Skip to main content

Endocytic Uptake of Nutrients, Cell Wall Molecules and Fluidized Cell Wall Portions into Heterotrophic Plant Cells

  • Chapter
  • First Online:
Plant Endocytosis

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 1))

Abstract

After arrival at the surface of heterotrophic cells, nutrients are taken up by these cells via endocytosis to sustain metabolic processes. Recent advances in plant endocytosis reveal that this is true for their heterotrophic cells, either cultivated in suspension cultures or for intact root apices. Importantly, sucrose appears to act as a specific stimulus for fluid-phase endocytosis. Uptake of extracellular nutrients by endocytosis is not in direct conflict with transport through membrane-bound carriers given that cell homeostasis can be better maintained if both these mechanisms operate in parallel. Besides nutrients, plant cells also accomplish internalization of cell wall molecules, such as xyloglucans and boron/calcium cross-linked pectins. Even large portions of apparently fluidized cell wall together with symbiotic bacteria can be internalized into some plant cells, suggesting that they can perform phagocytosis-like tasks despite their robust cell walls. Internalized cell wall molecules allow effective adaptation to osmotic stress, and also may serve for nutritive purposes. Plant endosomes enriched with the internalized cell wall molecules are used for new cell wall formation during plant cytokinesis. Moreover, rapid remodeling of cell walls through endosomal recycling is likely involved in opening/closing movements of stomata, and perhaps also in the formation of wall papillae during pathogen attacks and in recovery of cells from plasmolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Assaad FF, Qiu JL, Youngs H, Ehrhardt D, Zimmerli L, Kalde M, Wanner G, Peck SC, Edwards H, Ramonell K, Somerville CR, Thordal-Christensen H (2004) The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae. Mol Biol Cell 11:5118–5129

    Article  Google Scholar 

  2. Baluška F, Volkmann D, Barlow PW (2001a) A polarity crossroad in the transition growth zone of maize root apices: cytoskeletal and developmental implications. J Plant Growth Regul 20:170–181

    Google Scholar 

  3. Baluška F, Jásik J, Edelmann HG, Salajová T, Volkmann D (2001b) Latrunculin B induced plant dwarfism: plant cell elongation is F-actin dependent. Dev Biol 231:113–124

    Google Scholar 

  4. Baluška F, Cvrcková F, Kendrick-Jones J, Volkmann D (2001c) Sink plasmodesmata as gateways for phloem unloading. Myosin VIII and calreticulin as molecular determinants of sink strength? Plant Physiol 126:39–46

    Google Scholar 

  5. Baluška F, Hlavacka A, Šamaj J, Palme K, Robinson DG, Matoh T, McCurdy DW, Menzel D, Volkmann D (2002) F-actin-dependent endocytosis of cell wall pectins in meristematic root cells: insights from brefeldin A-induced compartments. Plant Physiol 130:422–431

    Article  PubMed  Google Scholar 

  6. Baluška F, Šamaj J, Hlavacka A, Kendrick-Jones J, Volkmann D (2004) Actin-dependent fluid phase endocytosis in inner cortex cells of maize root apices. J Exp Bot 396:463–473

    Article  Google Scholar 

  7. Baluška F, Volkmann D, Menzel D (2005a) Plant synapses: actin-based adhesion domains for cell-to-cell communication. Trends Plant Sci 10:106–111

    Google Scholar 

  8. Baluška F, Hlavacka A, Liners F, Schlicht M, Van Cutsem P, McCurdy D, Menzel D (2005b) Cell wall pectins and xyloglucans are internalized into dividing root cells and accumulate within cell plates during cytokinesis. Protoplasma 225:141–155

    Google Scholar 

  9. Basset B, Goodman RN, Novacky A (1977) Ultrastructure of soybean nodules. I. Release of rhizobia from infection thread. Can J Microbiol 23:573–582

    PubMed  Google Scholar 

  10. Belanger KD, Quatrano RS (2000) Membrane recycling occurs during asymmetric tip growth and cell plate formation in Fucus distichus zygotes. Protoplasma 212:24–37

    Article  Google Scholar 

  11. Bolanos L, Brewin NJ, Bonilla I (1996) Effects of boron on Rhizobium-legume cell-surface interactions and nodule development. Plant Physiol 110:1249–1256

    PubMed  Google Scholar 

  12. Bret-Harte MS, Silk WK (1995) Nonvascular, symplasmic diffusion of sucrose cannot satisfy the carbon demands of growth in the primary root tip of Zea mays L. Plant Physiol 105:19–33

