Skip to main content

S-Nitrosylation in Plants – Spectrum and Selectivity

  • Chapter
  • First Online:
Nitric Oxide in Plant Growth, Development and Stress Physiology

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 5))

Abstract

Nitric oxide (NO) has become recognized as a key signaling molecule in plants over the last few years, but still little is known about the way in which NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation – the covalent attachment of NO to the sulfhydryl group of cysteine residues – to be one of the dominant regulation mechanisms for many animal proteins. This reversible protein modification is an important posttranslational, redox-based regulation mechanism for many proteins of different classes in animals. For plants, however, the importance of protein S-nitrosylation remained to be elucidated.

This chapter will discuss the chemistry of S-nitrosothiol formation and the release of NO from S-nitrosylated cysteine residues, as well as the specificity and regulation of S-nitrosylation. Furthermore, the identification of plant proteins as candidates for this type of protein modification, and the physiological functions of protein S-nitrosylation in plants are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achkor H, Diaz M, Fernandez MR, Biosca JA, Pares X, Martinez MC (2003) Enhanced formaldehyde detoxification by overexpression of glutathione-dependent formaldehyde dehydrogenase from Arabidopsis. Plant Physiol 132:2248–2255

    Article  PubMed  CAS  Google Scholar 

  • Akhand AA, Pu M, Senga T, Kato M, Suzuki H, Miyata T, Hamaguchi M, Nakashima I (1999) Nitric oxide controls src kinase activity through a sulfhydryl group modification-mediated Tyr-527-independent and Tyr-416-linked mechanism. J Biol Chem 274:25821–25826

    Article  PubMed  CAS  Google Scholar 

  • Ascenzi P, Colasanti M, Persichini T, Muolo M, Polticelli F, Venturini G, Bordo D, Bolognesi M (2000) Re-evaluation of amino acid sequence and structural consensus rules for cysteine-nitric oxide reactivity. Biol Chem 381:623–627

    Article  PubMed  CAS  Google Scholar 

  • Beltran B, Orsi A, Clementi E, Moncada S (2000) Oxidative stress and S-nitrosylation of proteins in cells. Br J Pharmacol 129:953–960

    Article  PubMed  CAS  Google Scholar 

  • Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16:332–341

    Article  PubMed  CAS  Google Scholar 

  • Brandish PE, Buechler W, Marletta MA (1998) Regeneration of the ferrous heme of soluble guanylate cyclase from the nitric oxide complex: acceleration by thiols and oxyhemoglobin. Biochemistry 37:16898–16907

    Article  PubMed  CAS  Google Scholar 

  • Dalle-Donne I, Giustarini D, Rossi R, Colombo R, Milzani A (2003) Reversible S-glutathionylation of Cys 374 regulates actin filament formation by inducing structural changes in the actin molecule. Free Radic Biol Med 34:23–32

    Article  PubMed  CAS  Google Scholar 

  • Dalle-Donne I, Milzani A, Giustarini D, Di Simplicio P, Colombo R, Rossi R (2000) S-NO-actin: S-nitrosylation kinetics and the effect on isolated vascular smooth muscle. J Muscle Res Cell Motil 21:171–181

    Article  PubMed  CAS  Google Scholar 

  • Danielewski O, Schultess J, Smolenski A (2005) The NO/cGMP pathway inhibits Rap 1 activation in human platelets via cGMP-dependent protein kinase I. Thromb Haemost 93:319–325

    PubMed  CAS  Google Scholar 

  • del Rio LA, Corpas FJ, Sandalio LM, Palma JM, Barroso JB (2003) Plant peroxisomes, reactive oxygen metabolism and nitric oxide. IUBMB Life 55:71–81

    Article  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  PubMed  CAS  Google Scholar 

  • Diaz M, Achkor H, Titarenko E, Martinez MC (2003) The gene encoding glutathione-dependent formaldehyde dehydrogenase/GSNO reductase is responsive to wounding, jasmonic acid and salicylic acid. FEBS Lett 543:136–139

