Skip to main content

Microtubules in Plant Root Hairs and Their Role in Cell Polarity and Tip Growth

  • Chapter
  • First Online:
Plant Cell Monographs

Part of the book series: Plant Cell Monographs

  • 12 Accesses

Abstract

The cytoskeleton is part of the tip-growth machinery that assembles in the subapex of elongating root hairs of plant roots. The role of actin in the tip-growth process is well studied and understood (see Ketelaar and Emons, this volume), whereas the function of microtubules (MTs) is less clear. However, recent studies demonstrate that MTs also play a crucial role in the tip-growth process. Here we discuss recent techniques to visualize MTs in root hairs, give an overview on current knowledge of structure, dynamics, and function of the MT cytoskeleton in elongating root hairs of different plant species, and give an outlook on future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allen Bennett MN, Cox DN, Shipley A, Ehrhardt DW, Long SR (1994) Effects of Nod factors on alfalfa root hair Ca++ and H+ currents on cytoskeleton behavior. In: Daniels MJ, Downie JA, Osbourn AE (eds) Advances in molecular genetics of plant microbe interactions, vol 3. Kluwer, Dordrecht, pp 107–114

    Google Scholar 

  • Bakhuizen R (1988) The plant cytoskeleton in the rhizobium-legume symbiosis. PhD Thesis, Leiden University, The Netherlands

    Google Scholar 

  • Baluška F, Salaj J, Mathur J, Braun M, Jasper F, Samaj J, Chua N-H, Barlow PW, Volkman D (2000) Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Devel Biol 227:618–632

    Article  CAS  Google Scholar 

  • Bao YQ, Kost B, Chua NH (2001) Reduced expression of a-tubulin genes in Arabidopsis thaliana. specifically affects root growth and morphology, root hair development and root gravitropism. Plant J 28:145–157

    Article  PubMed  CAS  Google Scholar 

  • Behrens R, Nurse P (2002) Roles of fission yeast tea1p in the localization of polarity factors and in organizing the microtubular cytoskeleton. J Cell Biol 157:783–793

    Article  PubMed  CAS  Google Scholar 

  • Beinhauer JD, Hagan IM, Hegemann JH, Fleig U (1997) Mal3, the fission yeast homolog of the human APC-interacting protein EB-1 is required for micorotubule integrity and the maintenance of cell form. J Cell Biol 139:717–728

    Article  PubMed  CAS  Google Scholar 

  • Bibikova TN, Zhigilei A, Gilroy S (1997) Root hair growth in Arabidopsis thaliana is directed by calcium and an endogenous polarity. Planta 203:495–505

    Article  PubMed  CAS  Google Scholar 

  • Bibikova TN, Blancaflor EB, Gilroy S (1999) Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana. Plant 17:657–665

    Article  CAS  Google Scholar 

  • Bieling P, Laan L, Schek H, Munteanu EL, Sandblad L, Dogterom M, Brunner D, Surrey T (2007) Reconstitution of a microtubule plus-end tracking system in vitro. Nature 450:1100–1105

    Article  PubMed  ADS  CAS  Google Scholar 

  • Boisson-Dernier A, Chabaud M, Garcia F, Bécard G, Rosenberg C, Barker DG (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant Microbe Interact 14:695–700

    Article  PubMed  CAS  Google Scholar 

  • Browning H, Hayles J, Mata J, Aveline L, Nurse P, McIntosh JR (2000) Tea2p is a kinesin-like protein required to generate polarized growth in fission yeast. J Cell Biol 151:15–28

    Article  PubMed  CAS  Google Scholar 

  • Browning H, Hackney DD (2005) The EB1 homolog Mal3 stimulates the ATPase of the kinesin Tea2 by recruiting it to the microtubule. J Biol Chem 280:12299–12304

    Article  PubMed  CAS  Google Scholar 

  • Brunner D, Nurse P (2000) CLIP170-like tip1p spatially organizes microtubular dynamics in fission yeast. Cell 102:695–704

    Article  PubMed  CAS  Google Scholar 

  • Busch KE, Brunner D (2004) The microtubule plus-end-tracking proteins mal3p and tip1p cooperate for cell-end targeting of interphase microtubules. Current Biol 14:548–559

    Article  CAS  Google Scholar 

  • Cárdenas L, Vidali L, Domínguez J, Pérez H, Sánchez F, Hepler PK, Quinto C (1998) Rearrangement of actin microfilaments in plant root hairs responding to Rhizobium etli nodulation signals. Plant Physiol 116:871–877

