Skip to main content

Plant Tubulin Genes: Regulatory and Evolutionary Aspects

  • Chapter
  • First Online:
Plant Microtubules

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 11))

Abstract

Once transcribed at its own DNA locus, a tubulin monomer knows that it will be eventually incorporated within microtubules (MTs). What it does not know, though, is how it will ultimately reach its final destination, how complex the path will be, and at which regulatory step it will have to stop. In fact, this will depend upon the status of the cell, the genetic background and the external stimuli. In this article, we will try to guide the reader through the many places of this fascinating journey. In the post-genomic era it may appear anachronistic to keep studying plant tubulin genes. We all know what they do: they encode tubulin, one of the major cytoskeletal proteins, the building block of microtubules (MTs). However, accumulation of the transcripts of the various tubulin genes of plants, tubulin synthesis and post-translational modification, tubulin folding and assembly into MTs, and control of MT dynamics and positioning remain as fascinating, vast and still unresolved fields of investigation, full of novelties and peculiarities. We may as well call this arena of research microTUBULOMICS, recognizing the very many aspects that impinge on tubulin expression and subunit turn-over, accumulation, and interaction with proteins and drugs (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe T, Thitamadee S, Hashimoto T (2004) Microtubule defects and cell morphogenesis in the lefty1lefty2 tubulin mutant of Arabidopsis thaliana. Plant Cell Physiol 45:211–220

    PubMed  CAS  Google Scholar 

  • Abe T, Hashimoto T (2005) Altered microtubule dynamics by expression of modified α-tubulin protein causes right-handed helical growth in transgenic Arabidopsis plants. Plant J 43:191–204

    PubMed  CAS  Google Scholar 

  • Anthony RG, Hussey PJ (1998) Suppression of endogenous α- and β-tubulin synthesis in transgenic maize calli overexpressing α- and β-tubulin. Plant J 16:297–304

    PubMed  CAS  Google Scholar 

  • Anthony RG, Hussey PJ (1999) Double mutation in Eleusine indica alpha-tubulin increases the resistance of transgenic maize calli to dinitroaniline and phosphorothioamidate herbicides. Plant J 18:669–674

    PubMed  CAS  Google Scholar 

  • Anthony RG, Reichelt S, Hussey PJ (1999) Dinitroaniline Herbicide-resistant transgenic tobacco plants generated by co-overexpression of a mutant alpha-tubulin and a beta-tubulin. Nat Biotechnol 17:712–716

    PubMed  CAS  Google Scholar 

  • Baird VW, Blume YB, Wick SM (2000) Microtubular and cytoskeletal mutants. In: Nick P (ed) Plant Microtubules, Potential for Biotechnology. Springer, Berlin Heidelberg New York, pp 159–191

    Google Scholar 

  • Bao Y, Kost B, Chua NH (2001) Reduced expression of α-tubulin genes in Arabidopsis thaliana specifically affects root growth and morphology, root hair development and root gravitropism. Plant J 28:145–157

    PubMed  CAS  Google Scholar 

  • Bardini M, Lee D, Donini P, Mariani A, Gianì S, Toschi M, Lowe C, Breviario D (2004) Tubulin-based polymorphism (TBP): a new tool, based on functionally relevant sequences, to assess genetic diversity in plant species. Genome 47:281–291

    Article  PubMed  CAS  Google Scholar 

  • Baskin TI, Wilson JE (1997) Inhibitors of protein kinases and phosphatases alter root morphology and disorganize cortical microtubules. Plant Physiol 113:493–502

    PubMed  CAS  Google Scholar 

  • Begerow D, John B, Oberwinkler F (2004) Evolutionary relationships among beta-tubulin gene sequences of basidiomycetous fungi. Mycol Res 108:1257–1263

    PubMed  CAS  Google Scholar 

  • Boyko V, Ferralli J, Ashby J, Schellenbaum P, Heinlein M (2000) Function of microtubules in intercellular transport of plant virus RNA. Nat Cell Biol 2:826–832

    PubMed  CAS  Google Scholar 

  • Breviario D (2000) Tubulin genes and promoters. In: Nick P (ed) Plant Microtubules, Potential for Biotechnology. Springer, Berlin Heidelberg New York, pp 135–157

    Google Scholar 

  • Breviario D, Nick P (2000) Plant tubulins: a melting pot for basic questions and promising applications. Trans Res 9:383–393