    Article  PubMed  CAS  Google Scholar 

  • Durner J, Gow AJ, Stamler JS, Glazebrook J (1999) Ancient origins of nitric oxide signaling in biological systems. Proc Natl Acad Sci USA 96:14206–14207

    Article  PubMed  CAS  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA 95:10328–10333

    Article  PubMed  CAS  Google Scholar 

  • Eaton P, Jones ME, McGregor E, Dunn MJ, Leeds N, Byers HL, Leung KY, Ward MA, Pratt JR, Shattock MJ (2003) Reversible cysteine-targeted oxidation of proteins during renal oxidative stress. J Am Soc Nephrol 14:S290–296

    Article  PubMed  CAS  Google Scholar 

  • Eu JP, Sun J, Xu L, Stamler JS, Meissner G (2000) The skeletal muscle calcium release channel: coupled O2 sensor and NO signaling functions. Cell 102:499–509

    Article  PubMed  CAS  Google Scholar 

  • Feechan A, Kwon E, Yun BW, Wang Y, Pallas JA, Loake GJ (2005) A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci USA 102:8054–8059

    Article  PubMed  CAS  Google Scholar 

  • Fliegmann J, Sandermann H Jr (1997) Maize glutathione-dependent formaldehyde dehydrogenase cDNA: a novel plant gene of detoxification. Plant Mol Biol 34:843–854

    Article  PubMed  CAS  Google Scholar 

  • Foster MW, Stamler JS (2004) New insights into protein S-nitrosylation: Mitochondria as a model system. J Biol Chem 279:25891–25897

    Article  PubMed  CAS  Google Scholar 

  • Fratelli M, Demol H, Puype M, Casagrande S, Eberini I, Salmona M, Bonetto V, Mengozzi M, Duffieux F, Miclet E, Bachi A, Vandekerckhove J, Gianazza E, Ghezzi P (2002) Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes. Proc Natl Acad Sci USA 99:3505–3510

    Article  PubMed  CAS  Google Scholar 

  • Fratelli M, Demol H, Puype M, Casagrande S, Villa P, Eberini I, Vandekerckhove J, Gianazza E, Ghezzi P (2003) Identification of proteins undergoing glutathionylation in oxidatively stressed hepatocytes and hepatoma cells. Proteomics 3:1154–1161

    Article  PubMed  CAS  Google Scholar 

  • Gaston BM, Carver J, Doctor A, Palmer LA (2003) S-Nitrosylation signaling in cell biology. Mol Interv 3:253–263

    Article  PubMed  CAS  Google Scholar 

  • Goldstein S, Czapski G, Lind J, Merenyi G (1999) Effect of NO on the decomposition of peroxynitrite: reaction of N2O3 with ONOO. Chem Res Toxicol 12:132–136

    Article  PubMed  CAS  Google Scholar 

  • Guo F-Q, Okamoto M, Crawford MJ (2003) Identifcation of a Plant Nitric Oxide Synthase Gene Involved in Hormonal Signaling. Science 302:100–103

    Article  PubMed  CAS  Google Scholar 

  • Gupta KJ, Stoimenova M, Kaiser WM (2005) In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. J Exp Bot 56:2601–2609

    Article  PubMed  CAS  Google Scholar 

  • Haendeler J, Hoffmann J, Tischler V, Berk BC, Zeiher AM, Dimmeler S (2002) Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nat Cell Biol 4:743–749

    Article  PubMed  CAS  Google Scholar 

  • Haqqani AS, Do SK, Birnboim HC (2003) The role of a formaldehyde dehydrogenase-glutathione pathway in protein S-nitrosation in mammalian cells. Nitric Oxide 9:172–181

    Article  PubMed  CAS  Google Scholar 

  • Hara MR, Agrawal N, Kim SF, Cascio MB, Fujimuro M, Ozeki Y, Takahashi M, Cheah JH, Tankou SK, Hester LD, Ferris CD, Hayward SD, Snyder SH, Sawa A (2005) S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol 7:665–674