    Article  Google Scholar 

  • Cárdenas L, Feijo JA, Kunkel JG, Sanchez F, Holdaway-Clarke T, Hepler PK, Quinto C (1999) Rhizobium nod factors induce increases in intracellular free calcium and extracellular calcium influxes in bean root hairs. Plant J 9:347–352

    Article  Google Scholar 

  • Cárdenas L, Thomas-Oates JE, Nava N, Lopez-Lara IM, Hepler PK, Quinto C (2003) The role of nod factor substituents in actin cytoskeleton rearrangements in Phaseolus vulgaris. Mol Plant Microbe Interact 16:326–334

    Article  PubMed  Google Scholar 

  • Catoira R, Timmers ACJ, Maillet F, Galera C, Penmetsa RV, Cook D, Dénarié J, Gough C (2001) The HCL gene of Medicago truncatula controls Rhizobium-induced root hair curling. Development 128:1507–1518

    PubMed  CAS  Google Scholar 

  • Chabaud M, Boisson-Dernier A, Zhang J, Taylor CG, Yu O, Barker DG (2006) Agrobacterium rhizogenes-mediated root transformation. In: Mathesius U, Journet EP, Sumner LW (eds) The Medicago truncatula handbook. ISBN 0–9754303–1–9. http://www.noble.org/MedicagoHandbook

  • Chan J, Calder GM, Doonan JH, Lloyd CW (2003) EB1 reveals mobile microtubule nucleation sites in Arabidopsis. Nat Cell Biol 5:967–971

    Article  PubMed  CAS  Google Scholar 

  • Cyr RJ (1991) Calcium/calmodulin affects microtubule stability in lysed protoplasts. J Cell Sci 100:311–317

    CAS  Google Scholar 

  • Cyr RJ (1994) Microtubules in plant morphogenesis: role of the cortical array. Annu Rev Cell Biol 10:153–180

    Article  PubMed  CAS  Google Scholar 

  • Dauphin A, De Ruijter NC, Emons AM, Legué V (2006) Action organization during eucalyptus root hair development and its response to fungal hypaphorine. Plant Biol (Stuttg) 8:204–211

    Article  CAS  Google Scholar 

  • Den Hartog M, Musgrave A, Munnik T (2001) Nod factor-induced phosphatidic acid and diacylglycerol pyrophosphate formation: a role for phospholipase C and D in root hair deformation. Plant J 25:55–65

    Article  PubMed  CAS  Google Scholar 

  • De Ruijter NCA, Rook MB, Bisseling T, Emons AMC (1998) Lipochito-oligosaccharides reinitiate root hair tip growth in Vicia sativa, with high calcium and spectrin-like antigen at the tip. Plant J 13:341–350

    Article  CAS  Google Scholar 

  • Dhonukshe P, Gadella TW Jr (2003) Alteration of microtubule dynamic instability during preprophase band formation revealed by yellow fluorescent protein-CLIP170 microtubule plus-end labeling. Plant Cell 15:597–611

    Article  PubMed  CAS  Google Scholar 

  • Dhonukshe P, Mathur J, Hülskamp M, Gadella Jr TWJ (2005) Microtubule plus-ends reveal essential links between intracellular polarization and localized modulation of endocytosis during division-plane establishment in plant cells. BMC Biol 3:11. doi:10.1186/1741–7007–3–11

    Article  PubMed  CAS  Google Scholar 

  • Ditengou FA, Raudaskoski M, Lapeyrie F (2003) Hyaphorine, an indole-3-acetic acid antagonist delivered by the ectomycorrhizal fungus Pisolithus tinctorius, induces reorganisation of actin and the microtubule cytoskeleton in Eucalyptus globus ssp biostata root hairs. Planta 218:217–225

    Article  PubMed  CAS  Google Scholar 

  • Emons AMC (1982) Microtubules do not control microfibril orientation in a helicoidal cell wall. Protoplasma 113:85–87

    Article  Google Scholar 

  • Emons AMC, Wolters-Arts AMC (1983) Cortical microtubules and microfibril deposition in the wall of root hair of Equisetum hyemale. Protoplasma 117:68–81

    Article  Google Scholar 

  • Emons AMC (1989) Helicoidal microfibril deposition in a tip-growing cell and microtubule alignment during tip morphogenesis: a dry-cleaving and freeze-substitution study. Can J Bot 67:2401–2408

    Google Scholar 

  • Emons AMC (1987) The cytoskeleton and secretory vesicles in root hairs of equisetum and Limnobium and cytoplasmic streaming in root hairs of Equisetum. Ann Bot 60:625–632