    CAS  Google Scholar 

  • Breviario D, Baird WV, Sangoi S, Hilu K, Blumetti P, Gianì S (2007) High polymorphism and resolution in targeted fingerprinting with combined beta-tubulin introns. Mol Breeding 20:249–259

    CAS  Google Scholar 

  • Buschmann H, Fabri CO, Hauptmann M, Hutzler P, Laux T, Lloyd CW, Schaffner AR (2004) Helical growth of the Arabidopsis mutant tortifolia1 reveals a plant-specific microtubule-associated protein. Curr Biol 14:1515–1521

    PubMed  CAS  Google Scholar 

  • Cai G, Ovidi E, Romagnoli S, Vantard M, Cresti M, Tiezzi A (2005) Identification and characterization of plasma membrane proteins that bind to microtubules in pollen tubes and generative cells of tobacco. Plant Cell Physiol 46:563–578

    PubMed  CAS  Google Scholar 

  • Carpenter JL, Ploense SE, Snustad DP, Silflow CD (1992) Preferential expression of an α-tubulin gene of Arabidopsis in pollen. Plant Cell 4:557–571

    PubMed  CAS  Google Scholar 

  • Chang HY, Smertenko AP, Igarashi H, Dixon DP, Hussey PJ (2005) Dynamic interaction of NtMAP65-1a with microtubules in vivo. J Cell Sci 118:3195–3201

    PubMed  CAS  Google Scholar 

  • Chang-Jie J, Sonobe S (1993) Identification and preliminary characterization of 65 kDa higher-plant microtubule-associated protein. J Cell Sci 105:891–901

    PubMed  Google Scholar 

  • Chen C, Marcus A, Li W, Hu Y, Vielle Calzada JP, Grossniklaus U, Cyr RJ, Ma H (2002) The Arabidopsis ATK1 gene is required for spindle morphogenesis in male meiosis. Development 129:2401–2409

    PubMed  CAS  Google Scholar 

  • Cheng Z, Snustad DP, Carter JV (2001) Temporal and spatial expression patterns of TUB9, a beta-tubulin gene of Arabidopsis thaliana. Plant Mol Biol 47:389–398

    PubMed  CAS  Google Scholar 

  • Chu B, Wilson TJ, McCune-Zierath C, Snustad DP, Carter JV (1998) Two beta-tubulin genes,TUB1 and TUB8, of Arabidopsis exhibit largely nonoverlapping patterns of expression. Plant Mol Biol 37:785–790

    PubMed  CAS  Google Scholar 

  • Chu Z, Chen H, Zhang Y, Zhang Z, Zheng N, Yin B, Yan H, Zhu L, Zhao X, Yuan M, Zhang X, Xie Q (2007) Knockout of the AtCESA2 gene affects microtubule orientation and causes abnormal cell expansion in Arabidopsis. Plant Pysiol 143:213–244

    CAS  Google Scholar 

  • Cleveland DW, Mao Y, Sullivan KF (2003) Centromeres and kinetochores: from epigenetics to mitotic checkpoint signalling. Cell 112:407–421

    PubMed  CAS  Google Scholar 

  • Colbert T, Till BJ, Tompa R, Reynolds S, Steine MN, Yeung AT, McCallum CM, Comai L, Henikoff S (2001) High-throughput screening for induced point mutations. Plant Physiol 126:480–484

    PubMed  CAS  Google Scholar 

  • Derry W, Wilson L, Khan I, Luduena R, Jordan M (1997) Taxol differentially modulates the dynamics of microtubules assembled from unfractionated and purified β-tubulin isotypes. Biochemistry 36:3554–3562

    PubMed  CAS  Google Scholar 

  • Dhonuskshe P, Bargmann BO, Gadella TW (2006) Arabidopsis tubulin folding cofactor B interacts with alpha-tubulin in vivo. Plant Cell Physiol 47:1406–1411

    Google Scholar 

  • Dibb NJ and Newman AJ (1989) Evidence that introns arose at proto-splice sites. EMBO J 8:2015–2021

    PubMed  CAS  Google Scholar 

  • Dolfini S, Consonni G, Mereghetti M, Tonelli C (1993) Antiparallel expression of the sense and antisense transcripts of maize α-tubulin genes. Mol Gen Genet 241:161–169

    PubMed  CAS  Google Scholar 

  • Downing KH (2000) Structural basis for the interaction of tubulin with proteins and drugs that affect microtubule dynamics. Annu Rev Cell Dev Biol 16:89–111