    Article  PubMed  CAS  Google Scholar 

  • Hausladen A, Gow A, Stamler JS (2001) Flavohemoglobin denitrosylase catalyzes the reaction of a nitroxyl equivalent with molecular oxygen. Proc Natl Acad Sci USA 98:10108–10112

    Article  PubMed  CAS  Google Scholar 

  • Henson SE, Nichols TC, Holers VM, Karp DR (1999) The ectoenzyme gamma-glutamyl transpeptidase regulates antiproliferative effects of S-nitrosoglutathione on human T and B lymphocytes. J Immunol 163:1845–1852

    PubMed  CAS  Google Scholar 

  • Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166

    Article  PubMed  CAS  Google Scholar 

  • Hogg N (2002) The biochemistry and physiology of S-nitrosothiols. Annu Rev Pharmacol Toxicol 42:585–600

    Article  PubMed  CAS  Google Scholar 

  • Hogg N, Singh RJ, Konorev E, Joseph J, Kalyanaraman B (1997) S-Nitrosoglutathione as a substrate for gamma-glutamyl transpeptidase. Biochem J 323 (Pt 2):477–481

    Google Scholar 

  • Ignarro LJ, Cirino G, Casini A, Napoli C (1999) Nitric oxide as a signaling molecule in the vascular system: an overview. J Cardiovasc Pharmacol 34:879–886

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Iwabuchi M, Ogawa K (2003) The sugar-metabolic enzymes aldolase and triose-phosphate isomerase are targets of glutathionylation in Arabidopsis thaliana: detection using biotinylated glutathione. Plant Cell Physiol 44:655–660

    Article  PubMed  CAS  Google Scholar 

  • Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH (2001) Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 3:193–197

    Article  PubMed  CAS  Google Scholar 

  • Jaffrey SR, Snyder SH (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 2001:PL1

    Article  PubMed  CAS  Google Scholar 

  • Johnson MA, Macdonald TL, Mannick JB, Conaway MR, Gaston B (2001) Accelerated S-nitrosothiol breakdown by amyotrophic lateral sclerosis mutant copper, zinc-superoxide dismutase. J Biol Chem 276:39872–39878

    Article  PubMed  CAS  Google Scholar 

  • Kaiser WM, Gupta KJ, Planchet E (2007) Higher plant mitochondria as a source for NO. In: Lamattina L, Polacco JC (eds) Nitric oxide in plant growth. Plant Cell Monographs, Vol 6. Springer, Berlin, Heidelberg, New York (in press)

    Google Scholar 

  • Kim WK, Choi YB, Rayudu PV, Das P, Asaad W, Arnelle DR, Stamler JS, Lipton SA (1999) Attenuation of NMDA receptor activity and neurotoxicity by nitroxyl anion, NO. Neuron 24:461–469

    Article  PubMed  CAS  Google Scholar 

  • Klatt P, Pineda Molina E, Perez-Sala D, Lamas S (2000) Novel application of S-nitrosoglutathione-Sepharose to identify proteins that are potential targets for S-nitrosoglutathione-induced mixed-disulphide formation. Biochem J 349:567–578

    Article  PubMed  CAS  Google Scholar 

  • Koh YH, Suzuki K, Che W, Park YS, Miyamoto Y, Higashiyama S, Taniguchi N (2001) Inactivation of glutathione peroxidase by NO leads to the accumulation of H2O2and the induction of HB-EGF via c-Jun NH2-terminal kinase in rat aortic smooth muscle cells. Faseb J 15:1472–1474

    PubMed  CAS  Google Scholar 

  • Kuncewicz T, Sheta EA, Goldknopf IL, Kone BC (2003) Proteomic analysis of S-nitrosylated proteins in mesangial cells. Mol Cell Proteomics 2:156–163