    Google Scholar 

  • Erhardt DW, Shaw SL (2006) Microtubule dynamics and organization in the plant cortical array. Annu Rev Plant Biol 57:859–875

    Article  CAS  Google Scholar 

  • Esseling JJ, Lhuissier FGP, Emons AMC (2003) Nod factor-induced root hair curling: continuous polar growth towards the point of Nod factor application. Plant Physiol 132:1982–1988

    Article  PubMed  CAS  Google Scholar 

  • Esseling JJ, Lhuissier FGP, Emons AMC (2004) A nonsymbiotic root hair tip growth phenotype in NORK-mutated legumes: implications for nodulation factor–induced signaling and formation of a multifaceted root hair pocket for bacteria. Plant Cell 16:933–944

    Article  PubMed  CAS  Google Scholar 

  • Feierbach B, Verde F, Chang F (2004) Regulation of a formin complex by the microtubule plus-end protein tea1p. J Cell Biol 165:697–707

    Article  PubMed  CAS  Google Scholar 

  • Felle HH, Hepler PK (1997) The cytosolic Ca2+. concentration gradient of Sinapis alba root hairs as revealed by Ca2+-selective microelectrode tests and fura-dextran ratio imaging. Plant Physiol 114:39–45

    PubMed  CAS  Google Scholar 

  • Felle HH, Kondorosi E, Kondorosi A, Schultze M (1999a) Elevation of the cytosolic free [Ca2+ ] is indispensable for the transduction of the Nod factor signal in alfalfa. Plant Physiol 121:273–279

    Article  CAS  Google Scholar 

  • Felle HH, Kondorosi E, Kondorosi A, Schultze M (1999b) Nod factors modulate the concentration of cytosolic free calcium differently in growing and non-growing root hairs of Medicago sativa L. Planta 209:207–212

    Article  CAS  Google Scholar 

  • Gardiner J, Collings DA, Harper JD, Marc J (2003) The effects of the phospholipase D-antagonist 1-butanol on seedling development and microtubule organisation in Arabidopsis. Plant Cell Physiol 44:687–696

    Article  PubMed  CAS  Google Scholar 

  • Grierson CS, Parker JS, Kemp AC (2001) Arabidopsis genes with roles in root hair development. J Plant Nutr Soil Sci 164:131–140

    Article  CAS  Google Scholar 

  • Hadri AE, Bisseling T (1998) Responses of the plant to Nod factors. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae: molecular biology of model plant-associated bacteria. Kluwer, Dordrecht, pp 403–416

    Google Scholar 

  • Heidstra R, Geurts R, Franssen H, Spaink HP, Van Kammen A, Bisseling T (1994) Root hair deformation activity of nodulation factors and their fate on Vicia sativa. Plant Physiol 105:787–797

    PubMed  CAS  Google Scholar 

  • Hemsley PA, Kemp AC, Grierson CS (2005) The tip growth Defective1 S-acyl transferase regulates plant cell growth in Arabidopsis. Plant Cell 17:2554–2563

    Article  PubMed  CAS  Google Scholar 

  • Herrmann A, Felle HH (1995) Tip growth in root hair cells of Sinapis alba L.: significance of interna1 and external Ca2+ and pH. New Phytol 129:523–533

    Article  CAS  Google Scholar 

  • Höög JL, Schwartz C, Noon AT, o’Toole ET, Mastronarde DN, McIntosh JR, Antony C (2007) Organisation of interphase microtubules in fission yeqst analysed by electron tomography. Dev Cell 12:349–361

    Article  PubMed  CAS  Google Scholar 

  • Ketelaar T, Emons AMC (2000) The role of microtubules in root hair growth and cellulose microfibril deposition. In: Ridge RW, Emons AMC (eds) Root hairs. Cell and molecular biology. Springer, Berlin Heidelberg New York, pp 17–28

    Google Scholar 

  • Ketelaar T, Emons AMC (2001) The cytoskeleton in plant cell growth: lessons from root hairs. New Phytol 152:409–418

    Article  CAS  Google Scholar 

  • Ketelaar T, Faivre-Moskalenko C, Esseling JJ, de Ruijter NCA, Grierson CS, Dogterom M, Emons AMC (2002) Positioning of nuclei in Arabidopsis. root hairs: an actin-regulated process of tip growth. Plant Cell 14:2941–2955.