    PubMed  CAS  Google Scholar 

  • Doyle MC, Han IS (2001) The roles of two TATA boxes and 3′-flanking region of soybean beta-tubulin gene (tubB1) in light-sensitive expression. Mol Cell 12:197–203

    CAS  Google Scholar 

  • Drykova D, Cenklova V, Sulimenko V, Volc J, Draber P, Binarova P (2003) Plant γ-tubulin interacts with αβ-tubulin dimers and forms membrane-associated complexes. Plant Cell 15:465–480

    PubMed  CAS  Google Scholar 

  • Duckett CM, Lloyd CW (1994) Gibberellic acid-induced microtubule reorientation in dwarf peas is accompanied by rapid modification of an α-tubulin isotype. Plant J 5:363–372

    CAS  Google Scholar 

  • Ebel C, Gomez LG, Schmit AC, Neuhaus-Url G, Boller T (2001) Differential mRNA degradation of two beta-tubulin isoforms correlates with cytosolic Ca2+ changes in glucan-elicited soybean cells. Plant Physiol 126:87–96

    PubMed  CAS  Google Scholar 

  • Edgcom P, Roger AJ, Simpson AGB, Kysela DT, Sogin ML (2001) Evolutionary relationships among Jakobid flagellates as indicated by alpha- and beta-tubulin phylogenies. Mol Biol Evol 18:514–522

    Google Scholar 

  • Edvardsen RB, Lerat E, Maeland AD, Flat M, Tewari R, Jensen MF, Lehrach H, Reinhardt R, Seo HC, Chourrout D (2004) Hypervariable and highly divergent intron-exon organizations in the Chordate Oikopleura dioica. J Mol Evol 59:448–457

    PubMed  CAS  Google Scholar 

  • Ehrhardt DW, Shaw SL (2006) Microtubule dynamics and organization in the plant cortical array. Annu Rev Plant Biol 57:859–875

    PubMed  CAS  Google Scholar 

  • Erck C, Frank R, Wehland J (2000) Tubulin-tyrosine ligase, a long lasting enigma. Neurochemical Res 25:5–10

    CAS  Google Scholar 

  • Erhardt M, Stoppin-Mellet V, Campagne S, Canaday J, Mutterer J, Fabian T, Sauter M, Muller T, Peter C, Lambert A-M, Schmit AC (2002) The plant Spc98p homologue colocalizes with γ-tubulin at microtubule nucleation sites and is required for microtubule nucleation. J Cell Sci 115:2423–2431

    PubMed  CAS  Google Scholar 

  • Eun SO, Wick SM (1998) Tubulin isoform usage in maize microtubules. Protoplasma 204:235–244

    CAS  Google Scholar 

  • Evrard JL, Nguyen I, Bergdoll M, Mutterer J, Steinmeyz A, Lambert AM (2002) A novel pollen-specific alpha-tubulin in sunflower: structure and characterization. Plant Mol Biol 49:611–620

    PubMed  CAS  Google Scholar 

  • Ferralli J, Ashby J, Fasler M, Boyko V, Heinlein M (2006) Disruption of microtubule organization and centrosome function by expression of tobacco mosaic virus movement protein. J Virol 80:5807–5821

    PubMed  CAS  Google Scholar 

  • Fiume E, Christou P, Gianì S, Breviario D (2004) Introns are key regulatory elements of rice tubulin expression. Planta 218:693–703

    PubMed  CAS  Google Scholar 

  • Furutani I, Watanabe Y, Prieto R, Masukawa M, Suzuki K, Naoi K, Thitamadee S, Hashimoto T (2000) The SPIRAL genes are required for directional control of cell elongation in Arabidopsis thaliana. Development 127:4443–4453

    PubMed  CAS  Google Scholar 

  • Gentile A, Rossi MS, Cabral D, Craven KD, Schardl CL (2005) Origin, divergence, and phylogeny of epichloe endophytes of native Argentine grasses. Mol Phylogenet Evol 35:196–208

    PubMed  CAS  Google Scholar 

  • Gerber IB, Laukens K, Witters E Dubery IA (2006) Lypopolysaccharide-responsive phosphoproteins in Nicotiana tabacum cells. Plant Physiol Biochem 44:369–379

    PubMed  CAS  Google Scholar 

  • Gianì S, Qin X, Faoro F, Breviario D (1998) In rice, Oryzalin and abscisic acid differentially affect tubulin mRNA and protein levels. Planta 205:334–341

    PubMed  Google Scholar 

  • Gianì S, Campanoni P, Breviario D (2002) A dual effect on protein synthesis and degradation modulates the tubulin level in rice cells treated with oryzalin. Planta 214:837–847