    Article  PubMed  CAS  Google Scholar 

  • Kuo WN, Kocis JM (2002) Nitration/S-nitrosation of proteins by peroxynitrite-treatment and subsequent modification by glutathione S-transferase and glutathione peroxidase. Mol Cell Biochem 233:57–63

    Article  PubMed  CAS  Google Scholar 

  • Kuo WN, Kocis JM, Mewar M (2002) Protein denitration/modification by glutathione-S-transferase and glutathione peroxidase. J Biochem Mol Biol Biophys 6:143–146

    Article  PubMed  CAS  Google Scholar 

  • Lane P, Hao G, Gross SS (2001) S-nitrosylation is emerging as a specific and fundamental posttranslational protein modification: head-to-head comparison with O-phosphorylation. Sci STKE 2001:RE1

    Article  PubMed  CAS  Google Scholar 

  • Lawler JM, Song W (2002) Specificity of antioxidant enzyme inhibition in skeletal muscle to reactive nitrogen species donors. Biochem Biophys Res Commun 294:1093–1100

    Article  PubMed  CAS  Google Scholar 

  • Leshem Y, Haramaty E (1996) The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn. foliage. Journal of Plant Physiology 148:258–263

    CAS  Google Scholar 

  • Leshem YY (2000) Nitric Oxide in Plants – Occurrence, Function and Use. Dordrecht, Netherlands

    Google Scholar 

  • Leshem YY, Wills RBH, Ku VV (1998) Evidence for the function of the free reduced gas – nitric oxide (NO.) as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol Biochem 36:825–826

    Article  CAS  Google Scholar 

  • Lind C, Gerdes R, Hamnell Y, Schuppe-Koistinen I, von Lowenhielm HB, Holmgren A, Cotgreave IA (2002) Identification of S-glutathionylated cellular proteins during oxidative stress and constitutive metabolism by affinity purification and proteomic analysis. Arch Biochem Biophys 406:229–240

    Article  PubMed  CAS  Google Scholar 

  • Lindermayr C, Saalbach G, Bahnweg G, Durner J (2006) Differential inhibition of Arabidopsis methionine adenosyltransferases by protein S-nitrosylation. J Biol Chem 281:4285–4291

    Article  PubMed  CAS  Google Scholar 

  • Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921–930

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA, Choi YB, Pan ZH, Lei SZ, Chen HS, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364:626–632

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Enright E, Sun P, Tsai SY, Mehta P, Beckman DL, Terrian DM (2002) Inactivation of annexin II tetramer by S-nitrosoglutathione. Eur J Biochem 269:4277–4286

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Hausladen A, Zeng M, Que L, Heitman J, Stamler JS (2001) A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410:490–494

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Miller MJ, Joshi MS, Thomas DD, Lancaster JR Jr (1998) Accelerated reaction of nitric oxide with O2within the hydrophobic interior of biological membranes. Proc Natl Acad Sci USA 95:2175–2179

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Ruiz A, Lamas S (2004) Detection and proteomic identification of S-nitrosylated proteins in endothelial cells. Arch Biochem Biophys 423:192–199

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Ruiz A, Lamas S (2004) S-nitrosylation: a potential new paradigm in signal transduction. Cardiovasc Res 62:43–52

    Article  PubMed  CAS  Google Scholar 

  • Mata CG, Lamattina L (2001) Nitric Oxide Induces Stomatal Closure and Enhances the Adaptive Plant Responses against Drought Stress. Plant Physiol 126:1196–1204

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto A, Comatas KE, Liu L, Stamler JS (2003) Screening for nitric oxide-dependent protein-protein interactions. Science 301:657–661

    Article  PubMed  CAS  Google Scholar 

  • Minning DM, Gow AJ, Bonaventura J, Braun R, Dewhirst M, Goldberg DE, Stamler JS (1999) Ascaris haemoglobin is a nitric oxide-activated deoxygenase. Nature 401:497–502