    Article  PubMed  CAS  Google Scholar 

  • Ketelaar T, de Ruijter NCA, Emons AMC (2003) Unstable F-actin specifies the area and microtubule direction of cell expansion in Arabidopsis root hairs. Plant Cell 15:285–292

    Article  PubMed  CAS  Google Scholar 

  • Kijne JW (1992) The Rhizobium infection process. In: Stacey G, Burris R, Evans H (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 349–398

    Google Scholar 

  • Lhuissier FGP, de Ruijter NCA, Sieberer BJ, Esseling JJ, Emons AMC (2001) Time course of cell biological events evoked in legume root hair by Rhizobium. Nod factors: State of the art. Ann Bot 87:289–302

    Article  CAS  Google Scholar 

  • Liu B, Joshi HC, Wilson TJ, Silflow CD, Palevitz BA, Snustad DP (1994) Gamma-tubulin in Arabidopsis: Gene sequence, immunoblot, and immunofluorescence studies. Plant Cell 6:303–314

    Article  PubMed  CAS  Google Scholar 

  • Lloyd C (1983) Helical microtubular arrays in onion root hairs. Nature 305:311–313

    Article  PubMed  ADS  CAS  Google Scholar 

  • Lloyd CW, Pearce KJ, Rawlins DJ, Ridge RW, Shaw PJ (1987) Endoplasmic microtubules connect the advancing nucleus to the tip of legume root hairs, but F-actin is involved in basipetal migration. Cell Motil Cytoskeleton 8:27–36

    Article  Google Scholar 

  • Lloyd CW, Chan J, Hussey PJ (2004) Microtubules and microtubule-associated proteins in plants. In: Hussey PJ (ed) The plant cytoskeleton in cell differentiation and development. Blackwell, Oxford, pp 3–27

    Google Scholar 

  • Marc J, Granger CL, Brincat J, Fisher DD, Kao T, McCubbin AG, Cyr RJ (1998) A GFP:MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells. Plant Cell 10:1927–1939

    Article  PubMed  CAS  Google Scholar 

  • Mata J, Nurse P (1997) Tea1 and the microtubular cytoskeleton are important for generating global spatial order within the fission yeast cell. Cell 89:939–949

    Article  PubMed  CAS  Google Scholar 

  • Mathur J, Mathur N, Kernebeck B, Srinivas BP, Hülskamp M (2003) A novel localization pattern for an EB1-like protein links microtubule dynamics to endomembrane organization. Current Biol 13:1991–1997

    Article  CAS  Google Scholar 

  • Miller DD, de Ruijter NCA, Emons AMC (1997) From signal to form: aspects of the cytoskeleton-plasma membrane-cell wall continuum in root hair tips. J Exp Bot 48:1881–1896

    CAS  Google Scholar 

  • Miller DD, de Ruijter NCA, Bisseling T, Emons AMC (1999) The role of actin in root hair morphogenesis: studies with lipochito-oligosaccharide as a growth stimulator and cytochalasin as an actin perturbing drug. Plant J 17:141–154

    Article  CAS  Google Scholar 

  • Molendijk AJ, Bischoff F, Rajendrakumar CS, Friml J, Braun M, Gilroy S, Palme K (2001) Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. EMBO J 20:2779–2788

    Article  PubMed  CAS  Google Scholar 

  • Newcomb EH, Bonnett HT Jr (1965) Cytoplasmic microtubules and wall microfibril orientation in root hairs of radish. J Cell Biol 27:575–589

    Article  CAS  PubMed  Google Scholar 

  • Parker JS, Cavell AC, Dolan L, Roberts K, Grierson CS (2000) Genetic interactions during root hair morphogenesis in Arabidopsis. Plant Cell 12:1961–1974

    Article  PubMed  CAS  Google Scholar 

  • Reboutier D, Bianchi M, Brault M, Roux C, Dauphin A, Rona J-P, Legué V, Lapeyrie F, Bouteau F (2002) The indolic compound hypaphorine produced by ectomycorrhizal fungus interferes with auxin action and evokes early responses in nonhost Arabidopsis thaliana Mol Plant Microbe Interact 15:932–938

    Article  PubMed  CAS  Google Scholar 

  • Ridge RW (1992) A model of legume root hair growth and Rhizobium infection. Symbiosis 14:359–373

    Google Scholar 

  • Schiefelbein JW, Shipley A, Rowse P (1992) Calcium influx at the tip of growing root-hair cells of Arabidopsis thaliana. Planta 187:455–459

    Article  CAS  Google Scholar 

  • Schiefelbein JW (2000) Constructing a plant cell. The genetic control of root hair development. Plant Physiol 124:1525–1531

    CAS  Google Scholar 

  • Shaw SL, Kamyar R, Erhardt DW (2003) Sustained microtubule treadmilling in Arabidopsis. cortical arrays. Science 300:1715–1718