    PubMed  Google Scholar 

  • Gibbs WW (2003) The unseen genome: beyond DNA. Sci Am 289:106–113

    Article  PubMed  CAS  Google Scholar 

  • Gillespie T, Boevink P, Haupt S, Roberts AG, Toth R, Valentine T, Chapman S, Oparka JK (2002) Functional analysis of a DNA-shuffled movement protein reveals that microtubules are dispensable for the cell-to-cell movement of tobacco mosaic virus. Plant Cell 14:1207–1222

    PubMed  CAS  Google Scholar 

  • Gilmer S, Clay P, MacRae TH, Flowke LC (1999) Tyrosinated, but not detyrosinated, α-tubulin is present in root tip cells. Protoplasma 210:92–98

    CAS  Google Scholar 

  • Goddard RH, Villemur R, Silflow CD, Wick SM (1998) Generation of chicken polyclonal antibodies against distinct maize isotubulins. Protoplasma 204:226–234

    CAS  Google Scholar 

  • Gonzales-Garay ML, Cabral F (1996) α-tubulin limits its own synthesis: evidence for a mechanism involving translation repression. J Cell Biol 135:1525–1534

    Google Scholar 

  • Gull K, Hussey PJ, Sasse R, Schneider A, Seebeck T, Sherwin T (1986) Tubulin isotypes: generation of diversity in cells and microtubular organelles. J Cell Sci Suppl 5:243–255

    PubMed  CAS  Google Scholar 

  • Hamada T, Igarashi H, Itoh TJ, Shimmen T, Sonobe S (2004) Characterization of a 200 kDa microtubule-associated protein of tobacco BY-2 cells, a member of the XMAP215/MOR1 family. Plant Cell Physiol 45:1233–1242

    PubMed  CAS  Google Scholar 

  • Hamada T, Shimmen T, Sonobe S (2007) Microtubule-associated proteins in plants. J Plant Res 120:79–98

    PubMed  CAS  Google Scholar 

  • Hampl V, Horner DS, Dyal P, Kulda J, Flegr J, Foster P, Embley TM (2005) Inference of the phylogenetic position of oxymonads based on nine genes: support for metamonada and excavate. Mol Biol Evol 22:2508–2518

    PubMed  CAS  Google Scholar 

  • Hoffman JC, Vaughn KC, Joshi HC (1994) Structural and immunocytochemical characterization of microtubule-organizing centers in pteridophyte spermatogeneous cells. Protoplasma 179:46–60

    Google Scholar 

  • Hunter AW, Wordeman L (2000) How motor proteins influence microtubule polymerization dynamics. J Cell Sci 113:4739–4389

    Google Scholar 

  • Hussey PJ, Hawkins TJ, Igarashi H, Kaloriti D, Smertenko A (2002) The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP215-like protein, MOR1. Plant Mol Biol 50:915–924

    PubMed  CAS  Google Scholar 

  • Hussey PJ (2002) Microtubules do the twist. Nature 417:128–129

    PubMed  CAS  Google Scholar 

  • Hussey PJ, Hawkins TJ (2001) Plant microtubule-associated proteins: the HEAT is off in temperature-sensitive mor1. Trends Plant Sci 6:389–392

    PubMed  CAS  Google Scholar 

  • Hutchens J, Doyle H, Turner F, Raff E (1997) Structurally similar Drosophila α-tubulins are functionally distinct in vivo. Mol Biol Cell 8:481–500

    PubMed  CAS  Google Scholar 

  • Ishida T, Thitamadee S, Hashimoto T (2007) Twisted growth and organization of cortical microtubules. J Plant Res 120:61–70

    PubMed  CAS  Google Scholar 

  • Janke C, Rogowski K, Wloga D, Regnard C, Kajava AV, Strub JM, Temurak N, van Dijk J, Boucher D, van Dorsselaer A, Suryavanshi S, Gaerting J, Edde B (2005) Tubulin polygluamylase enzymes are members of the TTL domain protein family. Science 308:1758–1762

    PubMed  CAS  Google Scholar 

  • Jeon JS, Lee S, Jung KH, Jun SJ, Kim J, An G (2000) Tissue-preferential expression of a rice α-tubulin gene, OsTubA1, mediated by the first intron. Plant Physiol 123:1005–1014

    PubMed  CAS  Google Scholar 

  • Jost W, Baur A, Nick P, Reski R, Gorr G (2004) A large plant beta-tubulin family with minimal C-terminal variation but differences in expression. Gene 29:151–160

    Google Scholar 

  • Karasev AV, Kashina AS, Gelfant VI, Dolja VV (1992) HSP70 related 65 kDa protein of beet yellow closterovirus is a microtubule-binding protein. FEBS Lett 304:12–14

    PubMed  CAS  Google Scholar 

  • Katz W, Weinstein B, Solomon F (1990) Regulation of tubulin levels and microtubule assembly in Saccharomyces cerevisiae: consequences of altered tubulin gene copy number. Mol Cell Biol 10:5286–5294

    PubMed  CAS  Google Scholar 

  • Keeling PJ, Doolittle WF (1996) Alpha-tubulin from early-diverging eukaryotic lineages and the evolution of the tubulin family. Mol Biol Evol 13:1297–1305

    PubMed  CAS  Google Scholar 

  • Khawaja S, Gundersen GG, Bulinski JC (1988) Enhanced stability of microtubules enriched in detyrosinated tubulin is not a direct function of detyrosination level. J Cell Biol 106:141–149

    PubMed  CAS  Google Scholar 

  • Kikkawa M, Okada Y, Hirokawa N (2000) 15 Å resolution model of the monomeric kinesin motor, KIF1A. Cell 100:241–252

    PubMed  CAS  Google Scholar 

  • Kirik V, Grini PE, Mathur J, Klinkhammer I, Adler K, Bechtold N, Herzog M, Bonneville JM, Hülskamp M (2002) The Arabidopsis TUBULIN-FOLDING COFACTOR A gene is involved in the control of the alpha/beta-tubulin monomer balance. Plant Cell 14:2265–2276

    PubMed  CAS  Google Scholar 

  • Kortazar D, Carranza G, Bellido J, Villegas JC, Fanarraga ML, Zabala JC (2006) Native tubulin-folding cofactor E purified from baculovirus-infected Sf9 cells dissociates tubulin dimers. Protein Expr Purif 49:196–202

    PubMed  CAS  Google Scholar 

  • Lafanechere L, Courtay-Cahen C, Kawakami T, Jacrot M, Rudiger M, Wehland J, Job D, Margolis RL (1998) Suppression of tubulin tyrosine ligase during tumor growth. J Cell Sci 111:171–181

    PubMed  CAS  Google Scholar 

  • Laurent M, Fleury A (1996) Hysteretic behaviour and differential apparent stability properties of microtubule species emerge from the regulation of post-translational modifications of microtubules. J Cell Sci 109:419–428

    PubMed  CAS  Google Scholar 

  • Li SC, Tang P, Lin WC (2007) Intronic microRNA : discovery and biological implications. DNA Cell Biol 26:195–207

    PubMed  Google Scholar 

  • Liao G, Gundersen GG (1998) Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. Selective binding of kinesin to detyrosinated tubulin and vimentin. J Biol Chem 273:9797–9803

    PubMed  CAS  Google Scholar 

  • Liaud MF, Brinkmann H, Cerff R (1992) The β-tubulin gene family of pea: primary structures genomic organization and intron-dependent evolution of genes. Plant Mol Biol 18:639–651

    PubMed  CAS  Google Scholar 

  • Liu B, Mare J, Joshi HC, Palevitz BA (1993) A γ-tubulin-related protein associated with the microtubule arrays of higher plants in a cell cycle-dependent manner. J Cell Sci 104:1217–1228

    PubMed  CAS  Google Scholar 

  • Liu B, Lee YRJ (2001) Kinesin-related proteins in plant cytokinesis. J Plant Growth Regul 20:141–150

    CAS  Google Scholar 

  • Lopez-Fanarraga M, Avila J, Guasch A, Coll M, Zabala JC (2001) Review: postchaperonin tubulin folding cofactors and their role in microtubule dynamics. J Struct Biol 2:219–229

    Google Scholar 

  • Lynch M (2002) Intron evolution as a population-genetic process. Proc Nat Acad Sci USA 99:6118–6123

    PubMed  CAS  Google Scholar 

  • Mao T, Jin L, Li H, Liu B, Yuan M (2005) Two microtubule-associated proteins of the Arabidopsis MAP65 family function differently on microtubules. Plant Physiol 138:654–662

    PubMed  CAS  Google Scholar 

  • Mattick JS, Gagen MJ (2001) The evolution of controlled multitasked gene networks: the role of introns and other non coding RNAs in the development of complex organisms. Mol Biol Evol 18:1601–1630