    Article  PubMed  CAS  Google Scholar 

  • Mohr S, Hallak H, de Boitte A, Lapetina EG, Brune B (1999) Nitric oxide-induced S-glutathionylation and inactivation of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 274:9427–9430

    Article  PubMed  CAS  Google Scholar 

  • Mohr S, Stamler JS, Brune B (1996) Posttranslational modification of glyceraldehyde-3-phosphate dehydrogenase by S-nitrosylation and subsequent NADH attachment. J Biol Chem 271:4209–4214

    Article  PubMed  CAS  Google Scholar 

  • Motohashi K, Kondoh A, Stumpp MT, Hisabori T (2001) Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proc Natl Acad Sci USA 98:11224–11229

    Article  PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hancock JT (2002) Nitric oxide is a novel component of abscisic Acid signaling in stomatal guard cells. Plant Physiol 128:13–16

    Article  PubMed  CAS  Google Scholar 

  • Nelson EJ, Connolly J, McArthur P (2003) Nitric oxide and S-nitrosylation: excitotoxic and cell signaling mechanism. Biol Cell 95:3–8

    Article  PubMed  CAS  Google Scholar 

  • Nikitovic D, Holmgren A (1996) S-nitrosoglutathione is cleaved by the thioredoxin system with liberation of glutathione and redox regulating nitric oxide. J Biol Chem 271:19180–19185

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • Perazzolli M, Dominici P, Romero-Puertas MC, Zago E, Zeier J, Sonoda M, Lamb C, Delledonne M (2004) Arabidopsis nonsymbiotic hemoglobin AHb1 modulates nitric oxide bioactivity. Plant Cell 16:2785–2794

    Article  PubMed  CAS  Google Scholar 

  • Perez-Mato I, Castro C, Ruiz FA, Corrales FJ, Mato JM (1999) Methionine adenosyltransferase S-nitrosylation is regulated by the basic and acidic amino acids surrounding the target thiol. J Biol Chem 274:17075–17079

    Article  PubMed  CAS  Google Scholar 

  • Planchet E, Jagadis Gupta K, Sonoda M, Kaiser WM (2005) Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant J 41:732–743

    Article  PubMed  CAS  Google Scholar 

  • Rhee KY, Erdjument-Bromage H, Tempst P, Nathan CF (2005) S-nitroso proteome of Mycobacterium tuberculosis: Enzymes of intermediary metabolism and antioxidant defense. Proc Natl Acad Sci USA 102:467–472

    Article  PubMed  CAS  Google Scholar 

  • Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110

    Article  PubMed  CAS  Google Scholar 

  • Ruiz F, Corrales FJ, Miqueo C, Mato JM (1998) Nitric oxide inactivates rat hepatic methionine adenosyltransferase In vivo by S-nitrosylation. Hepatology 28:1051–1057

    Article  PubMed  CAS  Google Scholar 

  • Russwurm M, Koesling D (2004) NO activation of guanylyl cyclase. Embo J 23:4443–4450

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Ueda M, Morikawa H (2002) Arabidopsis glutathione-dependent formaldehyde dehydrogenase is an S-nitrosoglutathione reductase. FEBS Lett 515:20–24

    Article  PubMed  CAS  Google Scholar 

  • Scharfstein JS, Keaney JF Jr, Slivka A, Welch GN, Vita JA, Stamler JS, Loscalzo J (1994) In vivo transfer of nitric oxide between a plasma protein-bound reservoir and low molecular weight thiols. J Clin Invest 94:1432–1439

    Article  PubMed  CAS  Google Scholar 

  • Shenton D, Grant CM (2003) Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae. Biochem J 374:513–519

    Article  PubMed  CAS  Google Scholar 

  • Smith JN, Dasgupta TP (2000) Kinetics and mechanism of the decomposition of S-nitrosoglutathione by l-ascorbic acid and copper ions in aqueous solution to produce nitric oxide. Nitric Oxide 4:57–66