    Article  PubMed  ADS  CAS  Google Scholar 

  • Sieberer BJ, Timmers ACJ, Lhuissier FGP, Emons AMC (2002) Endoplasmic microtubules configure the subapical cytoplasm and are required for fast growth of Medicago truncatula root hairs. Plant Physiol 130:977–988

    Article  PubMed  CAS  Google Scholar 

  • Sieberer BJ, Ketelaar T, Esseling JJ, Emons AMC (2005a) Microtubules guide root hair tip growth. New Phytol 167:711–719

    Article  CAS  Google Scholar 

  • Sieberer BJ, Timmers AC, Emons AMC (2005b) Nod factors alter the microtubule cytoskeleton in Medicago truncatula root hair to allow root hair reorientation. Mol Plant-Microbe Interact 11:1195–1204

    Article  CAS  Google Scholar 

  • Smertenko A, Saleh N, Igarashi H, Mori H, Hauser-Hahn I, Jiang CJ, Sonobe S, Lloyd CW, Hussey PJ (2000) A new class of microtubule-associated proteins in plants. Nat Cell Biol 2:750–753

    Article  PubMed  CAS  Google Scholar 

  • Snaith HA, Sawin KE (2003) Fission yeast mod5p regulates polarized growth through anchoring of tea1p at cell tips. Nature 423:647–651

    Article  PubMed  ADS  CAS  Google Scholar 

  • Timmers ACJ, Auriac M-C, Truchet G (1999) Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements. Development 126:3617–3628

    PubMed  CAS  Google Scholar 

  • Timmers AC, Vallotton P, Heym C, Menzel D (2007) Microtubule dynamics in root hairs of Medicago truncatula. Eur J Cell Biol 8669–83

    Google Scholar 

  • Traas JA, Braat P, Emons AMC, Meeks H, Derksen J (1985) Microtubules in root hairs. J Cell Sci 76:303–320

    PubMed  CAS  Google Scholar 

  • Van Bruaene N, Joss G, Oostveldt P van (2004) Reorganization and in vivo dynamics of microtubules during Arabidopsis root hair development. Plant Physiol 136:3905–3919

    Article  PubMed  CAS  Google Scholar 

  • Vassileva VN, Kouchi H, Ridge RW (2005) Microtubule dynamics in living root hairs: transient slowing by lipochitin oligosaccharide nodulation signals. Plant Cell 17:1777–1787

    Article  PubMed  CAS  Google Scholar 

  • Vos JW, Sieberer B, Timmers ACJ, Emons AMC (2003) Microtubule dynamics during preprophase band formation and the role of endoplasmic microtubules during root hair elongation. Cell Biol Int 27:295

    Article  PubMed  CAS  Google Scholar 

  • Vos JW, Dogterom M, Emons AMC (2004) Microtubules become more dynamic but not shorter during preprophase band formation: a possible “search-and-capture” mechanism for microtubule translocation. Cell Motil Cytoskel 57:246–258

    Article  Google Scholar 

  • Webb M, Jouannic S, Foreman J, Linstead P, Dolan L (2002) Cell specification in the Arabidopsis. root epidermis requires the activity of ECTOPIC ROOT HAIR 3 – a katanin-p60 protein. Development 129:123–131

    PubMed  CAS  Google Scholar 

  • Weerasinghe RR, Collings DA, Johannes E, Allen NS (2003) The distributional changes and role of microtubules in Nod factor-challenged Medicago sativa root hairs. Planta 218:276–287

    Article  PubMed  CAS  Google Scholar 

  • Weerasinghe RR, Bird DMCK, Allen NS (2005) Root-knot nematodes and bacterial Nod factors elicit common signal transduction events in Lotus japonicus. Proc Natl Acad Sci USA 102:3147–3152

    Article  PubMed  ADS  CAS  Google Scholar 

  • Wymer CL Bibikova TN, Gilroy S (1997) Cytoplasmic free calcium distributions during the development of root hairs of Arabidopsis thaliana. Plant J 12:427–439

    Article  Google Scholar 

Download references

Acknowledgments

The authors kindly thank Clare Gough from the Laboratory of Plant–Microorganism Interactions (Castanet-Tolosan, France) for the constructive comments and for English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. J. Timmers .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this chapter

Cite this chapter

Sieberer, B.J., Timmers, A.C.J. (2008). Microtubules in Plant Root Hairs and Their Role in Cell Polarity and Tip Growth. In: Plant Cell Monographs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2008_13

Download citation

  • DOI: https://doi.org/10.1007/7089_2008_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics