMed  CAS  Google Scholar 

  • Fritsch O, Benvenuto G, Bowler C, Molinier J, Hohn B (2004) The INO80 protein controls homologous recombination in Arabidopsis thaliana. Mol Cell 16:479–485

    PubMed  CAS  Google Scholar 

  • Gallego ME, Bleuyard JY, Daoudal-Cotterell S, Jallut N, White CI (2003) Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis. Plant J 35:557–565

    PubMed  CAS  Google Scholar 

  • Gelvin SB (1998) The introduction and expression of transgenes in plants. Curr Opin Biotechnol 9:227–232

    PubMed  CAS  Google Scholar 

  • Gelvin SB (2003) Agrobacterium.-mediated plant transformation: the biology behind the “gene-jockeying” tool Microbiol Mol Biol Rev 67:16–37

    PubMed  CAS  Google Scholar 

  • Gelvin SB, Kim SI (2007) Effect of chromatin upon Agrobacterium. T-DNA integration and transgene expression Biochim Biophys Acta 1769:410–421

    PubMed  CAS  Google Scholar 

  • Gheysen G, Villarroel R, Van Montagu M (1991) Illegitimate recombination in plants: a model for T-DNA integration. Genes Dev 5:287–297

    PubMed  CAS  Google Scholar 

  • Godio RP, Fouces R, Gudina EJ, Martin JF (2004) Agrobacterium tumefaciens. -mediated transformation of the antitumor clavaric acid-producing basidiomycete Hypholoma sublateritium Curr Genet 46:287–294

    PubMed  CAS  Google Scholar 

  • Gorbunova V, Levy AA (1997) Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res 25:4650–4657

    PubMed  CAS  Google Scholar 

  • Haber JE (2000) Lucky breaks: analysis of recombination in Saccharomyces. Mutat Res 451:53–69

    PubMed  CAS  Google Scholar 

  • Hanin M, Volrath S, Bogucki A, Briker M, Ward E, Paszkowski J (2001) Gene targeting in Arabidopsis. Plant J 28:671–677

    PubMed  CAS  Google Scholar 

  • Hellens R, Mullineaux P, Klee H (2000) Technical focus: a guide to Agrobacterium. binary Ti vectors Trends Plant Sci 5:446–451

    PubMed  CAS  Google Scholar 

  • Herman L, Jacobs A, Van Montagu M, Depicker A (1990) Plant chromosome/marker gene fusion assay for study of normal and truncated T-DNA integration events. Mol Gen Genet 224:248–256

    PubMed  CAS  Google Scholar 

  • Howard EA, Citovsky V (1990) The emerging structure of the Agrobacterium. T-DNA transfer complex BioEssays 12:103–108

    CAS  Google Scholar 

  • Howard EA, Zupan JR, Citovsky V, Zambryski PC (1992) The VirD2 protein of A.. tumefaciens contains a C-terminal bipartite nuclear localization signal: implications for nuclear uptake of DNA in plant cells Cell 68:109–118

    PubMed  CAS  Google Scholar 

  • Journin L, Bouchezs D, Drong RF, Tepfer D, Slightom JL (1989) Analysis of TR-DNA/plant junctions in the genome of Convolvulus arvensis. clone transformed by Agrobacterium rhizogenes strain A4 Plant Mol Biol 12:72–85

    Google Scholar 

  • Kertbundit S, De Greve H, Deboeck F, Van Montagu M, Hernalsteens JP (1991) In vivo random beta-glucuronidase gene fusions in Arabidopsis thaliana. Proc Natl Acad Sci USA 88:5212–5216

    PubMed  ADS  CAS  Google Scholar 

  • Kim SI, Veena, Gelvin SB (2007) Genome-wide analysis of Agrobacterium. T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions Plant J 51:779–791

    PubMed  CAS  Google Scholar 

  • Kirik A, Pecinka A, Wendeler E, Reiss B (2006) The chromatin assembly factor subunit FASCIATA1 is involved in homologous recombination in plants. Plant Cell 18:2431–2442

    PubMed  CAS  Google Scholar 

  • Kohler F, Cardon G, Pohlman M, Gill R, Schieder O (1989) Enhancement of transformation rates in higher plants by low-dose irradiation: are DNA repair systems involved in the incorporation of exogenous DNA into the plant genome? Plant Mol Biol 12:189–199