    Article  PubMed  CAS  Google Scholar 

  • Sokolovski S, Blatt MR (2004) Nitric oxide block of outward-rectifying K+ channels indicates direct control by protein nitrosylation in guard cells. Plant Physiol 136:4275–4284

    Article  PubMed  CAS  Google Scholar 

  • Song JJ, Lee YJ (2003) Differential role of glutaredoxin and thioredoxin in metabolic oxidative stress-induced activation of apoptosis signal-regulating kinase 1. Biochem J 373:845–853

    Article  PubMed  CAS  Google Scholar 

  • Stamler JS (1994) Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78:931–936

    Article  PubMed  CAS  Google Scholar 

  • Stamler JS, Toone EJ, Lipton SA, Sucher NJ (1997) (S)NO signals: translocation, regulation, and a consensus motif. Neuron 18:691–696

    Article  PubMed  CAS  Google Scholar 

  • Stöhr C, Strube F, Marx G, Ullrich WR, Rockel P (2001) A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212:835–841

    Article  PubMed  Google Scholar 

  • Taldone FS, Tummala M, Goldstein EJ, Ryzhov V, Ravi K, Black SM (2005) Studying the S-nitrosylation of model peptides and eNOS protein by mass spectrometry. Nitric Oxide 13:176–187

    Article  PubMed  CAS  Google Scholar 

  • Tedeschi G, Cappelletti G, Negri A, Pagliato L, Maggioni MG, Maci R, Ronchi S (2005) Characterization of nitroproteome in neuron-like PC12 cells differentiated with nerve growth factor: Identification of two nitration sites in alpha-tubulin. Proteomics 5:2422–2432

    Article  PubMed  CAS  Google Scholar 

  • Trujillo M, Alvarez MN, Peluffo G, Freeman BA, Radi R (1998) Xanthine oxidase-mediated decomposition of S-nitrosothiols. J Biol Chem 273:7828–7834

    Article  PubMed  CAS  Google Scholar 

  • van der Vliet A, Hoen PA, Wong PS, Bast A, Cross CE (1998) Formation of S-nitrosothiols via direct nucleophilic nitrosation of thiols by peroxynitrite with elimination of hydrogen peroxide. J Biol Chem 273:30255–30262

    Article  PubMed  Google Scholar 

  • Viner RI, Williams TD, Schoneich C (1999) Peroxynitrite modification of protein thiols: oxidation, nitrosylation, and S-glutathiolation of functionally important cysteine residue(s) in the sarcoplasmic reticulum Ca-ATPase. Biochemistry 38:12408–12415

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H (2000) Nitrite-dependent nitric oxide production pathway: implications for involvement of active nitrogen species in photoinhibition in vivo. Philos Trans R Soc Lond B Biol Sci 355:1477–1488

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki D, Motohashi K, Kasama T, Hara Y, Hisabori T (2004) Target Proteins of the Cytosolic Thioredoxins in Arabidopsis thaliana. Plant Cell Physiol 45:18–27

    Article  PubMed  CAS  Google Scholar 

  • Zeidler D, Zähringer U, Gerber I, Dubery I, Hartung T, Bors W, Hutzler P, Durner J (2004) Innate immunity in Arabidopsis thaliana: Lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci USA 101:15811–15816

    Article  PubMed  CAS  Google Scholar 

  • Zsombok A, Schrofner S, Hermann A, Kerschbaum HH (2005) A cGMP-dependent cascade enhances an L-type-like Ca2+current in identified snail neurons. Brain Res 1032:70–76

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Durner .

Editor information

Lorenzo Lamattina Joseph C. Polacco

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lindermayr, C., Durner, J. (2006). S-Nitrosylation in Plants – Spectrum and Selectivity. In: Lamattina, L., Polacco, J.C. (eds) Nitric Oxide in Plant Growth, Development and Stress Physiology. Plant Cell Monographs, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2006_084

Download citation

Publish with us

Policies and ethics