    Google Scholar 

  13. Brewin NJ (2004) Plant cell wall remodelling in the Rhizobium-legume symbiosis. Crit Rev Plant Sci 23:293–316

    Article  Google Scholar 

  14. Chen MH, Citovsky V (2003) Systemic movement of a tobamovirus requires host cell pectin methylesterase. Plant J 35:386–392

    Article  PubMed  Google Scholar 

  15. Chen MH, Sheng J, Hind G, Handa AK, Citovsky V (2000) Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO J 19:913–920

    Article  PubMed  Google Scholar 

  16. Cheon CI, Lee NG, Siddique AB, Bal AK, Verma DP (1993) Roles of plant homologs of Rab1p and Rab7p in the biogenesis of the peribacteroid membrane, a subcellular compartment formed de novo during root nodule symbiosis. EMBO J 12:4125–4133

    PubMed  Google Scholar 

  17. Cholewa E, Peterson CA (2001) Detecting exodermal Casparian bands in vivo and fluid phase endocytosis in onion (Allium cepa L.) roots. Can J Bot 79:30–37

    Article  Google Scholar 

  18. Ciamporová M, Mistrík I (1993) The ultrastructural response of root cells to stressful conditions. Environm Exp Bot 33:11–26

    Article  Google Scholar 

  19. Ciamporová M, Dekánková K, Hanácková Z, Ovecka M, Baluška F (2003) Structural aspects of root hair initiation in Vicia sativa roots treated with F-actin polymerisation inhibitor latrunculin B. Plant and Soil 255:1–7

    Article  Google Scholar 

  20. Cole L, Coleman J, Kearns A, Morgan G, Hawes C (1991) The organic anion transport inhibitor, probenecid, inhibits the transport of Lucifer Yellow at the plasma membrane and the tonoplast in suspension cultured plant cells. J Cell Sci 99:545–555

    Google Scholar 

  21. Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, Huckelhoven R, Stein M, Freialdenhoven A, Somerville SC, Schulze-Lefert P (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425:973–977

    Article  PubMed  Google Scholar 

  22. Coulomb S, Coulomb S (1976) Endocytosis in Cucurbita pepo root meristems: coated vesicles, multivesicular bodies and vacuole relationship. CR Acad Sci Paris III 319:377–383

    Google Scholar 

  23. Davey MR, Cocking EC (1972) Uptake of bacteria by isolated higher plant protoplasts. Nature 239:455–456

    Article  PubMed  Google Scholar 

  24. Echeverría E (2000) Vesicle-mediated solute transport between the vacuole and the plasma membrane. Plant Physiol 123:1217–1226

    Article  PubMed  Google Scholar 

  25. Emans N, Zimmermann S, Fischer R (2002) Uptake of a fluorescent marker in plant cells sensitive to brefeldin A and wortmannin. Plant Cell 14:71–86

    Article  PubMed  Google Scholar 

  26. Escobar NM, Haupt S, Thow G, Boevink P, Chapman S, Oparka K (2003) High-throughput viral expression of cDNA-green fluorescent protein fusions reveals novel subcellular addresses and identifies unique proteins that interact with plasmodesmata. Plant Cell 15:1507–1523

    Article  PubMed  Google Scholar 

  27. Etxeberria E, González PC (2003) Evidence for a tonoplast-associated form of sucrose synthase and its potential involvement in sucrose mobilization from the vacuole. J Exp Bot 54:1407–1414

    Article  PubMed  Google Scholar 

  28. Etxeberria E, Baroja-Fernández E, Muñoz FJ, Pozueta-Romero J (2005a) Sucrose inducible endocytosis as a mechanism for nutrient uptake in heterotrophic plant cells. Plant Cell Physiol 46:474–481

    Google Scholar 

  29. Etxeberria E, González PC, Pozueta-Romero J (2005b) Sucrose transport into Citrus juice cells: evidence for an endocytic transport system. J Am Soc Hort Sci 130:269–274

    Google Scholar 

  30. Etxeberria E, González PC, Tomlinson P, Pozueta-Romero J (2005c) Existence of two parallel mechanisms for glucose uptake in heterotrophic plant cells. J Exp Bot 56:1905–1912

    Google Scholar 

  31. Felker FC, Goodwin J (1988) Sugar uptake by maize endosperm suspension cultures. Plant Physiol 88:1235–1239

    Google Scholar 

  32. Furuichi T, Mori IC, Takahashi K, Muto S (2001) Sugar-induced increase in cytosolic Ca2+in Arabidopsis thaliana whole plants. Plant Cell Physiol 42:1149–1155