    Google Scholar 

  • Koncz C, Martini N, Mayerhofer R, Koncz-Kalman Z, Korber H, Redei GP, Schell J (1989) High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci USA 86:8467–8471

    PubMed  ADS  CAS  Google Scholar 

  • Krizkova L, Hrouda M (1998) Direct repeats of T-DNA integrated in tobacco chromosome: characterization of junction regions. Plant J 16:673–680

    PubMed  CAS  Google Scholar 

  • Kunik T, Tzfira T, Kapulnik Y, Gafni Y, Dingwall C, Citovsky V (2001) Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci USA 98:1871–1876

    PubMed  ADS  CAS  Google Scholar 

  • Lacroix B, Vaidya M, Tzfira T, Citovsky V (2005) The VirE3 protein of Agrobacterium. mimics a host cell function required for plant genetic transformation EMBO J 24:428–437

    PubMed  CAS  Google Scholar 

  • Lacroix B, Li J, Tzfira T, Citovsky V (2006a) Will you let me use your nucleus? How Agrobacterium. gets its T-DNA expressed in the host plant cell Can J Physiol Pharmacol 84:333–345

    CAS  Google Scholar 

  • Lacroix B, Tzfira T, Vainstein A, Citovsky V (2006b) A case of promiscuity: Agrobacterium.’s endless hunt for new partners Trends Genet 22:29–37

    CAS  Google Scholar 

  • Lacroix B, Elbaum M, Citovsky V, Tzfira T (2008) Intracellular transport of Agrobacterium. In: T-DNATzfira T, Citovsky V (eds) Agrobacterium. Springer, New York, pp 365–394

    Google Scholar 

  • Li J, Krichevsky A, Vaidya M, Tzfira T, Citovsky V (2005a) Uncoupling of the functions of the Arabidopsis. VIP1 protein in transient and stable plant genetic transformation by Agrobacterium Proc Natl Acad Sci USA 102:5733–5738

    ADS  CAS  Google Scholar 

  • Li J, Vaidya M, White C, Vainstein A, Citovsky V, Tzfira T (2005b) Involvement of KU80 in T-DNA integration in plant cells. Proc Natl Acad Sci USA 102:19231–19236

    ADS  CAS  Google Scholar 

  • Li Y, Rosso MG, Ulker B, Weisshaar B (2006) Analysis of T-DNA insertion site distribution patterns in Arabidopsis thaliana. reveals special features of genes without insertions Genomics 87:645–652

    PubMed  CAS  Google Scholar 

  • Lloyd A, Plaisier CL, Carroll D, Drews GN (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci USA 102:2232–2237

    PubMed  ADS  CAS  Google Scholar 

  • Loyter A, Rosenbluh J, Zakai N, Li J, Kozlovsky SV, Tzfira T, Citovsky V (2005) The plant VirE2 interacting protein 1. A molecular link between the Agrobacterium T-complex and the host cell chromatin? Plant Physiol 138:1318–1321

    PubMed  CAS  Google Scholar 

  • Mayerhofer R, Koncz-Kalman Z, Nawrath C, Bakkeren G, Crameri A, Angelis K, Redei GP, Schell J, Hohn B, Koncz C (1991) T-DNA integration: a mode of illegitimate recombination in plants. EMBO J 10:697–704

    PubMed  CAS  Google Scholar 

  • McCullen CA, Binns AN (2006) Agrobacterium tumefaciens. plant cell interactions and activities required for interkingdom macromolecular transfer Annu Rev Cell Dev Biol 22:101–127

    PubMed  CAS  Google Scholar 

  • Michielse CB, Arentshorst M, Ram AF, van den Hondel CA (2005) Agrobacterium. -mediated transformation leads to improved gene replacement efficiency in Aspergillus awamori Fungal Genet Biol 42:9–19

    PubMed  CAS  Google Scholar 

  • Moehle EA, Rock JM, Lee YL, Jouvenot Y, Dekelver RC, Gregory PD, Urnov FD, Holmes MC (2007) Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci USA 104:3055–3060

    PubMed  ADS  CAS  Google Scholar 

  • Montague JW, Hughes FM Jr, Cidlowski JA (1997) Native recombinant cyclophilins A, B, and C degrade DNA independently of peptidylprolyl cis-trans-isomerase activity. Potential roles of cyclophilins in apoptosis. J Biol Chem 272:6677–6684

    PubMed  CAS  Google Scholar 

  • Mysore KS, Bassuner B, Deng X-B, Darbinian NS, Motchoulski A, Ream LW, Gelvin SB (1998) Role of the Agrobacterium tumefaciens. VirD2 protein in T-DNA transfer and integration Mol Plant-Microbe Interact 11:668–683

    PubMed  CAS  Google Scholar 

  • Mysore KS, Kumar CT, Gelvin SB (2000a) Arabidopsis. ecotypes and mutants that are recalcitrant to Agrobacterium root transformation are susceptible to germ-line transformation Plant J 21:9–16

    CAS  Google Scholar 

  • Mysore KS, Nam J, Gelvin SB (2000b) An Arabidopsis. histone H2A mutant is deficient in Agrobacterium T-DNA integration Proc Natl Acad Sci USA 97:948–953

    ADS  CAS  Google Scholar 

  • Nam J, Matthysse AG, Gelvin SB (1997) Differences in susceptibility of Arabidopsis. ecotypes to crown gall disease may result from a deficiency in T-DNA integration Plant Cell 9:317–333

    PubMed  CAS  Google Scholar 

  • Nam J, Mysore KS, Gelvin SB (1998) Agrobacterium tumefaciens. transformation of the radiation hypersensitive Arabidopsis thaliana mutants uvh1 and rad5 Mol Plant-Microbe Interact 11:1136–1141

    PubMed  CAS  Google Scholar 

  • Nam J, Mysore KS, Zheng C, Knue MK, Matthysse AG, Gelvin SB (1999) Identification of T-DNA tagged Arabidopsis. mutants that are resistant to transformation by Agrobacterium Mol Gen Genet 261:429–438

    PubMed  CAS  Google Scholar 

  • Otten L, Burr TJ, Szegedi E (2008) Agrobacterium. In:: a disease-causing bacteriumTzfira T, Citovsky V (eds) Agrobacterium. Springer, New York, pp 1–46

    Google Scholar 

  • Pansegrau W, Schoumacher F, Hohn B, Lanka E (1993) Site-specific cleavage and joining of single-stranded DNA by VirD2 protein of Agrobacterium tumefaciens. Ti plasmids: analogy to bacterial conjugation Proc Natl Acad Sci USA 90:11538–11542

    PubMed  ADS  CAS  Google Scholar 

  • Piers KL, Heath JD, Liang X, Stephens KM, Nester EW (1996) Agrobacterium tumefaciens.-mediated transformation of yeast Proc Natl Acad Sci USA 93:1613–1618

    PubMed  ADS  CAS  Google Scholar 

  • Porteus MH (2006) Mammalian gene targeting with designed zinc finger nucleases. Mol Ther 13:438–446

    PubMed  CAS  Google Scholar 

  • Preuss SB, Jiang CZ, Baik HK, Kado CI, Britt AB (1999) Radiation-sensitive Arabidopsis. mutants are proficient for T-DNA transformation Mol Gen Genet 261:623–626

    PubMed  CAS  Google Scholar 

  • Ray A, Langer M (2002) Homologous recombination: ends as the means. Trends Plant Sci 7:435–440

    PubMed  CAS  Google Scholar 

  • Risseeuw E, Franke-van Dijk ME, Hooykaas PJ (1996) Integration of an insertion-type transferred DNA vector from Agrobacterium tumefaciens. into the Saccharomyces cerevisiae genome by gap repair Mol Cell Biol 16:5924–5932

    PubMed  CAS  Google Scholar 

  • Rodenburg KW, de Groot MJ, Schilperoort RA, Hooykaas PJ (1989) Single-stranded DNA used as an efficient new vehicle for transformation of plant protoplasts. Plant Mol Biol 13:711–719

    PubMed  CAS  Google Scholar 

  • Rossi L, Hohn B, Tinland B (1996) Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens. Proc Natl Acad Sci USA 93:126–130

    PubMed  ADS  CAS  Google Scholar 

  • Rosso MG, Li Y, Strizhov N, Reiss B, Dekker K, Weisshaar B (2003) An Arabidopsis thaliana. T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics Plant Mol Biol 53:247–259

    PubMed  CAS  Google Scholar 

  • Sallaud C, Gay C, Larmande P, Bes M, Piffanelli P, Piegu B, Droc G, Regad F, Bourgeois E, Meynard D, Perin C, Sabau X, Ghesquiere A, Glaszmann JC, Delseny M, Guiderdoni E (2004) High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J 39:450–464