    Google Scholar 

  • Mattick JS (2004) RNA regulation: a new genetics? Nat Rev Genet 5:316–323

    PubMed  CAS  Google Scholar 

  • McClinton RS, Chandler JS, Callis J (2001) cDNA isolation, characterization, and protein intracellular localization of a katanin-like p60 subunit from Arabidopsis thaliana. Protoplasma 216:181–190

    PubMed  CAS  Google Scholar 

  • McKean PG, Vaughan S, Gull K (2001) The extended tubulin superfamily. J Cell Sci 114:2723–2733

    PubMed  CAS  Google Scholar 

  • MacRae TH (1997) Tubulin post-translational modifications-enzymes and their mechanisms of action. Eur J Biochem 244:265–278

    PubMed  CAS  Google Scholar 

  • Mialhe A, Lafanechere L, Treilleux I, Peloux N, Dumontet C, Bremond A, Panh MH, Payan R, Wehland J, Margolis RL, Job D (2001) Tubulin detyrosination is a frequent occurrence in breast cancers of poor prognosis. Cancer Res 61:5024–5027

    PubMed  CAS  Google Scholar 

  • Montoliu L, Rigau J, Puigdomenech P (1992) Analysis by PCR of the number of homologous genomic sequences to α-tubulin in maize. Plant Sci 84:179–185

    CAS  Google Scholar 

  • Morello L, Bardini M, Sala F, Breviario D (2002) A long leader intron of the Ostub16 rice beta-tubulin gene is required for high-level gene expression and can autonomously promote transcription both in vivo and in vitro. Plant J 29:33–44

    PubMed  CAS  Google Scholar 

  • Moriya S, Tanaka K, Ohkuma M, Sugano S, Kudo T (2001) Diversification of the microtubule system in the early stage of eukaryote evolution: elongation factor 1a and α-tubulin protein phylogeny of termite symbiotic oxymonad and hypermastigote protists. J Mol Evol 52:6–16

    PubMed  CAS  Google Scholar 

  • Murata T, Sonobe S, Baskin TI, Hyodo S, Hasezawa S, Nagata T, Horio T, Hasebe M (2005) Microtubule-dependent microtubule-nucleation based on recruitment of γ-tubulin in higher plants. Nat Cell Biol 7:961–968

    PubMed  CAS  Google Scholar 

  • Murata T, Hasebe M (2007) Microtubule-dependent microtubule nucleation in plant cells. J Plant Res 20:73–78

    Google Scholar 

  • Nakajima K, Furutani I, Tachimoto H, Matsubara H, Hashimoto T (2004) SPIRAL1 encodes a plant-specific microtubule-localized protein required for directional control of rapidly expanding Arabidopsis cells. Plant Cell 16:1178–1190

    PubMed  CAS  Google Scholar 

  • Nakajima K, Kawamura T, Hashimoto T (2006) Role of the SPIRAL1 gene family in anisotropic growth of Arabidopsis thaliana. Plant Cell Physiol 47:513–522

    PubMed  CAS  Google Scholar 

  • Ovechkina Y, Oakley BR (2001) γ-tubulin in plant cells. Method Cell Biol 7:195–212

    Google Scholar 

  • Paradez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495

    Google Scholar 

  • Pastuglia M, Azimzadeh J, Goussot M, Camilleri C, Belcram K, Evrard JL, Schmit AC, Guerce P, Bouchez D (2006) Gamma-tubulin is essential for microtubule organization and development in Arabidopsis. Plant Cell 18:1412–1425

    PubMed  CAS  Google Scholar 

  • Preston SF, Deanin GG, Hanson RD, Gordon MW (1979) The phylogenetic distribution of tubulin:tyrosine ligase. J Mol Evol 13:233–244

    PubMed  CAS  Google Scholar 

  • Qin X, Gianì S, Breviario D (1997) Molecular cloning of three rice α-tubulin isotypes: differential expression in tissues and during flower development. Biochim Biophys Acta 1354:19–23

    PubMed  CAS  Google Scholar 

  • Rethmeier N, Seurinck J, Van Montagu M, Cornelissen M (1997) Intron-mediated enhancement of transgene expression in maize is a nuclear, gene-dependent process. Plant J 12:895–899

    PubMed  CAS  Google Scholar 

  • Rodriguez-Trelles F, Tarrio R, Ayala FJ (2006) Origins and Evolution of spliceosomal introns. Annu Rev Genet 40:47–76

    PubMed  CAS  Google Scholar 

  • Rogozin IB, Lyons-Weiler J, Koonin EV (2000) Intron sliding in conserved gene families. Trends Genet 16:430–432

    PubMed  CAS  Google Scholar 

  • Rose AB (2002) Requirements for intron-mediated enhancement of gene expression in Arabidopsis. RNA 8:1444–1453

    PubMed  CAS  Google Scholar 

  • Rose AB, Beliakoff JA (2000) Intron-mediated enhancement of gene expression independent of unique intron sequences and splicing. Plant Physiol 122:535–542

    PubMed  CAS  Google Scholar 

  • Rosenbaum J (2000) Cytoskeleton : functions for tubulin modifications at last. Curr Biol 2:801–803

    Google Scholar 

  • Sakurai A, Fujimori S, Kochiwa H, Kitamura-Abe S, Washio T, Saito R, Carninci P, Hayashizaki Y, Tomita M (2002) On biased distribution of introns in various eukaryotes. Gene 300:89–95

    PubMed  CAS  Google Scholar 

  • Schroeder S, Kim SH, Lee S, Sterflinger K, Breuil C (2002) The β-tubulin gene is a useful target for PCR-based detection of an albino Ophiostoma piliferum used in biological control of sapstain. Eur J Plant Phatol 108:793–801

    CAS  Google Scholar 

  • Schwartz P, Ludueña R (1998) Beta-tubulin isotypes purified from bovine brain have different relative stabilities. Biochemistry 37:4687–4692

    Google Scholar 

  • Schwarzerová K, Petrašek J, Panigrahi KC, Zelenková S, Opatrný Z, Nick P (2006) Intranuclear accumulation of plant tubulin in response to low temperature. Protoplasma 227:185–196

    PubMed  Google Scholar 

  • Sedbrook JC, Carroll KL, Hung KF, Masson PH, Somerville CR (2002) The Arabidopsis SKU5 gene encodes an extracellular glycosyl phosphatidylinositol-anchored glycoprotein involved in directional root growth. Plant Cell 14:1635–1648

    PubMed  CAS  Google Scholar 

  • Seemanpillai M, Elamawi R, Ritzenthaler C, Heinlein M (2006) Challenging the role of microtubules in tobacco mosaic virus movement by drug treatments is disputable. J Virol 80:6712–6715

    PubMed  CAS  Google Scholar 

  • Shoji T, Narita NN, Hayashi K, Asada J, Hamada T, Sonobe S, Nakajima K, Hashimoto T (2004) Plant-specific microtubule-associated protein SPIRAL2 is required for anisotropic growth in Arabidopsis. Plant Physiol 136:3933–3944

    PubMed  CAS  Google Scholar 

  • Sinibaldi RM, Mettler IJ (1992) Intron splicing and intron-mediated enhanced expression in monocots. Prog Nucl Acid Res Mol Biol 42:229–255

    Article  CAS  Google Scholar 

  • Smertenko A, Blume Y, Viklický V, Opatrný Z, and Dráber P (1997) Post-translational modifications and multiple tubulin isoforms in Nicotiana tabacum L. cells. Planta 201:349–358

    PubMed  CAS  Google Scholar 

  • Smertenko A, Chang H, Wagner V, Kaloriti D, Fenyk S, Sonobe S, Lloyd C, Hauser M, Hussey P (2004) The Arabidopsis microtubule-associated protein AtMAP65-1: molecular analysis of its microtubule bundling activity. Plant Cell 16:2035–2047

    PubMed  CAS  Google Scholar 

  • Smertenko AP, Chang HY, Sonobe S, Fenyk SI, Weingartner M, Bogre L, Hussey PJ (2006) Control of the AtMAP65-1 interaction with microtubules through the cell cycle. J Cell Sci 119:3227–3237

    PubMed  CAS  Google Scholar 

  • Steinborn K, Maulbetsch C, Priester B, Trautmann S, Pacher T, Geiges B, Kutter F, Lepiniec L, Stierhof YD, Schwarz H, Jürgens G, Mayer U (2002) The Arabidopsis PILZ group genes encode tubulin-folding cofactor orthologs required for cell division but not cell growth. Genes Dev 16:959–971

    PubMed  CAS  Google Scholar 

  • Stoppin-Mellet V, Gaillard J, Vantard M (2002) Functional evidence for in vitro microtubule severing by the plant katanin homologue. Biochem J 365:337–342

    PubMed  CAS  Google Scholar 

  • Stotz HU, Long SR (1999) Expression of the pea (Pisum sativum L.) alpha-tubulin gene TubA1 is correlated with cell division activity. Plant Mol. Biol 41:601–614

    CAS  Google Scholar 

  • Takahashi T, Gasch A, Nishizawa N, Chua NH (1995) The DIMINUTO gene of Arabidopsis is involved in regulating cell elongation. Genes Dev 9:97–107

    PubMed  CAS  Google Scholar 

  • Thitamadee S, Tuchihara K, Hashimoto T (2002) Microtubule basis for left-handed helical growth in Arabidopsis. Nature 417:193–196

    PubMed  CAS  Google Scholar 

  • Tian G, Bhamidipati A, Cowan NJ, Lewis SA (1999) Tubulin folding cofactors as GTPase-activating proteins. GTP hydrolysis and the assembly of the alpha/beta-tubulin heterodimer. J Biol Chem 274:24054–24058

    PubMed  CAS  Google Scholar 

  • Ueda K, Matsuyama T, Hashimoto T (1999) Visualization of microtubules in living cells of transgenic Arabidopsis thaliana. Protoplasma 206:201–206

    Google Scholar 

  • Valentine T, Shaw J, Blok VC, Phillips MS, Oparka KJ, Lacomme C (2004) Efficient Virus-induced gene silencing in roots using a modified tobacco rattle virus vector. Plant Physiol 136:3999–4009

    PubMed  CAS  Google Scholar 

  • Villemur R, Joyce CM, Haas NA, Goddard RH, Kopczak SD, Hussey PJ, Snustad DP, Silflow CD (1992) α-tubulin gene family of maize (Zea mays L.): Evidence for two ancient α-tubulin genes in plants. J Mol Biol 227:81–96

    PubMed  CAS  Google Scholar 

  • Villemur R, Haas NA, Joyce CM, Snustad DP, Silflow CD (1994) Characterization of four new β-tubulin genes and their expression during male flower development in maize (Zea mays L.). Plant Mol Biol 24:295–315

    PubMed  CAS  Google Scholar 

  • Wang W, Vignani R, Scali M, Sensi E, Cresti M (2004) Post-translational modifications of α-tubulin in Zea mays L. are highly tissue specific. Planta 218:460–465

    PubMed  CAS  Google Scholar 

  • Wang Y, Tan ZM, Zhang DC, Murat C, Jeandroz S, Le Tacon F (2006) Phylogenetic relationships between Tuber pseudoexcavatum, a Chinese truffle, and other Tuber species based on parsimony and distance analysis of four different gene sequences FEMS. Microbiol Lett 259:269–281

    CAS  Google Scholar 

  • Wasteneys GO (2002) Microtubule organization in the green kingdom: chaos or self-order? J Cell Sci 115:1345–1354

    PubMed  CAS  Google Scholar 

  • Wehland J, Weber K (1987) Tubulin-tyrosine ligase has a binding site on beta-tubulin: a two domain structure of the enzyme. J Cell Biol 104:1059–1067

    PubMed  CAS  Google Scholar 

  • Weinstein B, Solomon F (1990) Phenotypic consequences of tubulin overproduction in Saccharomyces cerevisiae: differences between alpha-tubulin and beta-tubulin. Mol Cell Biol 10:5295–5304

    PubMed  CAS  Google Scholar 

  • Whittington AT, Vugrek O, Wei KJ, Hasenbein NG, Sugimoto K, Rashbrooke MC, Wasteneys GO (2001) MOR1 is essential for organizing cortical microtubules in plants. Nature 411:610–613

    PubMed  CAS  Google Scholar 

  • Widmer G, Tchack L, Chappel CL, Tzipori S (1998) Sequence polymorphism in the β-tubulin gene reveals heterogeneous and variable population structures in Cryptosporidium parvum. Appl Environ Microbiol 64:4477–4481

    PubMed  CAS  Google Scholar 

  • Wiesler B, Wang QY, Nick P (2002) The stability of cortical microtubules depends on their orientation. Plant J 32:1023–1032

    PubMed  CAS  Google Scholar 

  • Yoshikawa M, Yang G, Kawaguchi K, Komatsu S (2003) Expression analyses of β-tubulin isotype genes in rice. Plant Cell Physiol 44:1202–1207

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Breviario .

Editor information

Peter Nick

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Breviario, D. (2008). Plant Tubulin Genes: Regulatory and Evolutionary Aspects. In: Nick, P. (eds) Plant Microtubules. Plant Cell Monographs, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2007_160

Download citation

Publish with us

Policies and ethics