    Article  Google Scholar 

  33. Geldner N (2004) The plant endosomal system–-its structure and role in signal transduction and plant development. Planta 219:547–560

    Article  PubMed  Google Scholar 

  34. Geldner N, Friml J, Stierhof Y-D, Jürgens G, Palme K (2001) Auxin-transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428

    Article  PubMed  Google Scholar 

  35. Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230

    Article  PubMed  Google Scholar 

  36. Getz HP (1991) Sucrose transport in tonoplast vesicles of red beet roots is linked to ATP hydrolysis. Planta 185:261–268

    Article  Google Scholar 

  37. Getz HP, Knawer D, Willenbrink J (1987) Transport of sugars across the plasma membrane of beet root protoplasts. Planta 171:185–196

    Article  Google Scholar 

  38. Gibson SI (2004) Sugar and phytohormone response pathways: navigating a signalling network. J Exp Bot 55:253–264

    Article  PubMed  Google Scholar 

  39. Goormachtig S, Capoen W, Holsters M (2004) Rhizobium infection: lessons from the versatile nodulation behaviour of water-tolerant legumes. Trends Plant Sci 9:518–522

    Article  PubMed  Google Scholar 

  40. Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbioosis. Ann Rev Microbiol 59:19–42

    Article  Google Scholar 

  41. Haupt S, Cowan GH, Ziegler A, Roberts AG, Oparka KJ, Torrance L (2005) Two plant-viral movement proteins traffic in the endocytic recycling pathway. Plant Cell 17:164–181

    Article  PubMed  Google Scholar 

  42. Hauser M-T, Bauer E (2000) Histochemical analysis of root meristem activity in Arabidopsis thaliana using a cyclin: GUS (β-glucuronidase) marker line. Plant and Soil 226:1–10

    Article  Google Scholar 

  43. Hawes C, Crooks K, Coleman J, Satiat-Jeunematrie B (1995) Endocytosis in plants: fact or artefact. Plant Cell Environm 18:1245–1252

    Google Scholar 

  44. Herman EM, Lamb CJ (1991) Arabinogalactan-rich glycoproteins are localized on the cell surface and in intravacuolar multivesicular bodies. Plant Physiol 98:264–272

    Google Scholar 

  45. Hillmer S, Deptam H, Robinson DG (1986) Confirmation of endocytosis in higher plant protoplasts using lectin-gold conjugates. Eur J Cell Biol 41:142–149

    Google Scholar 

  46. Hong Z, Verma DP (1994) A phosphatidylinositol 3-kinase is induced during soybean nodule organogenesis and is associated with membrane proliferation. Proc Natl Acad Sci USA 91:9617–9621

    PubMed  Google Scholar 

  47. Hubner R, Depta H, Robinson DG (1985) Endocytosis in maize root cap cells: evidence obtained using heavy metal salt solutions. Protoplasma 129:214–222

    Article  Google Scholar 

  48. Hückelhoven R, Fodor J, Preis C, Kogel KH (1999) Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with hydrogen peroxide but not with salicylic acid accumulation. Plant Physiol 119:1251–1260

    Article  PubMed  Google Scholar 

  49. Hudák J, Walles B, Vennigerholz F (1993) The transmitting tissue in Brugmansia suaveolens L.: ultrastructure of the stylar transmitting tissue. Ann Bot 71:177–186

    Article  Google Scholar 

  50. Jones L, Milne JL, Ashford D, McQueen-Mason SJ (2003) Cell wall arabinan is essential for guard cell function. Proc Natl Acad Sci USA 100:11783–11788

    Article  PubMed  Google Scholar 

  51. Kang B-H, Busse JS, Bednarek SY (2003) Members of the Arabidopsis dynamin-like gene family, ADL1A, are essential for plant cytokinesis and polarized cell growth. Plant Cell 15:899–913

    Article  PubMed  Google Scholar 

  52. Keller F (1992) Transport of stachyose and sucrose by vacuoles of Japanese artichoke (Stachys sieboldii) tubers. Plant Physiol 98:442–445

    Google Scholar 

  53. Kollmeier M, Dietrich P, Bauer CS, Horst WJ, Hedrich R (2000) Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex. A comparison between an aluminum-sensitive and an aluminum-resistant cultivar. Plant Physiol 126:397–410