    PubMed  CAS  Google Scholar 

  • Salomon S, Puchta H (1998) Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J 17:6086–6095

    PubMed  CAS  Google Scholar 

  • Schneeberger RG, Zhang K, Tatarinova T, Troukhan M, Kwok SF, Drais J, Klinger K, Orejudos F, Macy K, Bhakta A, Burns J, Subramanian G, Donson J, Flavell R, Feldmann KA (2005) Agrobacterium. T-DNA integration in Arabidopsis is correlated with DNA sequence compositions that occur frequently in gene promoter regions Funct Integr Genomics 5:240–253

    PubMed  CAS  Google Scholar 

  • Schrammeijer B, Risseeuw E, Pansegrau W, Regensburg-Tuןnk TJG, Crosby WL, Hooykaas PJJ (2001) Interaction of the virulence protein VirF of Agrobacterium tumefaciens. with plant homologs of the yeast Skp1 protein Curr Biol 11:258–262

    PubMed  CAS  Google Scholar 

  • Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C, Clarke JD, Cotton D, Bullis D, Snell J, Miguel T, Hutchison D, Kimmerly B, Mitzel T, Katagiri F, Glazebrook J, Law M, Goff SA (2002) A high-throughput Arabidopsis. reverse genetics system Plant Cell 14:2985–2994

    PubMed  CAS  Google Scholar 

  • Shaked H, Melamed-Bessudo C, Levy AA (2005) High frequency gene targeting in Arabidopsis. plants expressing the yeast RAD54 gene Proc Natl Acad Sci USA 102:12265–12269

    PubMed  ADS  CAS  Google Scholar 

  • Soltani J, van Heusden GPH, Hooykaas PJ (2008) Agrobacterium. In:-mediated transformation of non-plant organismsTzfira T, Citovsky V (eds) Agrobacterium. Springer, New York, pp 650–674

    Google Scholar 

  • Sonti RV, Chiurazzi M, Wong D, Davies CS, Harlow GR, Mount DW, Signer ER (1995) Arabidopsis. mutants deficient in T-DNA integration Proc Natl Acad Sci USA 92:11786–11790

    PubMed  ADS  CAS  Google Scholar 

  • Szabados L, Kovacs I, Oberschall A, Abraham E, Kerekes I, Zsigmond L, Nagy R, Alvarado M, Krasovskaja I, Gal M, Berente A, Redei GP, Haim AB, Koncz C (2002) Distribution of 1,000 sequenced T-DNA tags in the Arabidopsis. genome Plant J 32:233–242

    PubMed  CAS  Google Scholar 

  • Terada R, Urawa H, Inagaki Y, Tsugane K, Iida S (2002) Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20:1030–1034

    PubMed  CAS  Google Scholar 

  • Terada R, Johzuka-Hisatomi Y, Saitoh M, Asao H, Iida S (2007) Gene targeting by homologous recombination as a biotechnological tool for rice functional genomics. Plant Physiol 144:846–856

    PubMed  CAS  Google Scholar 

  • Tinland B (1996) The integration of T-DNA into plant genomes. Trends Plant Sci 1:178–184

    Google Scholar 

  • Tinland B, Hohn B (1995) Recombination between prokaryotic and eukaryotic DNA: integration of Agrobacterium tumefaciens. T-DNA into the plant genome Genet Eng 17:209–229

    CAS  Google Scholar 

  • Tinland B, Koukolikova-Nicola Z, Hall MN, Hohn B (1992) The T-DNA-linked VirD2 protein contains two distinct nuclear localization signals. Proc Natl Acad Sci USA 89:7442–7446

    PubMed  ADS  CAS  Google Scholar 

  • Tinland B, Schoumacher F, Gloeckler V, Bravo-Angel AM, Hohn B (1995) The Agrobacterium tumefaciens. virulence D2 protein is responsible for precise integration of T-DNA into the plant genome EMBO J 14:3585–3595

    PubMed  CAS  Google Scholar 

  • Tzfira T, Citovsky V (2002) Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol 12:121–129

    PubMed  CAS  Google Scholar 

  • Tzfira T, Citovsky V (2006) Agrobacterium.-mediated genetic transformation of plants: biology and biotechnology Curr Opin Biotechnol 17:147–154

    PubMed  CAS  Google Scholar 

  • Tzfira T, Vaidya M, Citovsky V (2001) VIP1, an Arabidopsis. protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity EMBO J 20:3596–3607

    PubMed  CAS  Google Scholar 

  • Tzfira T, Vaidya M, Citovsky V (2002) Increasing plant susceptibility to Agrobacterium. infection by overexpression of the Arabidopsis nuclear protein VIP1 Proc Natl Acad Sci USA 99:10435–10440

    PubMed  ADS  CAS  Google Scholar 

  • Tzfira T, Frankmen L, Vaidya M, Citovsky V (2003) Site-specific integration of Agrobacterium tumefaciens. T-DNA via double-stranded intermediates Plant Physiol 133:1011–1023

    PubMed  CAS  Google Scholar 

  • Tzfira T, Li J, Lacroix B, Citovsky V (2004a) Agrobacterium. T-DNA integration: molecules and models Trends Genet 20:375–383

    CAS  Google Scholar 

  • Tzfira T, Vaidya M, Citovsky V (2004b) Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature 431:87–92

    ADS  CAS  Google Scholar 

  • Tzfira T, Lacroix B, Citovsky V (2005) Nuclear Import of Agrobacterium. In: T-DNATzfira T, Citovsky V (eds) Nuclear Import and Export in Plants and Animals. Landes Bioscience/Kluwer/Plenum, New York, pp 83–99

    Google Scholar 

  • van Attikum H, Hooykaas PJJ (2003) Genetic requirements for the targeted integration of Agrobacterium. T-DNA in Saccharomyces cerevisiae Nucleic Acids Res 31:826–832

    PubMed  CAS  Google Scholar 

  • van Attikum H, Bundock P, Hooykaas PJJ (2001) Non-homologous end-joining proteins are required for Agrobacterium. T-DNA integration EMBO J 20:6550–6558

    PubMed  CAS  Google Scholar 

  • van Attikum H, Bundock P, Overmeer RM, Lee LY, Gelvin SB, Hooykaas PJ (2003) The Arabidopsis AtLIG4. gene is required for the repair of DNA damage, but not for the integration of Agrobacterium T-DNA Nucleic Acids Res 31:4247–4255

    PubMed  CAS  Google Scholar 

  • van Attikum H, Fritsch O, Hohn B, Gasser SM (2004) Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119:777–788

    PubMed  CAS  Google Scholar 

  • Vergunst AC, Hooykaas PJ (1998) Cre/lox-mediated site-specific integration of Agrobacterium. T-DNA in Arabidopsis thaliana by transient expression of cre Plant Mol Biol 38:393–406

    PubMed  CAS  Google Scholar 

  • Vergunst AC, Jansen LE, Hooykaas PJ (1998) Site-specific integration of Agrobacterium. T-DNA in Arabidopsis thaliana mediated by Cre recombinase Nucleic Acids Res 26:2729–2734

    PubMed  CAS  Google Scholar 

  • Vergunst AC, van Lier MC, den Dulk-Ras A, Grosse Stuve TA, Ouwehand A, Hooykaas PJ (2005) Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Natl Acad Sci USA 102:832–837

    PubMed  ADS  CAS  Google Scholar 

  • Volokhina I, Chumakov M (2007) Study of the VirE2-ssT-DNA complex formation by scanning probe microscopy and gel electrophoresis – T-complex visualization. Microsc Microanal 13:51–54

    PubMed  ADS  CAS  Google Scholar 

  • Ward DV, Zambryski PC (2001) The six functions of Agrobacterium. VirE2 Proc Natl Acad Sci USA 98:385–386

    PubMed  ADS  CAS  Google Scholar 

  • Ward D, Zupan J, Zambryski PC (2002) Agrobacterium. VirE2 gets the VIP1 treatment in plant nuclear import Trends Plant Sci 7:1–3

    PubMed  CAS  Google Scholar 

  • Weterings E, van Gent DC (2004) The mechanism of non-homologous end-joining: a synopsis of synapsis. DNA Repair (Amst) 3:1425–1435

    CAS  Google Scholar 

  • Windels P, De Buck S, Depicker A (2008) Agrobacterium tumefaciens. In:-mediated transformation: patterns of T-DNA integration into the host genomeTzfira T, Citovsky V (eds) Agrobacterium. Springer, New York, pp 441–481

    Google Scholar 

  • Wright DA, Townsend JA, Winfrey RJ Jr, Irwin PA, Rajagopal J, Lonosky PM, Hall BD, Jondle MD, Voytas DF (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44:693–705

