Skip to main content

Spread Throughout the Plant: Systemic Transport of Viruses

  • Chapter
  • First Online:
Viral Transport in Plants

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 7))

Abstract

Viral long distant transport is an essential step for systemic infection. Because the process involves different types of highly differentiated vascular-associated cells, the virus systemic movement is regulated differentially at each tissue interface. In this chapter, we review current knowledge about viral systemic transport process in non-Arabidopsis hosts. We especially focus on viral and host factors participating in viral systemic transport. We also briefly overview the effect of RNA silencing, the host innate immunity, on viral systemic movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen K, Johansen IE (1998) A single conserved amino acid in the coat protein gene of pea seed-borne mosaic potyvirus modulates the ability of the virus to move systemically in Chenopodium quinoa. Virology 241:304–311

    PubMed  CAS  Google Scholar 

  • Andrianifahanana M, Louvins K, Dute R, Sikora EJ, Murphy JF (1997) Pathway for phloem-dependent movment of pepper mottle potyvirus in the stem of Capsicum annuum. Phytopathology 87:892–898

    CAS  PubMed  Google Scholar 

  • Angell SM, Davies C, Baulcombe DC (1996) Cell-to-cell movement of potato virus X is associated with a change in the size exclusion limit of plasmodesmata in trichome cells of Nicotiana clevelandii. Virology 216:197–201

    PubMed  CAS  Google Scholar 

  • Arroyo R, Soto MJ, Martinez-Zapater JM, Ponz F (1996) Impaired cell-to-cell movement of potato virus Y in pepper plants carrying the ya(pr21) resistance gene. Mol Plant-Microbe Interact 9:314–318

    CAS  Google Scholar 

  • Bahner I, Lamb J, Mayo MA, Hay RT (1990) Expression of the genome of potato leafroll virus: readthrough of the coat protein termination codon in vivo. J Gen Virol 71:2251–2256

    PubMed  CAS  Google Scholar 

  • Barker H, Harrison BD (1986) Restricted distribution of potato leafroll virus antigen in resistant potato genotypes and its effect on transmission of the virus by aphids. Ann Appl Biol 109:595–604

    Google Scholar 

  • Barker H (1987) Invasion of non-phloem tissue in Nicotiana clevelandii by leafoll luteovirus is enhance in plants also infected with potato virus Y. J Gen Virol 68:1223–1227

    Google Scholar 

  • Barker H (1989) Specificity of the effect of sap-transmissible viruses in increasing the accumulation of luteoviruses in co-infected plants. Ann Appl Biol 115:71–78

    Google Scholar 

  • Baulcombe DC (2001) RNA silencing. Diced defence. Nature 409:295–596

    PubMed  CAS  Google Scholar 

  • Baulcombe DC (2002) Viral suppression of systemic silencing. Trends Microbiol 10:306–308

    PubMed  CAS  Google Scholar 

  • Baulcombe DC (2004) RNA silencing in plants. Nature 431:356–363

    PubMed  CAS  Google Scholar 

  • Bayne EH, Rakitina DV, Morozov SY, Baulcombe DC (2005) Cell-to-cell movement of Potato Potexvirus X is dependent on suppression of RNA silencing. Plant J 44:471–482

    PubMed  CAS  Google Scholar 

  • Beck DL, Guilford PJ, Voot DM, Andersen MT, Forster RLS (1991) Triple gene block proteins of white clover mosaic potexvirus are required for transport. Virology 183:695–702

    PubMed  CAS  Google Scholar 

  • Beffa R, Meins Jr F (1996) Pathogenesis-related functions of plant beta-1,3-glucanases investigated by antisense transformation – a review. Gene 179:97–103

    PubMed  CAS  Google Scholar 

  • Beffa RS, Hofer R-M, Thomas M, Meins Jr F (1996) Decreased susceptibility to virus disease of β-1,3-glucanase-deficient plants generated by antisense transformation. Plant Cell 8:1001–1011

    PubMed  CAS  Google Scholar 

  • Bisaro DM (2006) Silencing suppression by geminivirus proteins. Virology 344:158–168

    PubMed  CAS  Google Scholar 

  • Blackman LM, Boevink P, Santa Cruz S, Palukaitis P, Oparka KJ (1998) The movement protein of cucumber mosaic virus traffics into sieve elements in minor veins of Nicotiana clevelandii. Plant Cell 10:525–537

    PubMed  CAS  Google Scholar 

  • Boevink P, Oparka KJ (2005) Virus–host interactions during movement processes. Plant Physiol 138:1815–1821

    PubMed  CAS  Google Scholar 

  • Botha CEJ, Cross RHM, van Bel AJE, Peter CI (2000) Phloem loading in the sucrose-export-defective (SXD1) mutant maize is limited by callose deposition at plasmodesmata in bundle sheath–vascular parenchyma interface. Protoplasma 214:65–72

    CAS  Google Scholar 

  • Boulton M, Steinkellner H, Donson J, Markham PG, King DI, Davies JW (1989) Mutational analysis of the virus-sense genes of maize streak virus. J Gen Virol 70:2309–2323

    PubMed  CAS  Google Scholar 

  • Boulton MI, Pallaghy CK, Chatani M, MacFarlane S, Davies JW (1993) Replication of maize streak virus mutants in maize protoplasts: evidence for a movement protein. Virology 192:85–93

    PubMed  CAS  Google Scholar 

  • Brault V, van den Heuvel JF, Verbeek M, Ziegler-Graff V, Reutenauer A, Herrbach E, Garaud JC, Guilley H, Richards K, Jonard G (1995) Aphid transmission of beet western yellows luteovirus requires the minor capsid read-through protein P74. EMBO J 14:650–659

    PubMed  CAS  Google Scholar 

  • Briddon RW (2003) Cotton leaf curl disease, a multicomponent begomovirus complex. Mol Plant Pathol 4:427–434

    CAS  PubMed  Google Scholar 

  • Brough CL, Hayes RJ, Morgan AJ, Coutts RHA, Buck KW (1988) Effects of mutagenesis in vitro on the ability of cloned tomato golden mosaic virus DNA to infect Nicotiana benthamiana. J Gen Virol 69:503–514

    CAS  Google Scholar 

  • Bucher GL, Tarina C, Heinlein M, Di Serio F, Meins Jr F, Iglesias VA (2001) Local expression of enzymatically active class I beta-1,3-glucanase enhances symptoms of TMV infection in tobacco. Plant J 28:361–369

    PubMed  CAS  Google Scholar 

  • Carrington JC, Freed DD, Sanders TC (1989) Autocatalytic processing of the potyvirus helper component proteinase in Escherichia coli and in vitro. J Virol 63:4459–4463

    PubMed  CAS  Google Scholar 

  • Chay CA, Gunasinge UB, Dinesh-Kumar SP, Miller WA, Gray SM (1996) Aphid transmission and systemic plant infection determinants of barley yellow dwarf luteovirus-PAV are contained in the coat protein readthrough domain and - 17kDa protein, respectively. Virology 219:57–65

    PubMed  CAS  Google Scholar 

  • Chen J, Watanabe Y, Sako N, Ohshima K, Okada Y (1996) Mapping of host range restriction of the rakkyo strain of tobacco mosaic virus in Nicotiana tabacum cv. bright yellow. Virology 226:198–204

    PubMed  CAS  Google Scholar 

  • Chen MH, Sheng J, Hind G, Handa A, Citovsky V (2000) Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO J 19:913–920

    PubMed  CAS  Google Scholar 

  • Chen MH, Citovsky V (2003) Systemic movement of a tobamovirus requires host cell pectin methylesterase. Plant J 35:386–392

    PubMed  CAS  Google Scholar 

  • Cheng NH, Su CL, Carter SA, Nelson RS (2000) Vascular invasion routes and systemic accumulation patterns of tobacco mosaic virus in Nicotiana benthamiana. Plant J 23:349–362

    PubMed  CAS  Google Scholar 

  • Choi SK, Yoon JY, Ryu KH, Choi JK, Palukaitis P, Park WM (2002) Systemic movement of a movement-deficient strain of Cucumber mosaic virus in zucchini squash is facilitated by a cucurbit-infecting potyvirus. J Gen Virol 83:3173–3178

    PubMed  CAS  Google Scholar 

  • Citovsky V, Ghoshroy S, Tsui F, Klessig DF (1998) Non-toxic concentrations of cadmium inhibit tobamoviral systemic movement by a salicylic acid-independent mechanism. Plant J 16:13–20

    PubMed  CAS  Google Scholar 

  • Cronin S, Verchot J, Haldeman-Cahill R, Schaad MC, Carrington JC (1995) Long-distance movement factor: a transport function of the potyvirus helper component proteinase. Plant Cell 7:549–559

    PubMed  CAS  Google Scholar 

  • Culver JN, Dawson WO, Plonk K, Stubbs G (1995) Site-directed mutagenesis confirms the involvement of carboxylate groups in the disassembly of tobacco mosaic virus. Virology 206:724–730

    PubMed  CAS  Google Scholar 

  • Dalmay T, Rubino L, Burgyan J, Russo M (1992) Replication and movement of a coat protein mutant of cymbidium ringspot tombusvirus. Mol Plant-Microbe Interact 5:379–383

    PubMed  CAS  Google Scholar 

  • Dawson WO, Bubrick P, Grantham GL (1988) Modifications of the tobacco mosaic virus coat protein gene affecting replication, movement and symptomatology. Phytopathology 78:783–789

    CAS  Google Scholar 

  • De Jong W, Chu A, Ahlquist P (1995) Coding changes in the 3a cell-to-cell movement gene can extend the host range of brome mosaic virus systemic infection. Virology 214:464–474

    PubMed  Google Scholar 

  • Delmer DP, Volokita M, Solomon M, Fritz U, Delphendahl W, Herth W (1993) A monoclonal antibody recognizes a 65 kDahigher plant membrane polypeptide which undergoes cation-dependent association with callose deposition in vivo. Protoplasma 176:33–42

    CAS  Google Scholar 

  • Derrick PM, Barker H (1992) The restricted distribution of potato leafroll luteovirus antigen in potato plants with transgenic resistance resembles that in clones with one type of host gene-mediated resistance. Ann Appl Biol 120:451–457

    Google Scholar 

  • Derrick PM, Barker H (1997) Short and long distance spread of potato leafroll luteovirus: effects of host genes and transgenes conferring resistance to virus accumulation in potato. J Gen Virol 78:243–251

    PubMed  CAS  Google Scholar 

  • Desvoyes B, Scholthof HB (2002) Host-dependent recombination of a Tomato bushy stunt virus coat protein mutant yields truncated capsid subunits that form virus-like complexes which benefit systemic spread. Virology 304:434–442

    PubMed  CAS  Google Scholar 

  • Ding B, Haudenshield JS, Hull RJ, Wolf S, Beachy RN, Lucas WJ (1992) Secondary plasmodesmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants. Plant Cell 4:915–928

    PubMed  CAS  Google Scholar 

  • Ding XS, Shintaku MH, Arnold SA, Nelson RS (1995) Accumulation of mild and severe strains of tobacco mosaic virus in minor veins of tobacco. Mol Plant-Microbe Interact 8:32–40

    CAS  Google Scholar 

  • Ding XS, Shintaku MH, Carter SA, Nelson RS (1996) Invasion of minor veins of tobacco leaves inoculated with tobacco mosaic virus mutants defective in phloem-dependent movement. Proc Natl Acad Sci USA 93:11155–11160

    PubMed  CAS  Google Scholar 

  • Ding XS, Liu J, Cheng NH, Folimonov A, Hou YM, Bao Y, Katagi C, Carter SA, Nelson RS (2004) The Tobacco mosaic virus - 126kDa protein associated with virus replication and movement suppresses RNA silencing. Mol Plant-Microbe Interact 17:583–592

    PubMed  CAS  Google Scholar 

  • Dolja VV, Haldeman R, Robertson NL, Dougherty WG, Carrington JC (1994) Distinct functions of capsid protein in assembly and movement of tobacco etch potyvirus in plants. EMBO J 13:1482–1491

    PubMed  CAS  Google Scholar 

  • Dolja VV, Haldeman-Cahill R, Montgomery AE, Vandenbosch KA, Carrington JC (1995) Capsid protein determinants involved in cell-to-cell and long distance movement of tobacco etch potyvirus. Virology 206:1007–1016

    PubMed  CAS  Google Scholar 

  • Dorokhov YL, Makinen K, Frolova OY, Merits A, Saarinen J, Kalkkinen N, Atabekov JG, Saarma M (1999) A novel function for a ubiquitous plant enzyme pectin methylesterase: the host-cell receptor for the tobacco mosaic virus movement protein. FEBS Lett 461:223–228

    PubMed  CAS  Google Scholar 

  • Dunoyer P, Thomas CL, Harrison S, Revers F, Maule AJ (2004) A cysteine-rich plant protein potentiates Potyvirus movement through an interaction with the virus genome-linked protein VPg. J Virol 78:2301–2309

    PubMed  CAS  Google Scholar 

  • Dunoyer P, Voinnet O (2005) The complex interplay between plant viruses and host RNA-silencing pathways. Curr Opin Plant Biol 8:415–423

    PubMed  CAS  Google Scholar 

  • Esau K, Cronshaw J (1967) Tubular components in cells of healthy and tobacco mosaic virus-infected Nicotiana. Virology 33:26–35

    PubMed  CAS  Google Scholar 

  • Esau K, Hoefert LL (1972) Ultrastructure of sugarbeet leaves infected with beet western yellows virus. J Ultrastruct Res 40:556–571

    PubMed  CAS  Google Scholar 

  • Esau K, Hoefert LL (1972) Development of infection with beet western yellows virus in the sugarbeet. Virology 48:724–738

    PubMed  CAS  Google Scholar 

  • Filichkin SA, Lister RM, McGrath PF, Young MJ (1994) In vivo expression and mutational analysis of the barley yellow dwarf virus readthrough gene. Virology 205:290–299

    PubMed  CAS  Google Scholar 

  • Foster TM, Lough TJ, Emerson SJ, Lee RH, Bowman JL, Forster RL, Lucas WJ (2002) A surveillance system regulates selective entry of RNA into the shoot apex. Plant Cell 14:1497–1508

    PubMed  CAS  Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756

    CAS  PubMed  Google Scholar 

  • Gao Z, Eyers S, Thomas CL, Ellis N, Maule AJ (2004) Identification of markers tightly linked to sbm recessive genes for resistance to Pea seed-borne mosaic virus. Theor Appl Genet 109:488–494

    PubMed  CAS  Google Scholar 

  • Gao Z, Johansen E, Eyers S, Thomas CL, Ellis THN, Maule AJ (2004) The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. Plant J 40:376–385

    PubMed  CAS  Google Scholar 

  • Gardiner WE, Sunter G, Brand L, Elmer JS, Rogers SG, Bisaro DM (1988) Genetic analysis of tomato golden mosaic virus: the coat protein is not required for systemic spread or symptom development. EMBO J 7:899–904

    PubMed  CAS  Google Scholar 

  • Germundsson A, Valkonen JP (2006) P1- and VPg-transgenic plants show similar resistance to Potato virus A and may compromise long distance movement of the virus in plant sections expressing RNA silencing-based resistance. Virus Res 116:208–213

    PubMed  CAS  Google Scholar 

  • Ghoshroy S, Freedman K, Lartey R, Citovsky V (1998) Inhibition of plant viral systemic infection by non-toxic concentrations of cadmium. Plant J 13:591–602

    PubMed  CAS  Google Scholar 

  • Gibbs AJ (1976) Viruses and plasmodesmata. In: Gunning BES, Robards AW (eds) Intercellular communication in plants: studies on plasmodesmata. Springer, Berlin Heidelberg New York, pp 149–164

    Google Scholar 

  • Gill CC, Chong J (1975) Development of the infection in oat leaves inoculated with barley yellow dwarf virus. Virology 66:440–453

    PubMed  CAS  Google Scholar 

  • Goodrick BJ, Kuhn CW, Hussey RS (1991) Restricted systemic movement of cowpea chlorotic mottle virus in soybean with nonnecrotic resistance. Phytopathology 81:1426–1431

    Google Scholar 

  • Guerini MN, Murphy JF (1999) Resistance of Capsicum annuum ‘Avelar’ to pepper mottle potyvirus and alleviation of this resistance by co-infection with cucumber mosaic cucumovirus are associated with virus movement. J Gen Virol 80:2785–2792

    PubMed  CAS  Google Scholar 

  • Haupt S, Duncan GH, Holzberg S, Oparka KJ (2001) Evidence for symplastic phloem unloading in sink leaves of barley. Plant Physiol 125:209–218

    PubMed  CAS  Google Scholar 

  • Hofius D, Herbers K, Melzer M, Omid A, Tacke E, Wolf S, Sonnewald U (2001) Evidence for expression level-dependent modulation of carbohydrate status and viral resistance by the potato leafroll virus movement protein in transgenic tobacco plants. Plant J 28:529–543

    PubMed  CAS  Google Scholar 

  • Holt CA, Beachy RN (1991) In vivo complementation of infectious transcripts from mutant tobacco mosaic virus cDNAs in transgenic plants. Virology 181:109–117

    PubMed  CAS  Google Scholar 

  • Huppert E, Szilassy D, Salánki K, Divéki Z, Balázs E (2002) Heterologous movement protein strongly modifies the infection phenotype of cucumber mosaic virus. J Virol 76:3554–3557

    PubMed  CAS  Google Scholar 

  • Iglesias VA, Meins Jr F (2000) Movement of plant viruses is delayed in a β-1,3-glucanase-deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition. Plant J 21:157–166

    PubMed  CAS  Google Scholar 

  • Itaya A, Ma F, Qi Y, Matsuda Y, Zhu Y, Liang G, Ding B (2002) Plasmodesma-mediated selective protein traffic between “symplasmically isolated” cells probed by a viral movement protein. Plant Cell 14:2071–2083

    PubMed  CAS  Google Scholar 

  • Jeffrey JL, Pooma W, Petty IT (1996) Genetic requirements for local and systemic movement of tomato golden mosaic virus in infected plants. Virology 223:208–218

    PubMed  CAS  Google Scholar 

  • Jensen SG (1969) Occurrence of virus particles in the phloem tissue of BYDV-infected barley. Virology 38:83–91

    PubMed  CAS  Google Scholar 

  • Kalinina NO, Rakitina DA, Yelina NE, Zamyatnin Jr AA, Stroganova TA, Klinov DV, Prokhorov VV, Ustinova SV, Chernov BK, Schiemann J, Solovyev AG, Morozov SY (2001) RNA-binding properties of the - 63kDa protein encoded by the triple gene block of poa semilatent hordeivirus. J Gen Virol 82:2569–2578

    PubMed  CAS  Google Scholar 

  • Kaplan IB, Gal-On A, Palukaitis P (1997) Characterization of cucumber mosaic virus. III. Localization of sequences in the movement protein controlling systemic infection in cucurbits. Virology 230:343–349

    PubMed  CAS  Google Scholar 

  • Kasschau KD, Cronin S, Carrington JC (1997) Genome amplification and long-distance movement functions associated with the central domain of tobacco etch potyvirus helper component-proteinase. Virology 228:251–262

    PubMed  CAS  Google Scholar 

  • Kasschau KD, Carrington JC (2001) Long-distance movement and replication maintenance functions correlate with silencing suppression activity of potyviral HC-Pro. Virology 285:71–81

    PubMed  CAS  Google Scholar 

  • Kauss H (1985) Callose biosynthesis as a Ca2+-regulated process and possible relations to the induction of other metabolic changes. J Cell Sci Suppl 2:89–103

    PubMed  CAS  Google Scholar 

  • Kauss H (1996) Callose synthesis. In: Smallwood M, Knox JP, Bowles DJ (eds) Membranes: specialized functions in plants. BIOS Scientific, Oxford, pp 77–92

    Google Scholar 

  • Kempers R, Prior DAM, van Bel AJE, Oparka KJ (1993) Plasmodesmata between sieve elements and companion cells in extracellular phloem of Cucurbita maxima stems permit intercellular passage of fluorescent - 3kDa probes. Plant J 4:567–575

    Google Scholar 

  • Kempers R, van Bel AJE (1997) Symplasmic connections between sieve element and companion cell in the stem phloem of Vicia faba L have a molecular exclusion limit of at least 10 kD. Planta 201:195–201

    CAS  Google Scholar 

  • Kim SH, Ryabov EV, Brown JW, Taliansky M (2004) Involvement of the nucleolus in plant virus systemic infection. Biochem Soc Trans 32:557–560

    PubMed  CAS  Google Scholar 

  • Klein PG, Klein RR, Rodriguez-Cerezo E, Hunt AG, Shaw JG (1994) Mutational analysis of the tobacco vein mottling virus genome. Virology 204:759–769

    PubMed  CAS  Google Scholar 

  • Kreuze JF, Savenkov EI, Cuellar W, Li X, Valkonen JP (2005) Viral class 1 RNase III involved in suppression of RNA silencing. J Virol 79:7227–7238

    PubMed  CAS  Google Scholar 

  • Lee LY, Palukaitis P, Gray SM (2002) Host-dependent requirement for the Potato leafroll virus - 17kDa protein in virus movement. Mol Plant-Microbe Interact 15:1086–1094

    PubMed  CAS  Google Scholar 

  • Leisner SM, Howell SH (1993) Long-distance movement of viruses in plants. Trends Microbiol 1:314–317

    PubMed  CAS  Google Scholar 

  • Leisner SM, Turgeon R (1993) Movement of virus and photoassimilate in the phloem – a comparative analysis. BioEssays 15:741–748

    PubMed  CAS  Google Scholar 

  • Leisner SM, Turgeon R, Howell SH (1993) Effects of host plant development and genetic determinants on the long-distance movement of cauliflower mosaic virus in Arabidopsis. Plant Cell 5:191–202

    PubMed  CAS  Google Scholar 

  • Leonard S, Plante D, Wittmann S, Daigneault N, Fortin MG, Laliberte JF (2000) Complex formation between potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. J Virol 74:7730–7737

    PubMed  CAS  Google Scholar 

  • Leonard S, Viel C, Beauchemin C, Daigneault N, Fortin MG, Laliberte JF (2004) Interaction of VPg-Pro of Turnip mosaic virus with the translation initiation factor 4E and the poly(A)-binding protein in planta. J Gen Virol 85:1055–1063

    PubMed  CAS  Google Scholar 

  • Leubner-Mezger G, Meins Jr F (1999) Functions and regulation of plant beta-1,3-glucanases (PR-2). In: Datta SK, Muthkrishnan S (eds) Pathogenesis-related proteins in plants. CRC, Boca Raton, FL, pp 49–76

    Google Scholar 

  • Levy A, Czosnek H (2003) The DNA-B of the non-phloem-limited bean dwarf mosaic virus (BDMV) is able to move the phloem-limited Abutilon mosaic virus (AbMV) out of the phloem, but DNA-B of AbMV is unable to confine BDMV to the phloem. Plant Mol Biol 53:789–803

    PubMed  CAS  Google Scholar 

  • Li Q, Ryu KH, Palukaitis P (2001) Cucumber mosaic virus-plant interactions: identification of 3a protein sequences affecting infectivity, cell-to-cell movement, and long-distance movement. Mol Plant-Microbe Interact 14:378–385

    PubMed  CAS  Google Scholar 

  • Li Y, Wu MY, Song HH, Hu X, Qiu BS (2005) Identification of a tobacco protein interacting with tomato mosaic virus coat protein and facilitating long-distance movement of virus. Arch Virol 150:1993–2008

    PubMed  CAS  Google Scholar 

  • Liu H, Boulton MI, Lucy AP, Davies JW (2001) A single amino acid change in the coat protein of Maize streak virus abolishes systemic infection and encapsidation, but not interaction with viral DNA or movement protein. Mol Plant Pathol 2:223–228

    CAS  PubMed  Google Scholar 

  • Liu L, Davies JW, Stanley J (1998) Mutational analysis of bean yellow dwarf virus, a geminivirus of the genus Mastrevirus that is adapted to dicotyledonous plants. J Gen Virol 79:2265–2274

    PubMed  CAS  Google Scholar 

  • Liu L, Pinner MS, Davies JW, Stanley J (1999) Adaptation of the geminivirus bean yellow dwarf virus to dicotyledonous hosts involves both virion-sense and complementary-sense genes. J Gen Virol 80:501–506

    PubMed  CAS  Google Scholar 

  • Lopez-Moya JJ, Pirone TP (1998) Charge changes near the N-terminus of the coat protein of two potyviruses affect virus movement. J Gen Virol 79:161–165

    PubMed  CAS  Google Scholar 

  • Lough TJ, Emerson SJ, Lucas WJ, Forster RL (2001) Trans-complementation of long-distance movement of White clover mosaic virus triple gene block (TGB) mutants: phloem-associated movement of TGBp1. Virology 288:18–28

    PubMed  CAS  Google Scholar 

  • Marathe R, Anandalakshmi R, Smith TH, Pruss GJ, Vance VB (2000) RNA viruses as inducers, suppressors and targets of post-transcriptional gene silencing. Plant Mol Biol 43:295–306

    PubMed  CAS  Google Scholar 

  • Martin RR, Keese PK, Young MJ, Waterhouse PM, Geriach WL (1990) Evolution and molecular biology of luteovirus. Annu Rev Phytopathol 28:341–363

    CAS  Google Scholar 

  • Mayo MA, Ziegler-Graff V (1996) Molecular biology of luteoviruses. Adv Virus Res 46:413–460

    Article  PubMed  CAS  Google Scholar 

  • McLean GP, Hamilton RI, Ronchon DM (1993) Symptomatology and movement of cucumber necrosis virus mutant lacking the coat protein protruding domain. Virology 193:932–939

    PubMed  CAS  Google Scholar 

  • Michelson I, Zeidan M, Zamski E, Zamir D, Czosneck H (1997) Localization of tomato yellow leaf curl virus (TYLCV) in susceptible and tolerant nearly isogenic tomato lines. Acta Hortic 477:407–414

    Google Scholar 

  • Michon T, Estevez Y, Walter J, German-Retana S, Le Gall O (2006) The potyviral virus genome-linked protein VPg forms a ternary complex with the eukaryotic initiation factors eIF4E and eIF4G and reduces eIF4E affinity for a mRNA cap analogue. FEBS J 273:1312–1322

    PubMed  CAS  Google Scholar 

  • Moissiard G, Voinnet O (2004) Viral suppression of RNA silencing in plants. Mol Plant Pathol 5:71–82

    CAS  PubMed  Google Scholar 

  • Moreno IM, Thompson JR, Garcia-Arenal F (2004) Analysis of the systemic colonization of cucumber plants by Cucumber green mottle mosaic virus. J Gen Virol 85:749–759

    PubMed  CAS  Google Scholar 

  • Morra MR, Petty IT (2000) Tissue specificity of geminivirus infection is genetically determined. Plant Cell 12:2259–2270

    PubMed  CAS  Google Scholar 

  • Mourrain P, Béclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Jouette D, Lacombe AM, Nikic S, Picault N, Rémoué K, Sanial M, Vo TA, Vaucheret H (2000) Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101:533–542

    PubMed  CAS  Google Scholar 

  • Mutterer JD, Stussi-Garaud C, Michler P, Richards KE, Jonard G, Ziegler-Graff V (1999) Role of the beet western yellows virus readthrough protein in virus movement in Nicotiana clevelandii. J Gen Virol 80:2771–2778

    PubMed  CAS  Google Scholar 

  • Nelson RS, Li G, Hodgson RA, Beachy RN, Shintaku MH (1993) Impeded phloem-dependent accumulation of the masked strain of tobacco mosaic virus. Mol Plant-Microbe Interact 6:45–54

    Google Scholar 

  • Nicaise V, German-Retana S, Sanjuán R, Dubrana MP, Mazier M, Maisonneuve B, Candresse T, Caranta C, LeGall O (2003) The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the Potyvirus Lettuce mosaic virus. Plant Physiol 132:1272–1282

    PubMed  CAS  Google Scholar 

  • Noris E, Vaira AM, Caciagli P, Masenga V, Gronenborn B, Accotto GP (1998) Amino acids in the capsid protein of tomato yellow leaf curl virus that are crucial for systemic infection, particle formation, and insect transmission. J Virol 72:10050–10057

    PubMed  CAS  Google Scholar 

  • Northcote DH, Davey R, Lay J (1989) Use of antisera to localize callose, xylan and arabinogalactan in the cell-plate, primary and secondary cell walls of plant cells. Planta 178:353–366

    CAS  Google Scholar 

  • Opalka N, Brugidou C, Bonneau C, Nicole M, Beachy RN, Yeager M, Fauquet C (1998) Movement of rice yellow mottle virus between xylem cells through pit membranes. Proc Natl Acad Sci USA 95:3323–3328

    PubMed  CAS  Google Scholar 

  • Oparka KJ, Santa Cruz S (2000) The great escape: phloem transport and unloading of macromoleculaes. Annu Rev Plant Physiol Plant Mol Biol 51:323–347

    PubMed  CAS  Google Scholar 

  • Osbourn JK, Sarkar S, Wilson TM (1990) Complementation of coat protein-defective TMV mutants in transgenic tobacco plants expressing TMV coat protein. Virology 179:921–925

    PubMed  CAS  Google Scholar 

  • Pooma W, Gillette WK, Jeffrey JL, Petty IT (1996) Host and viral factors determine the dispensability of coat protein for bipartite geminivirus systemic movement. Virology 218:264–268

    PubMed  CAS  Google Scholar 

  • Qin Y, Petty IT (2001) Genetic analysis of bipartite geminivirus tissue tropism. Virology 291:311–323

    PubMed  CAS  Google Scholar 

  • Qu F, Morris TJ (2005) Suppressors of RNA silencing encoded by plant viruses and their role in viral infections. FEBS Lett 579:5958–5964

    PubMed  CAS  Google Scholar 

  • Räjamaki ML, Valkonen JP (1999) The 6K2 protein and the VPg of potato virus A are determinants of systemic infection in Nicandra physaloides. Mol Plant-Microbe Interact 12:1074–1081

    PubMed  Google Scholar 

  • Räjamaki ML, Valkonen JP (2002) Viral genome-linked protein (VPg) controls accumulation and phloem-loading of a potyvirus in inoculated potato leaves. Mol Plant-Microbe Interact 15:138–149

    PubMed  Google Scholar 

  • Räjamaki ML, Valkonen JP (2003) Localization of a potyvirus and the viral genome-linked protein in wild potato leaves at an early stage of systemic infection. Mol Plant-Microbe Interact 16:25–34

    PubMed  Google Scholar 

  • Rao AL, Grantham GL (1996) Molecular studies on bromovirus capsid protein. II. Functional analysis of the amino-terminal arginine-rich motif and its role in encapsidation, movement, and pathology. Virology 226:294–305

    PubMed  CAS  Google Scholar 

  • Revers F, Le Gall O, Candresse T, Maule AJ (1999) New advances in understanding the molecular biology of plant/potyvirus interactions. Mol Plant-Microbe Interact 12:367–376

    CAS  Google Scholar 

  • Robaglia C, Caranta C (2006) Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci 11:40–45

    PubMed  CAS  Google Scholar 

  • Roberts AG, Santa Cruz S, Roberts IM, Prior DAM, Turgeon R, Oparka KJ (1997) Phloem unloading in sink leaves of Nicotiana benthamiana: comparison of a fluorescent solute with a fluorescent virus. Plant Cell 9:1381–1396

    PubMed  CAS  Google Scholar 

  • Robinson DJ, Murant AF (1999) Umbravirus. In: Granoff A, Webster RG (eds) Encyclopedia of virology. Academic Press, New York, pp 1855–1859

    Google Scholar 

  • Rogers HJ, Bate N, Combe J, Sullivan J, Sweetman J, Swan C, Lonsdale DM, Twell D (2001) Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10. Plant Mol Biol 45:577–585

    PubMed  CAS  Google Scholar 

  • Rojas MR, Jiang H, Salati R, Xoconostle-Cázares B, Sudarshana MR, Lucas WJ, Gilbertson RL (2001) Functional analysis of proteins involved in movement of the monopartite begomovirus, Tomato yellow leaf curl virus. Virology 291:110–125

    PubMed  CAS  Google Scholar 

  • Ruffel S, Dussault MH, Palloix A, Moury B, Bendahmane A, Robaglia C, Caranta C (2002) A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J 32:1067–1075

    PubMed  CAS  Google Scholar 

  • Ryabov EV, Robinson DJ, Taliansky ME (1999) A plant virus-encoded protein facilitates long-distance movement of heterologous viral RNA. Proc Natl Acad Sci USA 96:1212–1217

    PubMed  CAS  Google Scholar 

  • Ryabov EV, Fraser G, Mayo MA, Barker H, Taliansky M (2001) Umbravirus gene expression helps potato leafroll virus to invade mesophyll tissues and to be transmitted mechanically between plants. Virology 286:363–372

    PubMed  CAS  Google Scholar 

  • Ryabov EV, Robinson DJ, Taliansky M (2001) Umbravirus-encoded proteins both stabilize heterologous viral RNA and mediate its systemic movement in some plant species. Virology 288:391–400

    PubMed  CAS  Google Scholar 

  • Saito T, Yamanaka K, Okada Y (1990) Long distance movement and viral assembly of tobacco mosaic virus mutants. Virology 176:329–336

    PubMed  CAS  Google Scholar 

  • Santa Cruz S, Roberts AG, Prior DAM, Chapman S, Oparka KJ (1998) Cell-to-cell and phloem-mediated transport of potato virus X: the role of virions. Plant Cell 10:495–510

    Google Scholar 

  • Santa Cruz S (1999) Phloem transport of viruses and macromolecules – what goes in must come out. Trends Microbiol 7:237–241

    PubMed  CAS  Google Scholar 

  • Sanz AI, Serra MT, Garcia-Luque I (2000) Altered local and systemic spread of movement deficient virus in transgenic tobacco plants expressing the cucumber mosaic virus 3a protein. Arch Virol 145:2387–2401

    PubMed  CAS  Google Scholar 

  • Savenkov EI, Valkonen JP (2001) Potyviral helper-component proteinase expressed in transgenic plants enhances titers of Potato leaf roll virus but does not alleviate its phloem limitation. Virology 283:285–293

    PubMed  CAS  Google Scholar 

  • Schaad MC, Carrington JC (1996) Suppression of long-distance movement of tobacco etch virus in a nonsusceptible host. J Virol 70:2556–2561

    PubMed  CAS  Google Scholar 

  • Schaad MC, Lellis AD, Carrington JC (1997) VPg of tobacco etch potyvirus is a host genotype-specific determinant for long-distance movement. J Virol 71:8624–8631

    PubMed  CAS  Google Scholar 

  • Schaad MC, Anderberg RJ, Carrington JC (2000) Strain-specific interaction of the tobacco etch virus NIa protein with the translation initiation factor eIF4E in the yeast two-hybrid system. Virology 273:300–306

    PubMed  CAS  Google Scholar 

  • Schaffer RL, Miller CG, Petty IT (1995) Virus and host-specific adaptations in the BL1 and BR1 genes of bipartite geminiviruses. Virology 214:330–338

    PubMed  CAS  Google Scholar 

  • Schindler U, Beckmann H, Cashmore AR (1993) HAT3.1, a novel Arabidopsis homeodomain protein containing a conserved cysteine-rich region. Plant J 4:137–150

    PubMed  CAS  Google Scholar 

  • Schmitz J, Stussi-Garaud C, Tacke E, Prufer D, Rohde W, Rohfritsch O (1997) In situ localization of the putative movement protein (pr17) from potato leafroll luteovirus (PLRV) in infected and transgenic potato plants. Virology 235:311–322

    PubMed  CAS  Google Scholar 

  • Schneider WL, Greene AE, Allison RF (1997) The carboxy-terminal two-thirds of the cowpea chlorotic mottle bromovirus capsid protein is incapable of virion formation yet supports systemic movement. J Virol 71:4862–4865

    PubMed  CAS  Google Scholar 

  • Scholthof HB, Morris TJ, Jackson AO (1993) The capsid protein gene of tomato bushy stunt virus is dispensable for systemic movement and can be replaced for localized expression of foreign genes. Mol Plant-Microbe Interact 6:309–322

    CAS  Google Scholar 

  • Scholthof HB, Scholthof K-BG, Kikkert M, Jackson AO (1995) Tomato bushy stunt virus spread is regulated by two nested genes that function in cell-to-cell movement and host-dependent systemic invasion. Virology 213:425–438

    PubMed  CAS  Google Scholar 

  • Scholthof HB (2005) Plant virus transport: motions of functional equivalence. Trends Plant Sci 10:376–382

    PubMed  CAS  Google Scholar 

  • Schwach F, Vaistij FE, Jones L, Baulcombe DC (2005) An RNA-dependent RNA-polymerase prevents meristem invasion by Potato virus X and is required for the activity but not the production of a systemic silencing signal. Plant Physiol 138:1842–1852

    PubMed  CAS  Google Scholar 

  • Shepardson S, McCrum R (1980) Extracytoplasmic tubules in leafroll-infected and leafroll-free potato leaf tissue. J Ultrastruct Res 72:47–51

    PubMed  CAS  Google Scholar 

  • Shintaku MH, Carter SA, Bao Y, Nelson RS (1996) Mapping nucleotides in the - 126kDa protein gene that control the differential symptoms induced by two strains of tobacco mosaic virus. Virology 221:218–225

    PubMed  CAS  Google Scholar 

  • Siegal A, Zaitlin M, Sehgal OP (1962) The isolation of defective tobacco mosaic virus strains. Proc Natl Acad Sci USA 48:1845–1851

    Google Scholar 

  • Simon-Buela L, Garcia-Arenal F (1999) Virus particles of cucumber green mottle mosaic tobamovirus move systemically in the phloem of infected cucumber plants. Mol Plant-Microbe Interact 12:112–118

    PubMed  CAS  Google Scholar 

  • Sit TL, Haikal PR, Callaway AS, Lommel SA (2001) A single amino acid mutation in the carnation ringspot virus capsid protein allows virion formation but prevents systemic infection. J Virol 75:9538–9542

    PubMed  CAS  Google Scholar 

  • Smith HG, Barker H (1999) The Luteoviridae. Oxford University Press, New York

    Google Scholar 

  • Soards AJ, Murphy AM, Palukaitis P, Carr JP (2002) Virulence and differential local and systemic spread of Cucumber mosaic virus in tobacco are affected by the CMV 2b protein. Mol Plant-Microbe Interact 15:647–653

    PubMed  CAS  Google Scholar 

  • Solovyev AG, Savenkov EI, Grdzelishvili VZ, Kalinina NO, Morozov SY, Schiemann J, Atabekov JG (1999) Movement of hordeivirus hybrids with exchanges in the triple gene block. Virology 253:278–287

    PubMed  CAS  Google Scholar 

  • Soosaar JL, Burch-Smith TM, Dinesh-Kumar SP (2005) Mechanisms of plant resistance to viruses. Nat Rev Microbiol 3:789–798

    PubMed  CAS  Google Scholar 

  • Soto MJ, Chen LF, Seo YS, Gilbertson RL (2005) Identification of regions of the Beet mild curly top virus (family Geminiviridae) capsid protein involved in systemic infection, virion formation and leafhopper transmission. Virology 341:257–270

    PubMed  CAS  Google Scholar 

  • Spitsin S, Steplewski K, Fleysh N, Belanger H, Mikheeva T, Shivprasad S, Dawson W, Koprowski H, Yusibov V (1999) Expression of alfalfa mosaic virus coat protein in tobacco mosaic virus (TMV) deficient in the production of its native coat protein supports long-distance movement of a chimeric TMV. Proc Natl Acad Sci USA 96:2549–2553

    PubMed  CAS  Google Scholar 

  • Stone BA, Clarke AE (1992) Chemistry and biology of 1->3-β-glucans. La Trobe University Press, Victoria, Australia

    Google Scholar 

  • Susi P, Pehu E, Lehto K (1999) Replication in the phloem is not necessary for efficient vascular transport of tobacco mosaic tobamovirus. FEBS Lett 447:121–123

    PubMed  CAS  Google Scholar 

  • Takamatsu N, Ishiakwa M, Meshi T, Okada Y (1987) Expression of bacterial chloramphenicol acetyltransferase gene in tobacco plants infected by TMV-RNA. EMBO J 6:307–311

    PubMed  CAS  Google Scholar 

  • Takeshita M, Suzuki M, Kuwata S, Takanami Y (1998) Involvement of cucumber mosaic cucumovirus RNA2 and RNA3 in viral systemic spread in radish plant. Arch Virol 143:1109–1117

    PubMed  CAS  Google Scholar 

  • Taliansky M, Roberts IM, Kalinina N, Ryabov EV, Raj SK, Robinson DJ, Oparka KJ (2003) An umbraviral protein, involved in long-distance RNA movement, binds viral RNA and forms unique, protective ribonucleoprotein complexes. J Virol 77:3031–3040

    PubMed  CAS  Google Scholar 

  • Taliansky ME, Garcia-Arenal F (1995) Role of cucumovirus capsid protein in long-distance movement within the infected plant. J Virol 69:916–922

    PubMed  CAS  Google Scholar 

  • Taliansky ME, Robinson DJ (2003) Molecular biology of umbraviruses: phantom warriors. J Gen Virol 84:1951–1960

    PubMed  CAS  Google Scholar 

  • Thompson JR, Garcia-Arenal FG (1998) The bundle sheath-phloem interface of Cucumis sativus is a boundary to systemic infection by tomato aspermy virus. Mol Plant-Microbe Interact 11:109–114

    CAS  Google Scholar 

  • Tomenius K, Clapham D, Meshi T (1987) Localization by immunogold cytochemistry of the virus coded 30 K protein in plasmodesmata of leaves infected with tobacco mosaic virus. Virology 160:363–371

    CAS  PubMed  Google Scholar 

  • Turgeon R (1989) The sink-source transition in leaves. Annu Rev Plant Physiol Plant Mol Biol 40:119–138

    Google Scholar 

  • Ueki S, Citovsky V (2001) Inhibition of post transcriptional gene silencing by non-toxic concentrations of cadmium. Plant J 28:283–291

    PubMed  CAS  Google Scholar 

  • Ueki S, Citovsky V (2002) Cadmium ion-induced glycine-rich protein inhibits systemic movement of a tobamovirus. Nat Cell Biol 4:478–485

    PubMed  CAS  Google Scholar 

  • Ueki S, Citovsky V (2005) Identification of an interactor of cadmium ion-induced glycine-rich protein involved in regulation of callose levels in plant vasculature. Proc Natl Acad Sci USA 102:12089–12094

    PubMed  CAS  Google Scholar 

  • Ueki S, Citovsky V (2006) Arrest in viral transport as the basis for plant resistance to infection. In: Loebenstein G, Carr JP (eds) Natural resistance mechanisms of plants to viruses. Springer, Berlin Heidelberg New York, pp 280–315

    Google Scholar 

  • Urcuqui-Inchima S, Haenni AL, Bernardi F (2001) Potyvirus proteins: wealth of functions. Virus Res 74:157–175

    PubMed  CAS  Google Scholar 

  • Vaewhongs AA, Lommel SA (1995) Virion formation is required for the long-distance movement of red clover necrotic mosaic virus in movement protein transgenic plants. Virology 212:607–613

    PubMed  CAS  Google Scholar 

  • van Bel AJE (2003) The phloem, a miracle of ingenuity. Plant Cell Environ 26:125–149

    Google Scholar 

  • van Bel AJE, Ehlers K, Knoblauch M (2003) Sieve elements caught in the act. Trends Plant Sci 7:126–132

    Google Scholar 

  • van der Boogaart T, Lomonossoff GP, Davies JW (1998) Can we explain RNA-mediated virus resistance by homology-dependent gene silencing? Mol Plant-Microbe Interact 11:717–723

    Google Scholar 

  • van der Kuyl AC, Neeleman L, Bol JF (1991) Complementation and recombination between alfalfa mosaic virus RNA3 mutants in tobacco plants. Virology 183:731–738

    PubMed  Google Scholar 

  • Verchot J, Driskel BA, Zhu Y, Hunger RM, Littlefield LJ (2001) Evidence that soilborne wheat mosaic virus moves long distance through the xylem in wheat. Protoplasma 218:57–66

    PubMed  CAS  Google Scholar 

  • Voinnet O, Pinto YM, Baulcombe DC (1999) Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci USA 96:14147–14152

    PubMed  CAS  Google Scholar 

  • Voinnet O (2001) RNA silencing as a plant immune system against viruses. Trends Genet 17:449–459

    PubMed  CAS  Google Scholar 

  • von Arnim A, Frischmuch T, Stanley J (1993) Detection and possible functions of African cassava mosaic virus DNA B gene products. Virology 192:264–272

    Google Scholar 

  • Waigmann E, Lucas WJ, Citovsky V, Zambryski PC (1994) Direct functional assay for tobacco mosaic virus cell-to-cell movement protein and identification of a domain involved in increasing plasmodesmal permeability. Proc Natl Acad Sci USA 91:1433–1437

    PubMed  CAS  Google Scholar 

  • Waigmann E, Ueki S, Trutnyeva K, Citovsky V (2004) The ins and outs of non-destructive cell-to-cell and systemic movement of plant viruses. Crit Rev Plant Sci 23:195–250

    CAS  Google Scholar 

  • Wang HL, Wang Y, Giesman-Cookmeyer D, Lommel SA, Lucas WJ (1998) Mutations in viral movement protein alter systemic infection and identify an intercellular barrier to entry into the phloem long-distance transport system. Virology 245:75–89

    PubMed  CAS  Google Scholar 

  • Wang JY, Chay C, Gildow FE, Gray SM (1995) Readthrough protein associated with virions of barley yellow dwarf luteovirus and its potential role in regulating the efficiency of aphid transmission. Virology 206:954–962

    PubMed  CAS  Google Scholar 

  • Wang MB, Metzlaff M (2005) RNA silencing and antiviral defense in plants. Curr Opin Plant Biol 8:216–222

    PubMed  Google Scholar 

  • Wintermantel WM, Banerjee N, Oliver JC, Paolillo DJ, Zaitlin M (1997) Cucumber mosaic virus is restricted from entering minor veins in transgenic tobacco exhibiting replicase-mediated resistance. Virology 231:248–257

    PubMed  CAS  Google Scholar 

  • Wisler GC, Li RH, Liu HY, Lowry DS, Duffus JE (1998) Tomato chlorosis virus: a new whitefly-transmitted, phloem-limited, bipartite closterovirus of tomato. Phytopathology 88:402–409

    CAS  PubMed  Google Scholar 

  • Wittmann S, Chatel H, Fortin MG, Laliberte JF (1997) Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology 234:84–92

    PubMed  CAS  Google Scholar 

  • Xie Z, Fan B, Chen C, Chen Z (2001) An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense. Proc Natl Acad Sci USA 98:6516–6521

    PubMed  CAS  Google Scholar 

  • Xiong Z, Kim KH, Giesman-Cookmeyer D, Lommel SA (1993) The roles of the red clover necrotic mosaic virus capsid and cell-to-cell movement proteins in systemic infection. Virology 192:27–32

    PubMed  CAS  Google Scholar 

  • Ziegler-Graff V, Brault V, Mutterer JD, Simonis M-T, Herrbach E, Guilley H, Richards KE, Jonard G (1996) The coat protein of beet western yellow luteovirus is essential for systemic infection but the viral gene products p29 and p19 are dispensable for systemic infection and aphid transmission. Mol Plant-Microbe Interact 9:501–510

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoko Ueki .

Editor information

Elisabeth Waigmann Manfred Heinlein

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ueki, S., Citovsky, V. (2007). Spread Throughout the Plant: Systemic Transport of Viruses. In: Waigmann, E., Heinlein, M. (eds) Viral Transport in Plants. Plant Cell Monographs, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2006_101

Download citation

Publish with us

Policies and ethics