    Article  Google Scholar 

  54. Lalonde S, Boles E, Hellmann H, Barker L, Patrick JW, Frommer WB, Ward JM (1999) The dual function of sugar carriers: transport and sugar sensing. Plant Cell 11:707–726

    Article  PubMed  Google Scholar 

  55. Laporte C, Vetter G, Loudes A-M, Robinson DG, Hillmer S, Stussi-Garaud C, Ritzenthaler C (2003) Involvement of the secretory pathway and the cytoskeleton in intracellular targeting and tubule assembly of Grapevine fanleaf virus movement protein in tobacco BY-2 cells. Plant Cell 15:2058–2075

    Article  PubMed  Google Scholar 

  56. Lazzaro MD, Thompson WW (1992) Endocytosis of lanthanum nitrate in the organic acid-secreting trichomes of chickpea (Cicer arietinum). Am J Bot 79:1113–1118

    Google Scholar 

  57. Lemoine R (2000) Sucrose transporters in plants: update on function and structure. Biochem Biophys Acta 1465:246–262

    Google Scholar 

  58. Majewska-Sawka A, Münster A, Rodríguez-García MI (2002) Guard cell wall: immunocytochemical detection of polysaccharide components. J Exp Bot 53:1067–1079

    Article  PubMed  Google Scholar 

  59. Muller B, Stosser M, Tardieu F (1998) Spatial distributions of tissue expansion and cell division rates are related to irradiance and to sugar content in the growing zone of maize roots. Plant Cell Environm 21:149–158

    Article  Google Scholar 

  60. Murphy AS, Bandyopadhyay A, Holstein SE, Peer WA (2005) Endocytic cycling of PM proteins. Annu Rev Plant Biol 56:221–251

    Article  PubMed  Google Scholar 

  61. Nebenführ A, Ritzenthaler C, Robinson DG (2002) Brefeldin A: deciphering an enigmatic inhibitor of secretion. Plant Physiol 130:1102–1108

    Article  PubMed  Google Scholar 

  62. Nishizawa N, Mori S (1977) Invagination of plasmalemma: its role in the absorption of macromolecules in rice roots. Plant Cell Physiol 18:767–782

    Google Scholar 

  63. Northcote DH, Davey R, Lay J (1989) Use of antisera to localize callose, xylan and arabinogalactan in the cell-plate, primary and secondary walls of plant cells. Planta 178:353–366

    Article  Google Scholar 

  64. Oparka KJ (2003) Getting the message across: how do plant cells exchange macromolecular complexes? Trends Plant Sci 9:33–41

    Article  Google Scholar 

  65. Oparka KJ, Cruz SS (2000) The great escape: phloem transport and unloading of macromolecules. Annu Rev Plant Physiol Plant Mol Biol 51:323–347

    Article  PubMed  Google Scholar 

  66. Oparka KJ, Murant EA, Wright KM, Prior DAM (1991) The drug probenecid inhibits the vacuolar accumulation of fluorescent anions in onion epidermal cells. J Cell Sci 99:557–563

    Google Scholar 

  67. Oparka KJ, Wright KM, Murant EA, Allan EJ (1993) Fluid-phase endocytosis: do plants need it? J Exp Bot 44:247–255

    Google Scholar 

  68. Oparka KJ, Prior DAM, Crawford JW (1994) Behaviour of plasma membrane, cortical ER and plasmodesmata during plasmolysis of onion epidermal cells. Plant Cell Environm 17:163–171

    Google Scholar 

  69. Ovecka M, Lichtscheidl I, Baluška F, Šamaj J, Volkmann D, Hirt H (2005) Regulation of root hair tip growth: can mitogen-activated protein kinases be taken into account? NATO Series (in press)

    Google Scholar 

  70. Reigada D, Diez-Perez I, Gorostiza P, Verdaguer A, Gomez de Aranda I, Pineda O, Vilarrasa J, Marsal J, Blasi J, Aleu J, Solsona C (2003) Control of neurotransmitter release by an internal gel matrix in synaptic vesicles. Proc Natl Acad Sci USA 100:3485–3490

    Article  PubMed  Google Scholar 

  71. Ridley BL, O'Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967

    Article  Google Scholar 

  72. Riou-Khamlichi C, Menges M, Healy JMS, Murray JAH (2000) Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression. Mol Cell Biol 20:4513–4521

    Article  PubMed  Google Scholar 

  73. Roland J-C (1973) The relationship between the plasmalemma and plant cell wall. Int Rev Cytol 36:45–92

    PubMed  Google Scholar 

  74. Roth LE, Stacey G (1989a) Bacterium release into host cells of nitrogen-fixing soybean nodules: the symbiosome membrane comes from three sources. Eur J Cell Biol 49:13–23

    Google Scholar 

  75. Roth LE, Stacey G (1989b) Cytoplasmic membrane systems involved in bacterium release into soybean nodule cells as studied with two Bradyrhizobium japonicum strains. Eur J Cell Biol 49:13–23

    Google Scholar 

  76. Russinova E, Borst J-W, Kwaaitaal M, Cano-Delgado A, Yin Y, Chory J, de Vries SC (2004) Heterodimerization and endocytosis of Arabidospis brassinosteroid receptors BRI1 and AtSERK3 (BAK1). Plant Cell 16:3216–3229

    Article  PubMed  Google Scholar 

  77. Šamaj J, Šamajová O, Peters M, Baluška F, Lichtscheidl IK, Knox JP, Volkmann D (2000) Immunolocalization of LM2 arabinogalactan-protein epitope associated with endomembranes of plant cells. Protoplasma 212:186–196

    Article  Google Scholar 

  78. Šamaj J, Ovecka M, Hlavacka A, Lecourieux F, Meskiene I, Lichtscheidl I, Lenart P, Salaj J, Volkmann D, Bögre L, Baluška F, Hirt H (2002) Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip-growth. EMBO J 21:3296–3306

    Article  PubMed  Google Scholar 

  79. Šamaj J, Baluška F, Voigt B, Schlicht M, Volkmann D, Menzel D (2004) Endocytosis, actin cytoskeleton and signalling. Plant Physiol 135:1150–1161

    Article  PubMed  Google Scholar 

  80. Šamaj J, Read ND, Volkmann D, Menzel D, Baluška F (2005) The endocytic network in plants. Trends Cell Biol 15:425–433

    Article  PubMed  Google Scholar 

  81. Samuels AL, Giddings TH, Staehelin LA (1995) Cytokinesis in tobacco BY-2 and root tip cells: a new model of cell plate formation in higher plants. J Cell Biol 130:1–13

    Article  PubMed  Google Scholar 

  82. Satiat-Jeunemaitre B, Cole L, Bourett T, Howard R, Hawes C (1996) Brefeldin A effects in plant and fungal cells: something new about vesicle trafficking? J Microsc 181:162–177

    PubMed  Google Scholar 

  83. Schulze-Lefert P (2004) Knocking on the heaven's wall: pathogenesis of and resistance to biotrophic fungi at the cell wall. Curr Opin Plant Biol 7:1–7

    Article  Google Scholar 

  84. Stadler R, Wright KM, Lauterbach C, Amon G, Gahrtz M, Feuerstein A, Oparka KJ, Sauer N (2005) Expression of GFP-fusions in Arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots. Plant J 41:319–331

    Article  PubMed  Google Scholar 

  85. Saftner RA, Daie J, Wyse R (1983) Sucrose uptake and compartmentation in sugar beet taproot tissue. Plant Physiol 72:1–6

    Google Scholar 

  86. Shevell DE, Kunkel T, Chua N-H (2000) Cell wall alteration in the Arabidopsis emb30 mutant. Plant Cell 12:2047–2059

    Article  PubMed  Google Scholar 

  87. Shope JC, DeWald DB, Mott KA (2003) Changes in surface area of intact guard cells are correlated with membrane internalization. Plant Physiol 133:1314–1321

    Article  PubMed  Google Scholar 

  88. Stefanowska M, Kuras M, Kacperska A (2002) Low temperature-induced modification in cell ultrastructure and localization of phenolics in winter oilseed rape (Brassica napus L. var. oleifera L.) leaves. Ann Bot 90:637–645

    Article  PubMed  Google Scholar 

  89. Takahashi F, Sato-Nara K, Kobayshi K, Suzuki M, Suzuki H (2003) Sugar-induced adventitious roots in Arabidopsis seedlings. J Plant Res 116:83–91

    PubMed  Google Scholar 

  90. Tanchak MA, Fowke LC (1987) The morphology of multivesicular bodies in soybean protoplasts and their role in endocytosis. Protoplasma 134:173–182

    Article  Google Scholar 

  91. Tse YC, Mo B, Hillmer S, Zhao M, Lo SW, Robinson DG, Jiang L (2004) Identification of multivesicular bodies as prevacuolar compartments in Nicotiana tabacum BY-2 cells. Plant Cell 16:672–693

    Article  PubMed  Google Scholar 

  92. Ueda T, Uemura T, Sato MH, Nakano A (2004) Functional differentiation of endosomes in Arabidopsis cells. Plant J 40:783–789

    Article  PubMed  Google Scholar 

  93. Uemura T, Ueda T, Ohniwa RL, Nakano A, Takeyasu K, Sato MH (2004) Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct Funct 29:49–65

    Article  PubMed  Google Scholar 

  94. van Spronsen PC, Bakhuizen R, van Brussel AAN, Kijne JW (1994) Cell wall degradation during infection thread formation by the root nodule bacterium Rhizobium leguminosarum is a two-step process. Eur J Cell Biol 64:88–94

    PubMed  Google Scholar 

  95. Vázquez MD (2002) Aluminum exclusion mechanism in root tips of maize (Zea mays L.): lysigeny of aluminum hyperaccumulator cells. Plant Biol 4:234–249

    Article  Google Scholar 

  96. Verma DPS (1992) Signals in root nodule organogenesis and endocytosis of Rhizobium. Plant Cell 4:373–382

    Article  PubMed  Google Scholar 

  97. Villanueva MA, Taylor J, Sui X, Griffing LR (1993) Endocytosis in plant protoplasts: visualization and quantitation of fluid-phase endocytosis using silver-enhanced bovine serum albumin-gold. J Exp Bot 44:275–281

    Google Scholar 

  98. Vincent JL, Brewin NJ (2000) Immunolocalization of a cysteine protease in vacuoles, vesicles, and symbiosomes of pea nodule cells. Plant Physiol 123:521–530

    Article  PubMed  Google Scholar 

  99. Voigt B, Timmers A, Šamaj J, Hlavacka A, Ueda T, Preuss M, Nielsen E, Mathur J, Emans N, Stenmark H, Nakano A, Baluška F, Menzel D (2005) Actin-based motility of endosomes is linked to the polar tip-growth of root hairs. Eur J Cell Biol 84:609–621

    Article  PubMed  Google Scholar 

  100. Williams LE, Lemoine R, Sauer N (2000) Sugar transporters in higher plants–-a diversity of roles and complex regulation. Trends Plant Sci 5:283–290

    Article  PubMed  Google Scholar 

  101. Yamada K, Fuji K, Shimada T, Nishimura M, Hara-Nishimura I (2005) Endosomal proteases facilitate the fusion of endosomes with vacuoles at the final step of the endocytotic patway. Plant J 41:888–898

    Article  PubMed  Google Scholar 

  102. Yano K, Matsui S, Tsuchiya T, Maeshima M, Kutsuna N, Hasezawa S, Moriyasu Y (2004) Contribution of the plasma membrane and central vacuole in the formation of autolysosomes in cultured tobacco cells. Plant Cell Physiol 45:951–957

    Article  Google Scholar 

  103. Yu Q, Hlavacka A, Matoh T, Volkmann D, Menzel D, Goldbach HE, Baluška F (2002) Short-term boron deprivation inhibits endocytosis of cell wall pectins in meristematic cells of maize and wheat root apices. Plant Physiol 130:415–421

    Article  PubMed  Google Scholar 

  104. Zuo J, Niu Q-W, Nishizawa N, Wu Y, Kost B, Chua N-H (2000) KORRIGAN, an Arabidopsis endo-1,4-β-glucanase, localizes to the cell plate by polarized targeting and is essential for cytokinesis. Plant Cell 12:1137–1152

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Irene Lichtscheidl for providing us with high-pressure freezed Drosera samples and Ursulla Mettbach for excellent technical assistance. This work was supported by a grant from the Slovak Grant Agency APVT (grant no. APVT-51-002302) and Vega (Grant Nr. 2=5085=25), Bratislava, Slovakia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to František Baluška .

Editor information

Jozef Šamaj František Baluška Diedrik Menzel

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Baluška, F., Baroja-Fernandez, E., Pozueta-Romero, J., Hlavacka, A., Etxeberria, E., Šamaj, J. Endocytic Uptake of Nutrients, Cell Wall Molecules and Fluidized Cell Wall Portions into Heterotrophic Plant Cells. In: Šamaj, J., Baluška, F., Menzel, D. (eds) Plant Endocytosis. Plant Cell Monographs, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_003

Download citation

Publish with us

Policies and ethics