    PubMed  CAS  Google Scholar 

  • Wu Y-Q (2002) Protein-protein interaction between VirD2 and DNA ligase: an essential step of Agrobacterium tumefaciens T-DNA integration. PhD Thesis, University of Basel

    Google Scholar 

  • Yi H, Mysore KS, Gelvin SB (2002) Expression of the Arabidopsis. histone H2A-1 gene correlates with susceptibility to Agrobacterium transformation Plant J 32:285–298Protein-protein interaction between VirD2 and DNA ligase: an essential step of Agrobacterium tumefaciens T-DNA integration. PhD Thesis, University of Basel

    PubMed  CAS  Google Scholar 

  • Yi H, Sardesai N, Fujinuma T, Chan CW, Gelvin SBVeena, (2006) Constitutive expression exposes functional redundancy between the Arabidopsis. histone H2A gene HTA1 and other H2A gene family members Plant Cell 18:1575–1589

    PubMed  CAS  Google Scholar 

  • Zambryski PC (1992) Chronicles from the Agrobacterium.-plant cell DNA transfer story Annu Rev Plant Physiol Plant Mol Biol 43:465–490

    CAS  Google Scholar 

  • Zhang J, Guo D, Chang Y, You C, Li X, Dai X, Weng Q, Chen G, Liu H, Han B, Zhang Q, Wu C (2007) Non-random distribution of T-DNA insertions at various levels of the genome hierarchy as revealed by analyzing 13 804 T-DNA flanking sequences from an enhancer-trap mutant library. Plant J 49:947–959

    PubMed  CAS  Google Scholar 

  • Zhu Y, Nam J, Carpita NC, Matthysse AG, Gelvin SB (2003a) Agrobacterium.-mediated root transformation is inhibited by mutation of an Arabidopsis cellulose synthase-like gene Plant Physiol 133:1000–1010

    CAS  Google Scholar 

  • Zhu Y, Nam J, Humara JM, Mysore KS, Lee LY, Cao H, Valentine L, Li J, Kaiser AD, Kopecky AL, Hwang HH, Bhattacharjee S, Rao PK, Tzfira T, Rajagopal J, Yi H, Veena, BSYadav, Crane YM, Lin K, Larcher Y, Gelvin MJ, Knue M, Ramos C, Zhao X, Davis SJ, Kim SI, Ranjith-Kumar CT, Choi YJ, Hallan VK, Chattopadhyay S, Sui X, Ziemienowicz A, Matthysse AG, Citovsky V, Hohn B, Gelvin SB (2003b) Identification of Arabidopsis. rat mutants Plant Physiol 132:494–505

    CAS  Google Scholar 

  • Ziemienowicz A, Tinland B, Bryant J, Gloeckler V, Hohn B (2000) Plant enzymes but not Agrobacterium. VirD2 mediate T-DNA ligation in vitro Mol Cell Biol 20:6317–6322

    PubMed  CAS  Google Scholar 

  • Ziemienowicz A, Merkle T, Schoumacher F, Hohn B, Rossi L (2001) Import of Agrobacterium. T-DNA into plant nuclei: two distinct functions of VirD2 and VirE2 proteins Plant Cell 13:369–384

    PubMed  CAS  Google Scholar 

  • Ziemienowicz A, Tzfira T, Hohn B (2008) Mechanisms of T-DNA integration. In: Tzfira T, Citovsky V (eds) Agrobacterium. Springer, New York, pp 395–440

    Google Scholar 

  • Zupan J, Citovsky V, Zambryski PC (1996) Agrobacterium. VirE2 protein mediates nuclear uptake of ssDNA in plant cells Proc Natl Acad Sci USA 93:2392–2397

    PubMed  ADS  CAS  Google Scholar 

Download references

Acknowledgments

The work in our laboratory is supported by the University of Michigan start-up funds and by grants from the Biotechnology Research and Development Cooperation (BRDC) and the Consortium for Plant Biotechnology Research, Inc. (CPBR), and in collaboration with, and with financial support from DOW Agrosciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzvi Tzfira .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London

About this chapter

Cite this chapter

Dafny-Yelin, M., Tovkach, A., Tzfira, T. (2008). Integration of Agrobacterium T-DNA in Plant Cells. In: Plant Cell Monographs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2008_28

Download citation

  • DOI: https://doi.org/10.1007/7089_2008_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics