Skip to main content

Biological Properties of 1H-1,2,3- and 2H-1,2,3-Triazoles

  • Chapter
  • First Online:
Chemistry of 1,2,3-triazoles

Abstract

Triazoles, which are an important class of heterocyclic compounds, have been studied for over a century and continue to attract considerable attention because of their broad range of biological activities. More recently, there has been significant interest in the development of novel triazoles with anti-inflammatory, antiplatelet, antimicrobial, antimycobacterial, antitumoral, and antiviral properties and activity against several neglected diseases. In this chapter, we covered some important biological properties of the 1H-1,2,3- and 2H-1,2,3-triazoles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yan ZY, Niu YN, Wei HL et al (2006) Combining proline and ‘click chemistry’: a class of versatile organocatalysts for the highly diastereo- and enantioselective Michael addition in water. Tetrahedron Asymmetry 17:3288–3293. doi:10.1016/j.tetasy.2006.12.003

    CAS  Google Scholar 

  2. Chandrasekhar S, Kumar TP, Haribabu K et al (2010) Hydroxyphthalimide allied triazole-pyrrolidine catalyst for asymmetric Michael additions in water. Tetrahedron Asymmetry 21:2372–2375. doi:10.1016/j.tetasy.2010.08.012

    CAS  Google Scholar 

  3. Chandrasekhar S, Kumar TP, Haribabu K et al (2010) Synthesis of hybrid 1,2,3-triazolo-δ-lactams/lactones using Huisgen [3+2] cycloaddition ‘click-chemistry’ in water. Tetrahedron Asymmetry 21:352–355. doi:10.1016/j.tetasy.2010.02.002

    Google Scholar 

  4. Zhao YB, Zhang LW, Wu LY et al (2008) Silica-supported pyrrolidine-triazole, an insoluble, recyclable organocatalyst for the enantioselective Michael addition of ketones to nitroalkenes. Tetrahedron Asymmetry 19:1352–1355. doi:10.1016/j.tetasy.2008.05.011

    CAS  Google Scholar 

  5. Zammit CM, Wills M (2013) Use of triazole-ring formation to attach a Ru/TsDPEN complex for asymmetric transfer hydrogenation to a soluble polymer. Tetrahedron Asymmetry 24:844–852. doi:10.1016/j.tetasy.2013.05.022

    CAS  Google Scholar 

  6. Yoshida Y, Takizawa S, Sasai H (2012) Design and synthesis of spiro bis(1,2,3-triazolium) salts as chiral ionic liquids. Tetrahedron Asymmetry 23:843–851. doi:10.1016/j.tetasy.2012.06.007

    CAS  Google Scholar 

  7. Phillips OA, Udo EE, Abdel-Hamid ME et al (2009) Synthesis and antibacterial activity of novel 5-(4-methyl-1H-1,2,3-triazole) methyl oxazolidinones. Eur J Med Chem 44:3217–3227. doi:10.1016/j.ejmech.2009.03.024

    CAS  Google Scholar 

  8. Ferreira VF, da Rocha DR, da Silva FC et al (2013) Novel 1H–1,2,3-, 2H–1,2,3-, 1H–1,2,4- and 4H–1,2,4-triazole derivatives: a patent review (2008–2011). Expert Opin Ther Pat 23:319–331. doi:10.1517.13543776.2013.749862

    CAS  Google Scholar 

  9. Mandal SK, Saha D, Jain VK et al (2010) Sythesis and antitubercular activity of some triazole derivatives of propyl gallate. Int J Pharm Sci Res 1:465–472

    CAS  Google Scholar 

  10. Tan SL, Pause A, Shi V et al (2002) Hepatitis C Therapeutics: Current status and emerging Strategies. Nature Rev Drug Discov 1:867–881. doi:10.1038/nrd937

    CAS  Google Scholar 

  11. Prusiner P, Sundaralingam M (1973) A new class of synthetic nucleoside analogues with broad-spectrum antiviral properties. Nature New Biol 244:116–118. doi:10.1038/newbio244116a0

    CAS  Google Scholar 

  12. Prusiner P, Sundaralingam M (1976) The crystal and molecular structures of two polymorphic crystalline forms of virazole (1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide). A new synthetic broad sprectrum antiviral agent. Acta Crystallogr B32:419–426. doi:10.1107/S0567740876003154

    CAS  Google Scholar 

  13. Smith RA, Knight V, Smith JAD (eds) (1984) Clinical applications of ribavirin. Academic, New York

    Google Scholar 

  14. Sidwell RW, Revankar GR, Robins RK (1985) Ribavirin: review of a broad-spectrum antiviral agent. In: Shugar D (ed) Viral chemotherapy. Pergamon, New York, pp 49–108

    Google Scholar 

  15. Melo JOF, Donnici CL, Augusti R et al (2006) Heterociclos 1,2,3 triazólicos: histórico, métodos de preparação, aplicações e atividades farmacológicas. Quim Nova 29:569–579. doi:10.1590/S0100-40422006000300028

    CAS  Google Scholar 

  16. Aufort M, Herscovici J, Bouhours P et al (2008) Synthesis and antibiotic activity of a small molecules library of 1,2,3-triazole derivatives. Bioorg Med Chem Lett 18:1195–1198. doi:10.1016/j.bmcl.2007.11.111

    CAS  Google Scholar 

  17. Pereira D, Fernandes P (2011) Synthesis and antibacterial activity of novel 4-aryl-[1,2,3]-triazole containing macrolides. Bioorg Med Chem Lett 21:510–513. doi:10.1016/j.bmcl.2010.10.091

    CAS  Google Scholar 

  18. Lima-Neto RG, Cavalcante NNM, Srivastava RM et al (2012) Synthesis of 1,2,3-triazole derivatives and in vitro antifungal evaluation on candida strains. Molecules 17:5882–5892. doi:10.3390/molecules17055882

    CAS  Google Scholar 

  19. Kategaonkar AH, Shinde PV, Kategaonkar AH et al (2010) Synthesis and biological evaluation of new 2-chloro-3-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)quinoline derivatives via click chemistry approach. Eur J Med Chem 45:3142–3146. doi:10.1016/j.ejmech.2010.04.002

    CAS  Google Scholar 

  20. Shalini K, Kumar N, Drabu S (2011) Advances in synthetic approach to and antifungal activity of triazoles. Beilstein J Org Chem 7:668–677. doi:10.3762/bjoc.7.79

    CAS  Google Scholar 

  21. da Silva FC, de Souza MCBV, Frugulhetti ICPP et al (2009) Synthesis, HIV-RT inhibitory activity and SAR of 1-benzyl-1H-1,2,3-triazole derivatives of carbohydrates. Eur J Med Chem 44:373–383. doi:10.1016/j.ejmech.2008.02.047

    Google Scholar 

  22. Whiting M, Tripp JC, Lin Y-C et al (2006) Rapid discovery and structure-activity profiling of novel inhibitors of human immunodeficiency virus type 1 protease enabled by the copper(I)-catalyzed synthesis of 1,2,3-triazoles and their further functionalization. J Med Chem 49:7697–7710. doi:10.1021/jm060754

    CAS  Google Scholar 

  23. Leaver DJ, Dawson RM, White JM et al (2011) Synthesis of 1,2,3-triazole linked galactopyranosides and evaluation of cholera toxin inhibition. Org Biomol Chem 9:8465–8474. doi:10.1039/c1ob06317k

    CAS  Google Scholar 

  24. Im C, Maiti SN, Micetich RG et al (1994) Synthesis and beta-lactamase inhibitory activity of 6-[(1-heteroarylthioethyl-1,2,3-triazol-4-yl)-methylene]penam sulfones. J Antibiot 47:1030–1040. doi:10.7164/antibiotics.47.1030

    CAS  Google Scholar 

  25. Palhagen S, Canger R, Henriksen O et al (2001) Rufinamide: a double-blind, placebo-controlled proof of principle trial in patients with epilepsy. Epilepsy Res 43:115–124. doi:10.1016/S0920-1211(00)00185-6

    CAS  Google Scholar 

  26. Cunha AC, Figueiredo JM, Tributino JLM et al (2003) Antiplatelet properties of novel N-substituted-phenyl-1,2,3-triazole-4-acylhydrazone derivatives. Bioorg Med Chem 11:2051–2059. doi:10.1016/S0968-0896(03)00055-5

    CAS  Google Scholar 

  27. Jordão AK, Ferreira VF, Lima ES et al (2009) Synthesis, antiplatelet and in silico evaluations of novel N-substituted-phenylamino-5-methyl-1H-1,2,3-triazole-4-carbohydrazides. Bioorg Med Chem 17:3713–3719. doi:10.1016/j.bmc.2009.03.053

    Google Scholar 

  28. Menegatti R, Cunha AC, Ferreira VF et al (2003) Design, synthesis and pharmacological profile of novel dopamine D2 receptor ligands. Bioorg Med Chem 11:4807–4813. doi:10.1016/S0968-0896(03)00487-5

    CAS  Google Scholar 

  29. Biagi G, Dell’Omodarme G, Ferretti M et al (1990) Studies on 1,2,3-triazole derivatives as in vitro inhibitors of prostaglandin synthesis. Farmaco 45:1181–1192

    CAS  Google Scholar 

  30. Pelcman B, Sanin A, Nilsson P et al (2009) Triazole compounds as lipoxygenase inhibitors. US Patent 2009/0186918 A1, 23 July 2009

    Google Scholar 

  31. Assis SPO, Silva MT, Oliveira RN et al (2012) Synthesis and anti-inflammatory activity of new alkyl-substituted phthalimide 1H-1,2,3-triazole derivatives. Scientific World J 2012:1–7. doi:10.1100.2012.9259.5

    Google Scholar 

  32. Shafi S, Alam MM, Mulakayala N et al (2012) Synthesis of novel 2-mercapto benzothiazole and 1,2,3-triazole based bis-heterocycles: Their anti-inflammatory and anti-nociceptive activities. Eur J Med Chem 49:324–333. doi:10.1016/j.ejmech.2012.01.032

    CAS  Google Scholar 

  33. Biagi G, Dell’Omodarme G, Ferretti M et al (1992) Structure-activity studies on a 1,2,3-triazole derivative, a potent in vitro inhibitor of prostaglandin synthesis: the role of the heterocyclic ring. Farmaco 47:335–344

    CAS  Google Scholar 

  34. Biagi G, Ferretti M, Giorgi I et al (1993) 1,2,3-Triazole[4,5-d]pyridazines–I. Analogues of prostaglandin synthesis inhibitors. Farmaco 48:1159–1165

    CAS  Google Scholar 

  35. Buckle DR, Rockell CJ, Smith H et al (1984) Studies on 1,2,3-triazoles. 10. Synthesis and antiallergic properties of 9-oxo-1H,9H-benzothiopyrano[2,3-d]-1,2,3-triazoles and their S-oxides. J Med Chem 27:223–227. doi:10.1021/jm00368a021

    CAS  Google Scholar 

  36. Buckle DR, Rockell CJ, Smith H et al (1986) Studies on 1,2,3-triazoles. 13. (Piperazinylalkoxy) [1]benzopyrano[2,3-d]-1,2,3-triazol-9(1H)-ones with combined H1-antihistamine and mast cell stabilizing properties. J Med Chem 29:2262–2267. doi:10.1021/jm00161a022

    CAS  Google Scholar 

  37. Boechat N, Ferreira VF, Ferreira SB et al (2011) Novel 1,2,3-triazole derivatives for use against Mycobacterium tuberculosis H37Rv (ATCC 27294) strain. J Med Chem 54:5988–5999. doi:10.1021/jm2003624

    CAS  Google Scholar 

  38. Jordão AK, Sathler PC, Ferreira VF et al (2011) Synthesis, antitubercular activity, and SAR study of N-substituted-phenylamino-5-methyl-1H-1,2,3-triazole-4-carbohydrazides. Bioorg Med Chem 19:5605–5611. doi:10.1016/j.bmc.2011.07.035

    Google Scholar 

  39. Ferreira ML, de Souza MVN, Wardell SMSV et al (2010) Synthesis and antitubercular evaluation of new bis-1,2,3-triazoles derived from D-mannitol. J Carbohydr Chem 29:265–274. doi:10.1080.07328303.2010.511749

    CAS  Google Scholar 

  40. Wang X-L, Wan K, Zhou C-H (2010) Synthesis of novel sulfanilamide-derived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities. Eur J Med Chem 45:4631–4639. doi:10.1016/j.ejmech.2010.07.031

    CAS  Google Scholar 

  41. Reddy LVR, Reddy PV, Mishra NN et al (2010) Synthesis and biological evaluation of glycal-derived novel tetrahydrofuran 1,2,3-triazoles by ‘click’ chemistry. Carbohydr Res 345:1515–1521. doi:10.1016/j.carres.2010.03.031

    CAS  Google Scholar 

  42. Santos FC, Castro HC, Lourenço MC et al (2012) Tuberculosis: finding a new potential antimycobacterium derivative in a aldehyde-arylhydrazone-oxoquinoline series. Curr Microbiol 65:455–460. doi:10.1007/s00284-012-0176-6

    CAS  Google Scholar 

  43. Jordão AK, Afonso PP, Ferreira VF et al (2009) Antiviral evaluation of N-amino-1,2,3-triazoles against Cantagalo virus replication in cell culture. Eur J Med Chem 44:3777–3783. doi:10.1016/j.ejmech.2009.04.046

    Google Scholar 

  44. Kelley JL, Koble CS, Davis RG et al (1995) 1-(Fluorobenzyl)-4-amino-1H-1,2,3-triazolo[4,5-c]pyridines: synthesis and anticonvulsant activity. J Med Chem 38:4131–4134. doi:10.1021/jm00020a030

    CAS  Google Scholar 

  45. Junior ENS, de Moura MABF, Pinto AV et al (2009) Cytotoxic, trypanocidal activities and physicochemical parameters of nor-β-lapachone-based 1,2,3-triazoles. J Braz Chem Soc 20:635–643. doi:10.1590/S0103-50532009000400007

    Google Scholar 

  46. Bakunov SA, Bakunova SM, Wenzler T et al (2010) Synthesis and antiprotozoal activity of cationic 1,4-diphenyl-1H-1,2,3-triazoles. J Med Chem 53:254–272. doi:10.1021/jm901178d

    CAS  Google Scholar 

  47. Ferreira SB, Costa MS, Boechat N (2007) Synthesis and evaluation of new difluoromethyl azoles as antileishmanial agents. Eur J Med Chem 42:1388–1395. doi:10.1016/j.ejmech.2007.02.020

    CAS  Google Scholar 

  48. Tahghighi A, Razmi S, Mahdavi M et al (2012) Synthesis and anti-leishmanial activity of 5-(5-nitrofuran-2-yl)-1,3,4-thiadiazol- 2-amines containing N-[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl] moieties. Eur J Med Chem 50:124–128. doi:10.1016/j.ejmech.2012.01.046

    CAS  Google Scholar 

  49. Poulsen SA, Wilkinson BL, Innocenti A et al (2008) Inhibition of human mitochondrial carbonic anhydrases VA and VB with para-(4-phenyltriazole-1-yl)-benzenesulfonamide derivatives. Bioorg Med Chem Lett 18:4624–4627. doi:10.1016/j.bmcl.2008.07.010

    CAS  Google Scholar 

  50. Hou DR, Alam S, Kuan TC et al (2009) 1,2,3-Triazole derivatives as new cannabinoid CB1 receptor antagonists. Bioorg Med Chem Lett 19:1022–1025. doi:10.1016/j.bmcl.2008.11.029

    CAS  Google Scholar 

  51. Siles R, Kawasaki Y, Ross P et al (2011) Synthesis and biochemical evaluation of triazole/tetrazole-containing sulfonamides against thrombin and related serine proteases. Bioorg Med Chem Lett 21:5305–5309. doi:10.1016/j.bmcl.2011.07.023

    CAS  Google Scholar 

  52. Monceaux CJ, Hirata-Fukae C, Lam PC et al (2011) Triazole-linked reduced amide isosteres: an approach for the fragment-based drug discovery of anti-Alzheimer s BACE1 inhibitors. Bioorg Med Chem Lett 21:3992–3996. doi:10.1016/j.bmcl.2011.05.007

    CAS  Google Scholar 

  53. Wuest F, Tang X, Kniess T et al (2009) Synthesis and cyclooxygenase inhibition of various (aryl-1,2,3-triazole-1-yl)-methanesulfonylphenyl derivatives. Bioorg Med Chem 17:1146–1151. doi:10.1016/j.bmc.2008.12.032

    CAS  Google Scholar 

  54. Yoon J, Cho L, Lee SK et al (2011) Syntheses of 1,2,3-triazolyl salicylamides with inhibitory activity on lipopolysaccharide-induced nitric oxide production. Bioorg Med Chem Lett 21:1953–1957. doi:10.1016/j.bmcl.2011.02.034

    CAS  Google Scholar 

  55. Jiang Y, Hansen TV (2011) Isatin 1,2,3-triazoles as potent inhibitors against caspase-3. Bioorg Med Chem Lett 21:1626–1629. doi:10.1016/j.bmcl.2011.01.110

    CAS  Google Scholar 

  56. Bahadoor A, Castro AC, Chan LK et al (2011) Triazoles as inhibitors of fatty acid synthase. US Patent 2011/0274654 A1, 10 Nov 2011

    Google Scholar 

  57. Lo Conte M, Marra A, Chambery A et al (2010) Modular approach to triazole-linked 1,6-α-D-oligomannosides to the discovery of inhibitors of Mycobacterium tuberculosis cell wall synthetase. J Org Chem 75:6326–6336. doi:10.1021/jo100928g

    CAS  Google Scholar 

  58. Hinou H, Miyoshi R, Takasu Y et al (2011) A strategy for neuraminidase inhibitors using mechanism-based labeling information. Chem Asian J 6:1048–1056. doi:10.1002/asia.201000594

    CAS  Google Scholar 

  59. Kai H, Hinou H, Nishimura SI (2012) Aglycone-focused randomization of 2-difluoromethylphenyl-type sialoside suicide substrates for neuraminidases. Bioorg Med Chem 20:2739–2746. doi:10.1016/j.bmc.2012.02.001

    CAS  Google Scholar 

  60. Campos VR, Abreu PA, Castro HC et al (2009) Synthesis, biological, and theoretical evaluations of new 1,2,3-triazoles against the hemolytic profile of the Lachesis muta snake venom. Bioorg Med Chem 17:7429–7434. doi:10.1016/j.bmc.2009.09.031

    CAS  Google Scholar 

  61. Tong W, Wu JC, Sandstrom A et al (1990) Synthesis of new 2′,3′-dideoxy-2′,3′-α-fused-heterocyclic uridines, & some 2′, 3′-ene-2′-substituted uridines from easily accessible 2′,3′- ene-3′phenylselenonyl uridine. Tetrahedron 46:3037–3060. doi:10.1016/S0040-4020(01)88395-2

    CAS  Google Scholar 

  62. Domingos TFS, Moura LA, Carvalho C et al (2013) Antivenom effects of 1,2,3-triazoles against Bothrops jararaca and Lachesis muta snakes. BioMed Res Int 2013:1–7. doi:10.1155.2013.2942.9

    Google Scholar 

  63. Borgati TF, Alves RB, Teixeira RR et al (2013) Synthesis and phytotoxic activity of 1,2,3-triazole derivatives. J Braz Chem Soc 24:953–961. doi:10.5935.0103.5053.20130121

    CAS  Google Scholar 

  64. Raj R, Singh P, Singh P et al (2013) Azide-alkyne cycloaddition en route to 1H-1,2,3-triazole-tethered 7-chloroquinoline-isatin chimeras: Synthesis and antimalarial Evaluation. Eur J Med Chem 62:590–596. doi:10.1016/j.ejmech.2013.01.032

    CAS  Google Scholar 

  65. Therin C, Levesque RC (2000) Molecular basis of antibiotic resistance and β-lactamase inhibition by mechanism-based inactivators: Perspectives and future directions. FEMS Microbiol Rev 24:251–262

    Google Scholar 

  66. Khan FY, Elhiday A, Khudair IF et al (2012) Evaluation of the use of piperacillin/tazobactam (Tazocin®) at Hamad General Hospital, Qatar: Are there unjustified prescriptions? Infect Drug Resist 5:17–21. doi:10.2147/IDR.S27965

    CAS  Google Scholar 

  67. Blackwell CC, Freimer EH, Tuke GC (1976) In vitro evaluation of the new oral cephalosporin cefatrizine: comparison with other cephalosporins. Antimicrob Agents Chemother 10:288–292. doi:10.1128/AAC.10.2.288

    CAS  Google Scholar 

  68. Corrado C, Flugy AM, Taverna S et al (2012) Carboxyamidotriazole-orotate inhibits the growth of imatinib-resistant chronic myeloid leukaemia cells and modulates exosomes-stimulated angiogenesis. PLoS One 7:e42310. doi:10.1371/journal.pone.0042310

    CAS  Google Scholar 

  69. Agalave SG, Maujan SR, Pore VS (2011) Click chemistry: 1,2,3-Triazoles as pharmacophores. Chem Asian J 6:2696–2718. doi:10.1002/asia.201100432

    CAS  Google Scholar 

  70. Das K, Bauman JD, Rim AS et al (2011) Crystal structure of tert-butyldimethylsilyl-spiroamino oxathioledioxide-thymine (TSAO-T) in complex with HIV-1 reverse transcriptase (RT) redefines the elastic limits of the non-nucleoside inhibitor-binding pocket. J Med Chem 54:2727–2737. doi:10.1021/jm101536x

    CAS  Google Scholar 

  71. Pérez-Castro I, Caamaño O, Fernández F et al (2007) Synthesis of 4-substituted-1,2,3-triazole carbanucleoside analogues of ribavirin via click chemistry. Org Biomol Chem 5:3805–3813. doi:10.1039/B710348D

    Google Scholar 

  72. Lahann J (ed) (2009) Click chemistry for biotechnology and materials science. Wiley, Michigan. doi:10.1002.978047074.8.2

    Google Scholar 

  73. Wang T, Hu XC, Huang XJ et al (2012) Efficient synthesis of functionalized 1,2,3-Triazoles by catalyst-free 1,3-dipolar cycloaddition of nitroalkenes with sodium azide. J Braz Chem Soc 23:1119–1123. doi:10.1590/S0103-50532012000600017

    CAS  Google Scholar 

  74. Fiandanese V, Maurantonio S, Punzi A et al (2012) A general procedure for the synthesis of alkyl- and arylethynyl-1,2,3-triazole-fused dihydroisoquinolines. Org Biomol Chem 10:1186–1195. doi:10.1039/c1ob06701j

    CAS  Google Scholar 

  75. Benhaoua C (2012) New 1,2,3 triazole iminosugars derivates using click chemistry. Int J Carbohydr Chem 2012:1–10. doi:10.1155.2012.3945.4

    Google Scholar 

  76. Yap AH, Weinreb SM (2006) β-Tosylethylazide: a useful synthon for preparation of N-protected 1,2,3-triazoles via click chemistry. Tetrahedron Lett 47:3035–3038. doi:10.1016/j.tetlet.2006.03.020

    CAS  Google Scholar 

  77. Silva BNM, Silva BV, da Silva FC et al (2013) Synthesis of novel isatin-type 5′-(4-alkyl/aryl-1H-1,2,3-triazoles) via 1,3-dipolar cycloaddition reactions. J Braz Chem Soc 24:179–183. doi:10.5935.0103.5053.20130023

    CAS  Google Scholar 

  78. da Silva MT, de Oliveira RN, Valença WO et al (2012) Synthesis of N-substituted phthalimidoalkyl 1H-1,2,3-triazoles: a molecular diversity combining click chemistry and ultrasound irradiation. J Braz Chem Soc 23:1839–1843. doi:10.1590/S0103-50532012005000053

    Google Scholar 

  79. Barbosa FCG, de Oliveira RN (2011) Synthesis of a new class of triazole-linked benzoheterocycles via 1,3-dipolar cycloaddition. J Braz Chem Soc 22:592–597. doi:10.1590/S0103-50532011000300025

    CAS  Google Scholar 

  80. Huisgen R (1963) 1.3-Dipolare cycloadditionen rückschau und ausblick. Angew Chem 75:604–637. doi:10.1002/ange.19630751304

    CAS  Google Scholar 

  81. Huisgen R (1963) Kinetik und mechanismus 1.3-dipolarer cycloadditionen. Angew Chem 75:742–754. doi:10.1002/ange.19630751603

    CAS  Google Scholar 

  82. Huisgen R (1963) Kinetics and mechanism of 1,3-dipolar cycloadditions. Angew Chem Int Ed Engl 2:633–645. doi:10.1002/anie.196306331

    Google Scholar 

  83. Kolb HC, Sharpless KB (2003) The growing impact of click chemistry on drug discovery. Drug Discov Today 8:1128–1137. doi:10.1016/S1359-6446(03)02933-7

    CAS  Google Scholar 

  84. Wu P, Fokin VV (2007) Catalytic azide-alkyne cycloaddition: reactivity and applications. Aldrichim Acta 40:7–17

    CAS  Google Scholar 

  85. Zhang L, Chen X, Xue P et al (2005) Ruthenium-catalyzed cycloaddition of alkynes and organic azides. J Am Chem Soc 127:15998–15999. doi:10.1021/ja054114s

    CAS  Google Scholar 

  86. Dondoni A (2007) Triazole: the keystone in glycosylated molecular architectures constructed by a click reaction. Chem Asian J 2:700–708. doi:10.1002/asia.200700015

    CAS  Google Scholar 

  87. Freitas LBO, Ruela FA, Pereira GR et al (2011) A Reação “Click” na Síntese De 1,2,3-Triazóis: Aspectos Químicos e Aplicações. Quim Nova 34:1791–1804. doi:10.1590/S0100-40422011001000012

    CAS  Google Scholar 

  88. Zarei RA, Khazdooz L, Hajipour AR et al (2012) Microwave-assisted click chemistry synthesis of 1,2,3-triazoles from aryldiazonium silica sulfates in water. Synthesis 3353–3360. doi:10.1055/s-0032-1316783

    Google Scholar 

  89. Jlalia I, Meganem F, Herscovici J et al (2009) “Flash” solvent-free synthesis of triazoles using a supported catalyst. Molecules 14:528–539. doi:10.3390/molecules14010528

    CAS  Google Scholar 

  90. Martinelli M, Milcent T, Ongeri S et al (2008) Synthesis of new triazole-based trifluoromethyl scaffolds. Beilstein J Org Chem 4:1–4. doi:10.3762/bjoc.4.19

    Google Scholar 

  91. Bock VD, Hiemstra H, Van Maarseveen JH (2006) CuI-catalyzed alkyne–azide “click” cycloadditions from a mechanistic and synthetic perspective. Eur J Org Chem 2006:51–68. doi:10.1002/ejoc.200500483

    Google Scholar 

  92. MacDonald JP, Badillo JJ, Arevalo GE et al (2012) Catalytic stereoselective synthesis of diverse oxindoles and spirooxindoles from isatins. ACS Comb Sci 14:285–293. doi:10.1021/co300003c

    CAS  Google Scholar 

  93. Aragão-Leoneti V, Campo VL, Gomes AS et al (2010) Application of copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) ‘click chemistry’ in carbohydrate drug and neoglycopolymer synthesis. Tetrahedron 66:9475–9492. doi:10.1016/j.tet.2010.10.001

    Google Scholar 

  94. Junior ENS, Guimarães TT, Menna-Barreto RF et al (2010) The evaluation of quinonoid compounds against Trypanosoma cruzi: synthesis of imidazolic anthraquinones, nor-beta-lapachone derivatives and beta-lapachone-based 1,2,3-triazoles. Bioorg Med Chem 18:3224–3230. doi:10.1016/j.bmc.2010.03.029

    Google Scholar 

  95. Zhang F, Moses JE (2009) Benzyne click chemistry with in situ generated aromatic azides. Org Lett 11:1587–1590. doi:10.1021/ol9002338

    CAS  Google Scholar 

  96. Beckmann HS, Möller HM, Wittmann V (2012) High-affinity multivalent wheat germ agglutinin ligands by one-pot click reaction. Beilstein J Org Chem 8:819–826. doi:10.3762/bjoc.8.91

    CAS  Google Scholar 

  97. Zhang J, Jin G, Xiao S (2013) Novel synthesis of 1,4,5-trisubstituted 1,2,3-triazoles via a one-pot three-component reaction of boronic acids, azide, and active methylene ketones. Tetrahedron 69:2352–2356. doi:10.1016/j.tet.2012.12.086

    CAS  Google Scholar 

  98. Angell YL, Burgess K (2007) Peptidomimetics via copper-catalyzed azide-alkyne cycloadditions. Chem Soc Rev 36:1674–1689. doi:10.1039/B701444A

    CAS  Google Scholar 

  99. Pedersen DS, Abell A (2011) 1,2,3-Triazoles in peptidomimetic chemistry. Eur J Org Chem 2011:2399–2411. doi:10.1002/ejoc.201100157

    Google Scholar 

  100. Chrysina ED, Bokor E, Alexacou KM (2009) Amide-1,2,3-triazole bioisosterism: the glycogen phosphorylase case. Tetrahedron Asymmetry 20:733–740. doi:10.1016/j.tetasy.2009.03.021

    CAS  Google Scholar 

  101. Bock VD, Speijer D, Hiemstra H et al (2007) 1,2,3-Triazoles as peptide bond isosteres: synthesis and biological evaluation of cyclotetrapeptide mimics. Org Biomol Chem 5:971–975. doi:10.1039/b616751a

    CAS  Google Scholar 

  102. Horne WS, Yadav MK, Stout CD et al (2004) Heterocyclic peptide backbone modifications in an alpha-helical coiled coil. J Am Chem Soc 126:15366–15367. doi:10.1021/ja0450408

    CAS  Google Scholar 

  103. Bezouska K (2002) Design, functional evaluation and biomedical applications of carbohydrate dendrimers (glycodendrimers). Rev Mol Biotechnol 90:269–290. doi:10.1016/S1389-0352(01)00064-2

    CAS  Google Scholar 

  104. Vatmurge NS, Hazra BG, Pore VS et al (2008) Synthesis and antimicrobial activity of beta-lactam-bile acid conjugates linked via triazole. Bioorg Med Chem Lett 18:2043. doi:10.1016/j.bmcl.2008.01.102

    CAS  Google Scholar 

  105. Whiting M, Muldoon J, Lin YC et al (2006) Inhibitors of HIV-1 protease by using in situ click chemistry. Angew Chem Int Ed 45:1435–1439. doi:10.1002/anie.200502161

    CAS  Google Scholar 

  106. Sharma P, Kumar A, Upadhyay S et al (2010) A novel approach to the synthesis of 1,2,3 triazoles and their SAR studies. Med Chem Res 19:589–602. doi:10.1007/s00044-009-9215-7

    CAS  Google Scholar 

  107. Košmrlj J (ed) (2012) Click triazoles. Springer, Berlin Heidelberg

    Google Scholar 

  108. Kamijo S, Jin T, Huo Z et al (2002) Regiospecific synthesis of 2-allyl-1,2,3-triazoles by palladium-catalyzed 1,3-dipolar cycloaddition. Tetrahedron Lett 43:9707–9710. doi:10.1016/S0040-4039(02)02206-2

    CAS  Google Scholar 

  109. Liu Y, Yan W, Chen Y et al (2008) Efficient synthesis of N-2-Aryl-1,2,3-Triazole fluorophores via post-triazole arylation. Org Lett 10:5389–5392. doi:10.1021/ol802246q

    CAS  Google Scholar 

  110. Ghoslan SAS, Abdelhamid IAA, Ibrahin HM et al (2006) Studies with 2-arylhydrazonitriles: a new convenient synthesis of 2,4-disubstituted- 1,2,3-triazole-5-amines. Arkivoc XV:53–60

    Google Scholar 

  111. Kalisiak J, Sharpless KB, Fokin VV (2008) Efficient synthesis of 2-substituted-1,2,3-triazoles. Org Lett 10:3171–3174. doi:10.1021/ol8006748

    CAS  Google Scholar 

  112. Jiang Y, Kuang C (2013) Recent advances in the synthesis of 1-monosubstituted 1,2,3-triazoles. Mini Rev Med Chem 13:713–719. doi:10.2174.138955751131305.0.8

    CAS  Google Scholar 

  113. Koszytkowska-Stawinska M, Mironiuk-Puchalska E, Rowicki T (2012) Synthesis of 1,2,3-triazolo-nucleosides via the post-triazole N-alkylation. Tetrahedron 68:214–225. doi:10.1016/j.tet.2011.10.067

    CAS  Google Scholar 

  114. Caliendo G, Fiorino F, Grieco P et al (1999) Preparation and local anaesthetic activity of benzotriazinone and benzoyltriazole derivatives. Eur J Med Chem 3:1043–1051. doi:10.1016/S0223-5234(99)00126-9

    Google Scholar 

  115. Blass BB, Coburn K, Lee W et al (2006) Synthesis and evaluation of (2-phenethyl-2H-1,2,3- triazol-4-yl)(phenyl)methanones as Kv1.5 channel blockers for the treatment of atrial fibrillation. Bioorg Med Chem Lett 16:4629–4632. doi:10.1016/j.bmcl.2006.06.001

    CAS  Google Scholar 

  116. Sanna P, Carta A, Nikookar MER (2000) Synthesis and antitubercular activity of 3-aryl substituted-2-(1H(2H) benzotriazol-1(2)-yl)acrylonitriles. Eur J Med Chem 35:535–543. doi:10.1016/S0223-5234(00)00144-6

    CAS  Google Scholar 

  117. von Mutius E, Drazen JM (2012) 200th anniversary article: a patient with asthma seeks medical advice in 1828, 1928, and 2012. N Engl J Med 366:827–834. doi:10.1056/NEJMra1102783

    Google Scholar 

  118. Coe MD, Cooper JWA, Gore MP et al (2010) Preparation of pyrazole and triazole carboxamides as CRAC channel inhibitors. WO2010122088, 2010

    Google Scholar 

  119. Keivanloo A, Bakherad M, Taheri SAN (2013) One-pot synthesis of 4,5-disubstituted 1,2,3-(NH)-triazoles by silica supported-zinc bromide in the aerobic condition. C R Chimie 16:239–243. doi:10.1016/j.crci.2012.11.007

    CAS  Google Scholar 

  120. Ueda S, Su M, Buchwald SL (2011) Highly N2-selective palladium-catalyzes arylation of 1,2,3 triazoles. Angew Chem Int Ed 50:8944–8947. doi:10.1002/anie.201103882

    CAS  Google Scholar 

  121. Abdel-Wahab BF, Abdel-Latif E, Mohamed HA et al (2012) Design and synthesis of new 4-pyrazolin-3-yl-1,2,3-triazoles and 1,2,3-triazol-4-yl-pyrazolin-1-ylthiazoles as potential antimicrobial agents. Eur J Med Chem 52:263–268. doi:10.1016/j.ejmech.2012.03.023

    CAS  Google Scholar 

  122. World Health Organization (2012) Health topics. Tuberculosis. http://www.who.int/topics/tuberculosis/en/. Accessed 13 Dec 2012

  123. World Health Organization (2012) Global Health Observatory (GHO). Tuberculosis (TB). http://www.who.int/gho/tb/en/. Accessed 13 Dec 2012

  124. World Health Organization (2012) Media centre. Tuberculosis, Fact sheet No. 104. http://www.who.int/mediacentre/factsheets/fs104/en/index.html. Accessed 13 Dec 2012

  125. Nogueira AF, Facchinetti V, de Souza MVN et al (2012) Tuberculose: uma abordagem geral dos principais aspectos. Rev Bras Farm 93:3–9

    Google Scholar 

  126. World Health Organization (2012) Global tuberculosis report 2012. http://www.who.int/tb/publications/global_report/en/. Accessed 7 Jan 2013

  127. Brunton LL, Chabmer AA, Knollman BC (2011) Goodman & Gilman´s the pharmacological basis of therapeutics, 12th edn. McGraw-Hill, New York

    Google Scholar 

  128. Katzung BG (2010) Farmacologia básica e clínica, 10th edn. AMGH, Porto Alegre

    Google Scholar 

  129. Janin Y (2007) Antituberculosis drugs: ten years of research. Bioorg Med Chem 15:2479–2513. doi:10.1016/j.bmc.2007.01.030

    CAS  Google Scholar 

  130. Branco FSC, Pinto AC, Boechat N (2012) A química medicinal de novas moléculas em fase clínica para o tratamento da tuberculose. Rev Virtual Quim 4:287–328

    CAS  Google Scholar 

  131. Andries K, Verhasselt P, Guillemont J et al (2005) Diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307:223–227. doi:10.1126/science.1106753

    CAS  Google Scholar 

  132. Barbachyn MR, Hutchinson DK, Brickner SJ (1996) Identification of a novel oxazolidinone (U-100480) with potent antimycobacterial activity. J Med Chem 39:680–685. doi:10.1021/jm950956y

    CAS  Google Scholar 

  133. Sasaki H, Haraguchi Y, Itotani M et al (2006) Synthesis and antituberculosis activity of a novel series of optically active 6-Nitro-2,3-dihydroimidazo[2,1-b]oxazoles. J Med Chem 49:7854–7860. doi:10.1021/jm060957y

    CAS  Google Scholar 

  134. Stover CK, Warrener P, Van Devanter DR et al (2000) A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 405:962–966. doi:10.1038.3501.1.3

    CAS  Google Scholar 

  135. Umesiri FE, Sanki AK, Boucau J et al (2010) Recent advances toward the inhibition of mAG and LAM synthesis in Mycobacterium tuberculosis. Med Res Rev 30:290–326. doi:10.1002/med.20190

    CAS  Google Scholar 

  136. Tizon L, Otero JM, Prazeres VFV et al (2011) A Prodrug approach for improving antituberculosis activity of potent Mycobacterium tuberculosis type II dehydroquinase inhibitors. J Med Chem 54:6063–6084. doi:10.1021/jm2006063

    CAS  Google Scholar 

  137. Gadhave PP, Dighe NS, Pattan SR et al (2010) Current biological and synthetic profile of triazoles: a review. Annals Biol Res 1:82–89

    CAS  Google Scholar 

  138. Kharb R, Sharma PC, Yar MS (2011) Pharmacological significance of triazole scaffold. J Enzyme Inhib Med Chem 26:1–21. doi:10.3109.1475636090352.3.4

    CAS  Google Scholar 

  139. Kharb R, Yar MS, Sharma PC (2011) Recent advances and future perspectives of triazole analogs as promising antiviral. Mini Rev Med Chem 11:84–96. doi:10.2174.13895571179356.0.1

    CAS  Google Scholar 

  140. Stefely JA, Palchaudhuri R, Miller PA et al (2010) N-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)arylamide as a new scaffold that provides rapid access to antimicrotubule agents: synthesis and evaluation of antiproliferative activity against select cancer cell lines. J Med Chem 53:3389–3395. doi:10.1021/jm1000979

    CAS  Google Scholar 

  141. Campo VL, Sesti-Costa R, Carneiro ZA et al (2012) Design, synthesis and the effect of 1,2,3-triazole sialylmimetic neoglycoconjugates on Trypanosoma cruzi and its cell surface trans-sialidase. Bioorg Med Chem 20:145–156. doi:10.1016/j.bmc.2011.11.022

    CAS  Google Scholar 

  142. Gallardo H, Conte G, Bryk F et al (2007) Synthesis and evaluation of 1-Alkyl-4-phenyl-[1,2,3]triazole derivatives as antimycobacterial agent. J Braz Chem 18:1285–1291. doi:10.1590/S0103-50532007000600027

    CAS  Google Scholar 

  143. Maccari R, Ottana R, Vigorita MG (2005) In vitro advanced antimycobacterial screening of isoniazid-related hydrazones, hydrazides and cyanoboranes: part 14. Bioorg Med Chem Lett 15:2509–2513. doi:10.1016/j.bmcl.2005.03.065

    CAS  Google Scholar 

  144. Lima CH, Henriques MG, Candéa AL et al (2011) Synthesis and antimycobacterial evaluation of N-(E)-heteroaromaticpyrazine-2-carbohydrazide derivatives. Med Chem 7:245–249. doi:15.3.40.4.11

    CAS  Google Scholar 

  145. Ferreira ML, Gonçalves RS, Cardoso LN et al (2010) Synthesis and antitubercular activity of heteroaromatic isonicotinoyl and 7-chloro-4-quinolinyl hydrazone derivatives. ScientificWorldJournal 10:1347–1355. doi:10.1100/tsw.2010.124

    CAS  Google Scholar 

  146. Vilcheze C, Morbidoni HR, Weisbrod TR et al (2000) Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. J Bacteriol 182:4059–4067. doi:10.1128/JB.182.14.4059-4067.2000

    CAS  Google Scholar 

  147. Freundlich JS, Wang F, Vilchèze C et al (2009) Triclosan derivatives: towards potent inhibitors of drug-sensitive and drug-resistant Mycobacterium tuberculosis. ChemMedChem 4:241–248. doi:10.1002/cmdc.200800261

    CAS  Google Scholar 

  148. Menendez C, Chollet A, Rodriguez F et al (2012) Chemical synthesis and biological evaluation of triazole derivatives as inhibitors of InhA and antituberculosis agents. Eur J Med Chem 52:275–283. doi:10.1016/j.ejmech.2012.03.029

    CAS  Google Scholar 

  149. Labadie GR, de la Iglesia A, Morbidoni HR (2011) Targeting tuberculosis through a small focused library of 1,2,3-triazoles. Mol Divers 15:1017–1024. doi:10.1007/s11030-011-9319-0

    CAS  Google Scholar 

  150. Menendez C, Gaua S, Lherbeta C et al (2011) Synthesis and biological activities of triazole derivatives as inhibitors of InhA and antituberculosis agents. J Eur Chem 46:5524–5531. doi:10.1016/j.ejmech.2011.09.013

    CAS  Google Scholar 

  151. Ouellet H, Podust LM, de Montellano PR (2008) Mycobacterium tuberculosis CYP130: crystal structure, biophysical characterization, and interactions with antifungal azole drugs. J Biol Chem 2008(283):5069–5080. doi:10.1074/jbc.M708734200

    Google Scholar 

  152. Kim PH, Kim SH., Lee SH et al (2011) Preparation of triazole compounds for treatment of tuberculosis. KR 2011046186 A

    Google Scholar 

  153. Shanmugavelan P, Nagarajan S, Sathishkumar M et al (2011) Efficient synthesis and in vitro antitubercular activity of 1,2,3-triazoles as inhibitors of Mycobacterium tuberculosis. Bioorg Med Chem Lett 21:7273–7276. doi:10.1016/j.bmcl.2011.10.048

    CAS  Google Scholar 

  154. Crick DC, Mahapatra S, Brennan PJ (2001) Biosynthesis of the arabinogalactan-peptidoglycan complex of Mycobacterium tuberculosis. Glycobiology 11:107–118. doi:10.1093/glycob/11.9.107R

    Google Scholar 

  155. Cao B, White JM, Williams SJ (2011) Synthesis of glycoconjugate fragments of mycobacterial phosphatidylinositol mannosides and lipomannan. Beilstein J Org Chem 7:369–377. doi:10.3762/bjoc.7.47

    CAS  Google Scholar 

  156. Wilkinson BL, Long H, Sim E et al (2008) Synthesis of Arabino glycosyl triazoles as potential inhibitors of mycobacterial cell wall biosynthesis. Bioorg Med Chem Lett 18:6265–6267. doi:10.1016/j.bmcl.2008.09.082

    CAS  Google Scholar 

  157. Singh BK, Yadav AK, Kumar B et al (2008) Preparation and reactions of sugar azides with alkynes: synthesis of sugar triazoles as antitubercular agents. Carbohydr Res 343:1153–1162. doi:10.1016/j.carres.2008.02.013

    CAS  Google Scholar 

  158. Gupte A, Boshoff HI, Wilson DJ et al (2008) Inhibition of siderophore biosynthesis by 2-triazole substituted analogues of 5′-O-[N-(salicyl)sulfamoyl]adenosine: antibacterial nucleosides effective against Mycobacterium tuberculosis. J Med Chem 51:7495–7507. doi:10.1021/jm8008037

    CAS  Google Scholar 

  159. Chen L, Gao G, Bonnac L et al (2007) Methylenebis(sulfonamide) linked nicotinamide adenine dinucleotide analogue as an inosine monophosphate dehydrogenase inhibitor. Bioorg Med Chem Lett 17:3152–3155. doi:10.1016/j.bmcl.2007.03.035

    CAS  Google Scholar 

  160. Lesiak K, Watanabe KA, Majumdar A et al (1998) Synthesis of a methylenebis(phosphonate) analogue of mycophenolic adenine dinucleotide: a glucuronidation-resistant MAD analogue of NAD. J Med Chem 41:618–622. doi:10.1021/jm970705k

    CAS  Google Scholar 

  161. Pankiewicz KW, Lesiak-Watanabe KB, Watanabe KA et al (2002) Novel mycophenolic adenine bis(phosphonate) analogues as potential differentiation agents against human leukemia. J Med Chem 45:703–712. doi:10.1021/jm0104116

    CAS  Google Scholar 

  162. Chen L, Wilson DJ, Xu Y et al (2010) Triazole-linked inhibitors of inosine monophosphate dehydrogenase from human and Mycobacterium tuberculosis. J Med Chem 53:4768–4778. doi:10.1021/jm100424m

    CAS  Google Scholar 

  163. Gill C, Jadhav G, Shaikh M et al (2008) Clubbed [1,2,3] triazoles by fluorine benzimidazole: A novel approachto H37Rv inhibitors as a potential treatment for tuberculosis. Bioorg Med Chem Lett 18:6244–6247. doi:10.1016/j.bmcl.2008.09.096

    CAS  Google Scholar 

  164. Castagnolo D, Radi M, Dessì F et al (2009) Synthesis and biological evaluation of new enantiomerically pure azole derivatives as inhibitors of Mycobacterium tuberculosis. Bioorg Med Chem Lett 19:2203–2205. doi:10.1016/j.bmcl.2009.02.101

    CAS  Google Scholar 

  165. Tripathi RP, Yadav AK, Ajay A et al (2010) Application of Huisgen (3+2) cycloaddition reaction: Synthesis of 1-(2,3-dihydrobenzofuran-2-yl-methyl [1,2,3]-triazoles and their antitubercular evaluations. Eur J Med Chem 45:142–148. doi:10.1016/j.ejmech.2009.09.036

    CAS  Google Scholar 

  166. Patpi SR, Pulipati L, Yogeeswari P et al (2012) Design, synthesis, and structure-activity correlations of novel dibenzo[b, d]furan, dibenzo[b, d]thiophene, and N-methylcarbazole clubbed 1,2,3-triazoles as potent inhibitors of Mycobacterium tuberculosis. J Med Chem 55:3911–3922. doi:10.1021/jm300125e

    CAS  Google Scholar 

  167. Solomon VR, Lee H (2011) Quinoline as a privileged scaffold in cancer drug discovery. Curr Med Chem 18:1488–1508. doi:10.2174.09298671179532.3.2

    CAS  Google Scholar 

  168. Vangapandu S, Jain M, Jain R et al (2004) Ring-substituted quinolines as potential anti-tuberculosis agents. Bioorg Med Chem 12:2501–2508. doi:10.1016/j.bmc.2004.03.045

    CAS  Google Scholar 

  169. Monga V, Nayyar A, Vaitilingam B et al (2004) Ring-substituted quinolines. Part 2: synthesis and antimycobacterial activities of ring-substituted quinolinecarbohydrazide and ring-substituted quinolinecarboxamide analogues. Bioorg Med Chem 24:6465–6472. doi:10.1016/j.bmc.2004.09.017

    Google Scholar 

  170. Sumangala V, Poojary B, Chidananda N et al (2010) Synthesis and antimicrobial activity of 1,2,3-triazoles containing quinoline moiety. Arch Pharm Res 33:1911–1918. doi:10.1007/s12272-010-1204-3

    CAS  Google Scholar 

  171. Nayyar A, Patel SR, Shaikh M et al (2009) Synthesis, anti-tuberculosis activity and 3D-QSAR study of amino acid conjugates of 4-(adamantan-1-yl) group containing quinolines. Eur J Med Chem 44:2017–2029. doi:10.1016/j.ejmech.2008.10.004

    CAS  Google Scholar 

  172. Jain R, Vaitilingam B, Nayyar A et al (2003) Substituted 4-methylquinolines as a new class of anti-tuberculosis agents. Bioorg Med Chem Lett 13:1051–1054. doi:10.1016/S0960-894X(03)00074-X

    CAS  Google Scholar 

  173. Koul A, Dendouga N, Vergauwen K et al (2007) Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat Chem Biol 3:323–324. doi:10.1038/nchembio884

    CAS  Google Scholar 

  174. Koul A, Vranckx L, Dendouga N et al (2008) Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis. J Biol Chem 283:25273–25280. doi:10.1074/jbc.M803899200

    CAS  Google Scholar 

  175. Upadhayaya RS, Kulkarni GM, Vasireddy NR et al (2009) Design, synthesis and biological evaluation of novel triazole, urea and thiourea derivatives of quinoline against Mycobacterium tuberculosis. Bioorg Med Chem 17:4681–4692. doi:10.1016/j.bmc.2009.04.069

    CAS  Google Scholar 

  176. Kumar KK, Seenivasan P, Kumar V et al (2011) Synthesis of quinoline coupled [1,2,3]-triazoles as a promising class of anti-tuberculosis agent. Carbohydr Res 346:2084–2090. doi:10.1016/j.carres.2011.06.028

    Google Scholar 

  177. Thomas KD, Adhikari AV, Chowdhury IH et al (2011) New quinolin-4-yl-1,2,3-triazoles carrying amides, sulphonamides and amidopiperazines as potential antitubercular agents. Eur J Med Chem 46:2503–2512. doi:10.1016/j.ejmech.2011.03.039

    CAS  Google Scholar 

  178. Kumar K, Singh P, Kremer L et al (2012) Synthesis and in vitro anti-tubercular evaluation of 1,2,3-triazole tethered β-lactam-ferrocene and β-lactam-ferrocenylchalcone chimeric scaffolds. Dalton Trans 41:5778–5781. doi:10.1039/c2dt30514c

    CAS  Google Scholar 

  179. Muthukrishnan M, Mujahid M, Yogeeswari P et al (2011) Syntheses and biological evaluation of new triazole-spirochromone conjugates as inhibitors of Mycobacterium tuberculosis. Tetrahedron Lett 52:2387–2389. doi:10.1016/j.tetlet.2011.02.099

    CAS  Google Scholar 

  180. Hussain H, Krohn K, Ahmad VU et al (2007) Lapachol: an overview. Arkivoc Part II:145–171

    Google Scholar 

  181. Fedoryshyn M, Nur-e-Alam M, Zhu L et al (2007) Surprising production of a new urdamycin derivative by S. fradiae Delta urdQ/R. J Biotechnol 130:32–38. doi:10.1016/j.jbiotec.2007.02.018

    CAS  Google Scholar 

  182. Salas C, Tapia RA, Ciudad K et al (2008) Trypanosoma cruzi: activities of lapachol and alpha- and beta-lapachone derivatives against epimastigote and trypomastigote forms. Bioorg Med Chem 16:668–674. doi:10.1016/j.bmc.2007.10.038

    CAS  Google Scholar 

  183. Liu KC, Li J, Sakya S (2004) Synthetic approaches to the 2003 new drugs. Mini Rev Med Chem 4:1105–1125. doi:10.2174.138955704340.9.0

    CAS  Google Scholar 

  184. Asche C (2005) Antitumour quinones. Mini Rev Med Chem 5:449–467. doi:10.2174.138955705376.5.6

    CAS  Google Scholar 

  185. Santos AF, Ferraz PAL, Pinto AV et al (2000) Molluscicidal activity of 2-hydroxy-3-alkyl-1,4-naphthoquinones and derivatives. Int J Parasitol 30:1199–1202. doi:10.1016/S0020-7519(00)00114-4

    Google Scholar 

  186. dos Santos AF, Ferraz PAL, de Abreu FC et al (2001) Molluscicidal and trypanocidal activities of lapachol derivatives. Planta Med 67:92–93. doi:10.1055/s-2001-10877

    CAS  Google Scholar 

  187. Barbosa TP, Camara CA, Silva TMS et al (2005) New 1,2,3,4-tetrahydro-1-aza-anthraquinones and 2-aminoalkyl compounds from norlapachol with molluscicidal activity. Bioorg Med Chem 13:6464–6469. doi:10.1016/j.bmc.2005.06.068

    CAS  Google Scholar 

  188. Teixeira MJ, Almeida YM, Viana JR et al (2001) In vitro and in vivo Leishmanicidal activity of 2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone (lapachol). Phytother Res 15:44–48. doi:10.1002/1099-1573(200102)15:1, <44::AID-PTR685>3.0.CO;2-1

    CAS  Google Scholar 

  189. Almeida ER, da Silva Filho AA, dos Santos ER et al (1990) Antiinflammatory action of lapachol. J Ethnopharmacol 29:239–241. doi:10.1016/0378-8741(90)90061-W

    Google Scholar 

  190. Gafner S, Wolfender JL, Nianga M et al (1996) Antifungal and antibacterial naphthoquinones from Newbouldia laevis roots. Phytochemistry 42:1315–1320

    CAS  Google Scholar 

  191. Pinto CN, Dantas AP, de Moura KCG et al (2000) Chemical reactivity studies with naphthoquinones from Tabebuia with anti-trypanosomal efficacy. Arzneimittelforschung 50:1120–1128. doi:10.1055/s-0031-1300337

    CAS  Google Scholar 

  192. de Moura KCG, Emery S, Neves-Pinto C et al (2001) Trypanocidal activity of isolated naphthoquinones from tabebuia and some heterocyclic derivatives: a review from an interdisciplinary study. J Braz Chem Soc 12:325–338. doi:10.1590/S0103-50532001000300003

    Google Scholar 

  193. da Silva Jr EN, Menna-Barreto RFS, Pinto MCFR et al (2008) Naphthoquinoidal [1,2,3]-triazole, a new structural moiety active against Trypanosoma cruzi. Eur J Med Chem 43:1774–1780. doi:10.1016/j.ejmech.2007.10.015

    Google Scholar 

  194. da Silva Jr EN, de Melo IMM, Diogo EBT (2012) On the search for potential anti-Trypanosoma cruzi drugs: Synthesis and biologicalevaluation of 2-hydroxy-3-methylamino and 1,2,3-triazolic naphthoquinoidal compounds obtained by click chemistry reactions. Eur J Med Chem 52:304–312. doi:10.1016/j.ejmech.2012.03.039

    Google Scholar 

  195. Brak K, Doyle PS, McKerrow JH (2008) Identification of a new class of nonpeptidic inhibitors of cruzain. J Am Chem Soc 130:6404–6410. doi:10.1021/ja710254m

    CAS  Google Scholar 

  196. Brak K, Kerr ID, Barrett KT (2010) Nonpeptidic tetrafluorophenoxymethyl Ketone Cruzain inhibitors as promising new leads for chagas disease chemotherapy. J Med Chem 53:1763–1773. doi:10.1021/jm901633v

    CAS  Google Scholar 

  197. Agustí R, Giorgi ME, de Lederkremer RM (2007) The trans-sialidase from Trypanosoma cruzi efficiently transfers alpha-(2–>3)-linked N-glycolylneuraminic acid to terminal beta-galactosyl units. Carbohydr Res 342:2465–2469. doi:10.1016/j.carres.2007.07.018

    Google Scholar 

  198. Buschiazzo A, Muiá R, Larrieux N et al (2012) Trypanosoma cruzi trans-Sialidase in complex with a neutralizing antibody: structure/function studies towards the rational design of inhibitors. PLoS Pathog 8:e1002474. doi:10.1371/journal.ppat.1002474

    CAS  Google Scholar 

  199. Neres J, Brewer ML, Ratier L et al (2009) Discovery of novel inhibitors of Trypanosoma cruzi trans-sialidase from in silico screening. Bioorg Med Chem Lett 19:589–596. doi:10.1016/j.bmcl.2008.12.065

    CAS  Google Scholar 

  200. Harrison JA, Kartha KP, Fournier EJL et al (2011) Org Biomol Chem 9:1653–1660. doi:10.1039/c0ob00826e

    CAS  Google Scholar 

  201. Arioka S, Sakagami M, Uematsu R et al (2010) Potent inhibitor scaffold against Trypanosoma cruzi trans-sialidase. Bioorg Med Chem 18:1633–1640. doi:10.1016/j.bmc.2009.12.062

    CAS  Google Scholar 

  202. Carvalho I, Andrade P, Campo VL et al (2010) ‘Click chemistry’ synthesis of a library of 1,2,3-triazole-substituted galactose derivatives and their evaluation against Trypanosoma cruzi and its cell surface trans-sialidase. Bioorg Med Chem 18:2412–2427. doi:10.1016/j.bmc.2010.02.053

    CAS  Google Scholar 

  203. Goodarzia N, Varshochiana R, Kamaliniaa G et al (2013) A review of polysaccharide cytotoxic drug conjugates for cancer therapy. Carbohydr Polym 92:1280–1293. doi:10.1016/j.carbpol.2012.10.036

    Google Scholar 

  204. Kamal A, Shankaraiah N, Devaiah V et al (2008) Synthesis of 1,2,3-triazole-linked pyrrolobenzodiazepine conjugates employing click chemistry: DNA-binding affinity and anticancer activity. Bioorg Med Chem Lett 18:1468–1473. doi:10.1016/j.bmcl.2007.12.063

    CAS  Google Scholar 

  205. Miller MJ, Morasaki GC, Stefely J (2011) Anti-cancer compounds, synthesis thereof, and methods of using same. US Patent 2011/0021574 A1, 27 Jan 2011

    Google Scholar 

  206. Fray MJ, Bull DJ, Carr CL et al (2001) Structure-activity relationships of 1,4-dihydro-(1H,4H)-quinoxaline-2,3-diones as N-methyl-D-aspartate (glycine site) receptor antagonists. 1. Heterocyclic substituted 5-alkyl derivatives. J Med Chem 24:1951–1962. doi:10.1021/jm001124p

    Google Scholar 

  207. Kallander LS, Lu Q, Chen W et al (2005) 4-Aryl-1,2,3-triazole: a novel template for a reversible methionine aminopeptidase 2 inhibitor, optimized to inhibit angiogenesis in vivo. J Med Chem 48:5644–5647. doi:10.1021/jm050408c

    CAS  Google Scholar 

  208. Li XL, Lin YJ, Wang QQ et al (2011) The novel anti-tumor agents of 4-triazol-1,8-naphthalimides: Synthesis, cytotoxicity, DNA intercalation and photocleavage. Eur J Med Chem 46:1274–1279. doi:10.1016/j.ejmech.2011.01.050

    CAS  Google Scholar 

  209. Singh P, Raj R, Kumar V et al (2012) 1,2,3-Triazole tethered β-lactam-Chalcone bifunctional hybrids: synthesis and anticancer evaluation. Eur J Med Chem 47:594–600. doi:10.1016/j.ejmech.2011.10.033

    CAS  Google Scholar 

  210. Kamal A, Prabhakar S, Ramaiah MJ et al (2011) Synthesis and anticancer activity of chalcone-pyrrolobenzodiazepine conjugates linked via 1,2,3-triazole ring side-armed with alkane spacers. Eur J Med Chem 46:3820–3831. doi:10.1016/j.ejmech.2011.05.050

    CAS  Google Scholar 

  211. Corredor M, Bujons J, Orzáez M (2013) Optimizing the control of apoptosis by amide/triazole isosteric substitution in a constrained peptoid. Eur J Med Chem 63:892–896. doi:10.1016/j.ejmech.2013.03.004

    CAS  Google Scholar 

  212. Majeed R, Sangwan PL, Chinthakindi PK (2013) Synthesis of 3-O-propargylated betulinic acid and its 1,2,3-triazoles as potential apoptotic agents. Eur J Med Chem 63:782–792. doi:10.1016/j.ejmech.2013.03.028

    CAS  Google Scholar 

  213. Sanghvi YS, Bhattacharya BK, Kini GD et al (1990) Growth inhibition and induction of cellular differentiation of human myeloid leukemia cells in culture by carbamoyl congeners of ribavirin. J Med Chem 33:336–344. doi:10.1021/jm00163a054

    CAS  Google Scholar 

  214. Gielen M (1996) Tin-based antitumour drugs. Coord Chem Rev 151:41–51. doi:10.1016/S0010-8545(96)90193-9

    CAS  Google Scholar 

  215. Tian L, Sun Y, Li H et al (2005) Synthesis, characterization and biological activity of triorganotin 2-phenyl-1,2,3-triazole-4-carboxylates. J Inorg Biochem 99:1646–1652. doi:10.1016/j.jinorgbio.2005.05.006

    CAS  Google Scholar 

  216. Barnard CFJ (1989) Platinum anti-cancer agents. Twenty years of continuing development. Platinum Metals Rev 33:162–167

    CAS  Google Scholar 

  217. Rosenberg B, Van Camp L, Krigas T (1965) Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 205:698. doi:10.1038.2056.8.0

    CAS  Google Scholar 

  218. Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 99:2467–2498. doi:10.1021/cr980421n

    CAS  Google Scholar 

  219. Reedijk J (1999) Why does cisplatin reach Guanine-n7 with competing s-donor ligands available in the cell? Chem Rev 99:2499–2510. doi:10.1021/cr980422f

    CAS  Google Scholar 

  220. Fichtinger-Schepman AMJ, van der Veer JL, den Hartog JHJ et al (1985) Adducts of the antitumor drug cis-diamminedichloroplatinum(II) with DNA: formation, identification, and quantitation. Biochemistry 24:707–713. doi:10.1021/bi00324a025

    CAS  Google Scholar 

  221. Pil PM, Lippard SJ (1992) Specific binding of chromosomal protein HMG1 to DNA damaged by the anticancer drug cisplatin. Science 256:234–237. doi:10.1126/science.1566071

    CAS  Google Scholar 

  222. Komeda S, Lutz M, Spek AL et al (2002) A novel isomerization on interaction of antitumor-active azole-bridged dinuclear platinum(II) complexes with 9-ethylguanine. Platinum(II) atom migration from N2 to N3 on 1,2,3-triazole. J Am Chem Soc 124:4738–4746. doi:10.1021/ja0168559

    CAS  Google Scholar 

  223. Schweinfurth D, Pattacini R, Strobel S et al (2009) New 1,2,3-triazole ligands through click reactions and their palladium and platinum complexes. Dalton Trans 9291–9297. doi:10.1039/b910660j

    Google Scholar 

  224. Elamari H, Meganem F, Herscovici J (2011) Chemoselective preparation of disymmetric bistriazoles from bisalkynes. Tetrahedron Lett 52:658–660. doi:10.1016/j.tetlet.2010.11.141

    CAS  Google Scholar 

  225. Elamari H, Slimi R, Chabot GG et al (2013) Synthesis and in vitro evaluation of potential anticancer activity of mono- and bis-1,2,3-triazole derivatives of bis-alkynes. Eur J Med Chem 60:360–364. doi:10.1016/j.ejmech.2012.12.025

    CAS  Google Scholar 

  226. Boyle GM (2011) Therapy for metastatic melanoma: an overview and update. Expert Rev Anticancer Ther 11:725–737. doi:10.1586/era.11.25

    CAS  Google Scholar 

  227. Griswold DP Jr (1972) Consideration of the subcutaneously implanted B16 melanoma as a screening model for potential anticancer agents. Cancer Chemother Rep Part 3:315–324

    Google Scholar 

  228. Blanch NM, Chabot GG, Quentin L (2012) In vitro and in vivo biological evaluation of new 4,5-disubstituted 1,2,3-triazoles as cis-constrained analogs of combretastatin A4. Eur J Med Chem 54:22–32. doi:10.1016/j.ejmech.2012.04.017

    Google Scholar 

  229. Len C, Boulogne-Merlot AS, Postel D et al (1996) J Agric Food Chem 44:2856–2858. doi:10.1021/jf950751y

    CAS  Google Scholar 

  230. Imamura H, Ohtake N, Jona H et al (2001) Dicationic dithiocarbamate carbapenems with anti-MRSA activity. Bioorg Med Chem 9:1571–1578. doi:10.1016/S0968-0896(01)00044-X

    CAS  Google Scholar 

  231. Carta F, Aggarwal M, Maresca A et al (2012) Dithiocarbamates strongly inhibit carbonic anhydrases and show antiglaucoma action in vivo. J Med Chem 55:1721–1730. doi:10.1021/jm300031j

    CAS  Google Scholar 

  232. Carta F, Supuran CT (2012) Dithiocarbamates: a new class of carbonic anhydrase inhibitors. Crystallographic and kinetic investigations. Chem Commun 48:1868–1870. doi:10.1039/C2CC16395K

    CAS  Google Scholar 

  233. Duan YC, Ma YC, Zhang E et al (2013) Design and synthesis of novel 1,2,3-triazole-dithiocarbamate hybrids as potential anticancer agents. Eur J Med Chem 62:11–19. doi:10.1016/j.ejmech.2012.12.046

    CAS  Google Scholar 

  234. Wang XJ, Xu HW, Guo LL et al (2011) Synthesis and in vitro antitumor activity of new butenolide-containing dithiocarbamates. Bioorg Med Chem Lett 21:3074–3077. doi:10.1016/j.bmcl.2011.03.029

    CAS  Google Scholar 

  235. Wang XJ, Xu HW, Guo LL et al (2011) Synthesis of various substituted spiro- and bicyclethiazolidine-2-thiones by a multicomponent reaction and biological evaluation in vitro. Heterocycles 83:1005–1012. doi:10.3987/COM-11-12147

    CAS  Google Scholar 

  236. Qian Y, Ma GY, Yang Y et al (2010) Synthesis, molecular modeling and biological evaluation of dithiocarbamates as novel antitubulin agents. Bioorg Med Chem 18:43104316. doi:10.1016/j.bmc.2010.04.091

    Google Scholar 

  237. Li RD, Zhang X, Li QY et al (2011) Novel EGFR inhibitors prepared by combination of dithiocarbamic acid esters and 4-anilinoquinazolines. Bioorg Med Chem Lett 21:3636–3640. doi:10.1016/j.bmcl.2011.04.096

    Google Scholar 

  238. Bacharaju K, Jambula SR, Sivan S et al (2012) Design, synthesis, molecular docking and biological evaluation of new dithiocarbamates substituted benzimidazole and chalcones as possible chemotherapeutic agents. Bioorg Med Chem Lett 22:3274–3277. doi:10.1016/j.bmcl.2012.03.018

    CAS  Google Scholar 

  239. Macmillan Cancer Support (2013) Fluorouracil (5FU) http://www.macmillan.org.uk/Cancerinformation/Cancertreatment/Treatmenttypes/Chemotherapy/Individualdrugs/Fluorouracil.aspx. Accessed 24 Sept 2013

  240. Alterio V, Di Fiore A, D’Ambrosio K et al (2012) Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chem Rev 112:4421–4468. doi:10.1021/cr200176r

    CAS  Google Scholar 

  241. Supuran CT (2008) Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nature Rev Drug Discov 7:168–181. doi:10.1038/nrd2467

    CAS  Google Scholar 

  242. Neri D, Supuran CT (2011) Interfering with pH regulation in tumours as a therapeutic strategy. Nature Rev Drug Discov 10:767–777. doi:10.1038/nrd3554

    CAS  Google Scholar 

  243. Makrecka M, Zalubovskis R, Vavers E et al (2013) Glyoxalase 1 and 2 enzyme inhibitory activity of 6-sulfamoylsaccharin and sulfocoumarin derivates. Lett Drug Des Discov 10:410–414

    CAS  Google Scholar 

  244. Aggarwal M, McKenna R (2012) Update on carbonic anhydrase inhibitors: a patent review (2008-2011). Expert Opin Ther Pat 22:903–915. doi:10.1517.13543776.2012.707646

    CAS  Google Scholar 

  245. De Simone G, Alterio V, Supuran CT (2013) Exploiting the hydrophobic and hydrophilic binding sites for designing carbonic anhydrase inhibitors. Expert Opin Drug Discov 8:793–810. doi:10.1517.17460441.2013.795145

    Google Scholar 

  246. Touisni N, Maresca A, McDonald PC et al (2011) Glycosyl coumarin carbonic anhydrase IX and XII inhibitors strongly attenuate the growth of primary breast tumors. J Med Chem 54:8271–8277. doi:10.1021/jm200983e

    CAS  Google Scholar 

  247. Davis RA, Vullo D, Maresca A et al (2013) Natural product coumarins that inhibit human carbonic anhydrases. Bioorg Med Chem 21:1539–1543. doi:10.1016/j.bmc.2012.07.021

    CAS  Google Scholar 

  248. Vu H, Pham NB, Quinn RJ (2008) Direct screening of natural product extracts using mass spectrometry. J Biomol Screen 13:265. doi:10.1177.108705710831.7.9

    CAS  Google Scholar 

  249. Balboni G, Congiu C, Onnis V et al (2012) Flavones and structurally related 4-chromenones inhibit carbonic anhydrases by a different mechanism of action compared to coumarins. Bioorg Med Chem Lett 22:3063–3066. doi:10.1016/j.bmcl.2012.03.071

    CAS  Google Scholar 

  250. Maresca A, Temperini C, Vu H et al (2009) Non-Zinc mediated inhibition of carbonic: coumarins are a new class of suicide inhibitors. J Am Chem Soc 31:3057–3062. doi:10.1021/ja809683v

    Google Scholar 

  251. Lou Y, McDonald PC, Oloumi A et al (2011) Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res 71:3364–3376. doi:10.1158/0008-5472.CAN-10-4261

    CAS  Google Scholar 

  252. Tanc M, Carta F, Bozdag M et al (2013) 7-Substituted-sulfocoumarins are isoform-selective, potent carbonic anhydrase II inhibitors. Bioorg Med Chem 21:4502–4510. doi:10.1016/j.bmc.2013.05.032

    CAS  Google Scholar 

  253. Tars K, Vullo D, Kazaks A et al (2013) Sulfocoumarins (1,2-benzoxathiine-2,2-dioxides): a class of potent and isoform-selective inhibitors of tumor-associated carbonic anhydrases. J Med Chem 56:293–300. doi:10.1021/jm301625s

    CAS  Google Scholar 

  254. Grandane A, Belyakov S, Trapencieris P et al (2012) Facile synthesis of coumarin bioisosteres-1,2-benzoxathiine 2,2-dioxides. Tetrahedron 68:5541–5546. doi:10.1016/j.tet.2012.04.080

    CAS  Google Scholar 

  255. Salmon J, Williams ML, Wu QK et al (2012) Metallocene-based inhibitors of cancer-associated carbonic anhydrase enzymes IX and XII. J Med Chem 55:5506–5517. doi:10.1021/jm300427m

    CAS  Google Scholar 

  256. Dwek RA (1996) Glycobiology: toward understanding the function of sugars. Chem Rev 96:683–720. doi:10.1021/cr940283b

    CAS  Google Scholar 

  257. Ciocoiu CC, Nikoli N, Nguyen HH et al (2010) Synthesis and dual PPARα/δ agonist effects of 1,4-disubstituted 1,2,3-triazole analogues of GW 501516. Eur J Med Chem 45:3047–3055. doi:10.1016/j.ejmech.2010.03.035

    CAS  Google Scholar 

  258. Courageot MP, Frenkiel MP, Dos Santos CD et al (2000) Alfa-Glucosidase inhibitors reduce dengue virus production by affecting the initial steps of virion morphogenesis in the endoplasmic reticulum. J Virol 74:564–572. doi:10.1128/JVI.74.1.564-572.2000

    CAS  Google Scholar 

  259. van den Broek LAGM (1997) Azasugars: chemistry and their biological activity as potential anti-HIV drugs. In: Witczak ZJ, Nieforth KA (eds) Carbohydrates in drug design. Marcel Dekker, New York, p 471

    Google Scholar 

  260. Gross PE, Baker MA, Carver JP et al (1995) Inhibitors of carbohydrate processing: A new class of anticancer agents. Clin Cancer Res 1:935–944

    Google Scholar 

  261. Stutz A (1999) Iminosugars as glycosidase inhibitors: Nojirimycin and beyond. Wiley-VCH, Weinheim. doi:10.1002.352760.7.0

    Google Scholar 

  262. Melo EB, Gomes AS, Carvalho I (2006) α- and β-Glucosidase inhibitors: chemical structure and biological activity. Tetrahedron 62:10277–10302. doi:10.1016/j.tet.2006.08.055

    Google Scholar 

  263. Kumar I, Mir NA, Rode CV et al (2012) Intramolecular Huisgen [3+2] cycloaddition in water: synthesis of fused pyrrolidine-triazoles. Tetrahedron Asymmetry 23:225–229. doi:10.1016/j.tetasy.2012.02.011

    CAS  Google Scholar 

  264. Valli M, Pivatto M, Danuello A et al (2012) Tropical biodiversity: has it been a potential source of secondary metabolites useful for medicinal chemistry? Quim Nova 35:2278–2287. doi:10.1590/S0100-40422012001100036

    CAS  Google Scholar 

  265. Moriyama H, Tsukida T, Inoue Y et al (2003) Design, synthesis and evaluation of novel Azasugar-Based MMP/ADAM inhibitors. Bioorg Med Chem Lett 13:2741–2744. doi:10.1016/S0960-894X(03)00531-6

    CAS  Google Scholar 

  266. Medline Plus (2013) Miglitol. http://www.nlm.nih.gov/medlineplus/druginfo/meds/a601079.html Accessed 24 Sep 2013

  267. Tschamber T, Gessier F, Dubost E et al (2003) Carbohydrate transition state mimics: synthesis of imidazolo-pyrrolidinoses as potential nectrisine surrogates. Bioorg Med Chem 11:3559–3568. doi:10.1016/S0968-0896(03)00402-4

    CAS  Google Scholar 

  268. Granier T, Panday N, Vasella A (1997) Structure-activity relations for Imidazo-pyridine-type inhibitors of -D-glucosidases. Helv Chim Acta 80:979–987. doi:10.1002/hlca.19970800329

    CAS  Google Scholar 

  269. Krulle TM, de la Fuente C, Pickering L et al (1997) Triazole carboxylic acids as anionic sugar mimics? Inhibition of glycogen phosphorylase by a d-glucotriazole carboxylate. Tetrahedron Asymmetry 8:3807–3820. doi:10.1016/S0957-4166(97)00561-2

    CAS  Google Scholar 

  270. Davis BG, Brandstetter TW, Hackett L et al (1999) Tetrazoles of Manno- and Rhamno-Pyranoses:Contrasting inhibition of mannosidases by [4.3.0] but of rhamnosidase by [3.3.0] bicyclic tetrazoles. Tetrahedron 55:4489–4500. doi:10.1016/S0040-4020(99)00137-4

    CAS  Google Scholar 

  271. Périon R, Ferriéres V, García-Moreno MI et al (2005) 1,2,3-Triazoles and related glycoconjugates as new glycosidase inhibitors. Tetrahedron 61:9118–9128. doi:10.1016/j.tet.2005.07.033

    Google Scholar 

  272. Sabesan S (2005) New triazole linked carbohydrates useful as glycosidase inhibitors for treating viral infections. US Patent 124563-A1

    Google Scholar 

  273. da Rocha DR, Santos WC, Lima ES et al (2012) Synthesis of 1,2,3-triazole glycoconjugates as inhibitors of α-glucosidases. Carbohydr Res 350:14–19. doi:10.1016/j.carres.2011.12.026

    Google Scholar 

  274. Ferreira SB, Sodero ACR, Cardoso MFC (2010) Synthesis, biological activity, and molecular modeling studies of 1,2,3-triazole derivatives of carbohydrates as alfa-glucosidases inhibitors. J Med Chem 53:2364–2375. doi:10.1021/jm901265h

    CAS  Google Scholar 

  275. Senger MR, Gomes LCA, Ferreira SB et al (2012) Kinetics studies on the inhibition mechanism of pancreatic α-Amylase by glycoconjugated 1H-1,2,3-Triazoles: a new class of inhibitors with hypoglycemiant activity. ChemBioChem 13:1584–1593. doi:10.1002/cbic.201200272

    CAS  Google Scholar 

  276. Zhou Y, Zhao Y, O’ Boyle KM et al (2008) Hybrid angiogenesis inhibitors: synthesis and biological evaluation of bifunctional compounds based on 1-deoxynojirimycin and aryl-1,2,3-triazoles. Bioorg Med Chem Lett 18:954–958. doi:10.1016/j.bmcl.2007.12.034

    CAS  Google Scholar 

  277. Diot J, Garcia-Moreno M, Gouin S et al (2009) Multivalent iminosugars to modulate affinity and selectivity for glycosidases. Org Biomol Chem 7:357–363. doi:10.1039/b815408b

    CAS  Google Scholar 

  278. Park H, Hwang KY, Kim YH et al (2008) Discovery and biological evaluation of novel α-glucosidase inhibitors with in vivo antidiabetic effect. Bioorg Med Chem Lett 18:3711–3715. doi:10.1016/j.bmcl.2008.05.056

    CAS  Google Scholar 

  279. Potewar TM, Petrova KT, Barros MT (2013) Efficient microwave assisted synthesis of novel 1,2,3-triazole-sucrose derivatives by cycloaddition reaction of sucrose azides and terminal alkynes. Carbohydr Res 379:60–67. doi:10.1016/j.carres.2013.06.017

    CAS  Google Scholar 

  280. Dedola S, Nepogodiev SA, Field RA (2007) Recent applications of the CuI-catalysed Huisgen azide–alkyne 1,3-dipolar cycloaddition reaction in carbohydrate chemistry. Org Biomol Chem 5:1006–1017. doi:10.1039/B618048P

    CAS  Google Scholar 

  281. Dedola S, Hughes DL, Nepogodiev SA et al (2010) Synthesis of α- and β-D-glucopyranosyl triazoles by CuAAC ‘click chemistry’: reactant tolerance, reaction rate, product structure and glucosidase inhibitory properties. Carbohydr Res 345:1123–1134. doi:10.1016/j.carres.2010.03.041

    CAS  Google Scholar 

  282. Tejler J, Skogman F, Leffler H et al (2007) Synthesis of galactose-mimicking 1H-(1,2,3-triazol-1-yl)-mannosides as selective galectin-3 and 9N inhibitors. Carbohydr Res 342:1869–1875. doi:10.1016/j.carres.2007.03.012

    CAS  Google Scholar 

  283. Lu WY, Sun XW, Zhu C et al (2010) Expanding the application scope of glycosidases using click chemistry. Tetrahedron 66:750–757. doi:10.1016/j.tet.2009.11.044

    CAS  Google Scholar 

  284. Rossi LL, Basu A (2005) Glycosidase inhibition by 1-glycosyl-4-phenyl triazoles. Bioorg Med Chem Lett 15:3596–3599. doi:10.1016/j.bmcl.2005.05.081

    CAS  Google Scholar 

  285. Goyard D, Praly JP, Vidal S (2012) Synthesis of 5-halogenated 1,2,3-triazoles under stoichiometric Cu(I)-mediated azide-alkyne cycloaddition. Carbohydr Res 362:79–83. doi:10.1016/j.carres.2012.08.014

    CAS  Google Scholar 

  286. Asano N (2003) Glycosidase inhibitors: update and perspectives on practical use. Glycobiology 13:93–104. doi:10.1093/glycob/cwg090

    Google Scholar 

  287. Watson AA, Fleet GWJ, Asano N et al (2001) Polyhydroxylated alkaloids - natural occurrence and therapeutic applications. Phytochemistry 56:265–295. doi:10.1016/S0031-9422(00)00451-9

    CAS  Google Scholar 

  288. Gloster TM, Davies GJ (2010) Glycosidase inhibition: assessing mimicry of the transition state. Org Biomol Chem 8:305–320. doi:10.1039/b915870g

    CAS  Google Scholar 

  289. Kayakiri H, Takase S, Shibata T et al (1989) Structure of kifunensine, a new immunomodulator isolated from an actinomycete. J Org Chem 54:4015–4016. doi:10.1021/jo00278a003

    CAS  Google Scholar 

  290. Cordero FM, Bonanno P, Chioccioli M et al (2011) Diversity-oriented syntheses of 7-substituted lentiginosines. Tetrahedron 67:9555–9564. doi:10.1016/j.tet.2011.10.008

    CAS  Google Scholar 

  291. Hamilton TA, Adams DO (1987) Molecular mechanisms of signal transduction in macrophages. Immunol Today 8:151–158. doi:10.1016/0167-5699(87)90145-9

    CAS  Google Scholar 

  292. English D, Broxmeyer HE, Gabig TG et al (1988) Temporal adaptation of neutrophil oxidative responsiveness to n-formyl-methionyl-leucyl-phenylalanine. Acceleration by granulocyte-macrophage colony stimulating factor. J Immunol 141:2400–2406

    CAS  Google Scholar 

  293. Lazrek HB, Taourirte M, Oulih T et al (2001) Synthesis and anti-HIV activity of new modified 1,2,3-triazole acyclonucleosides. Nucleosides Nucleotides Nucleic Acids 20:1949–1960. doi:10.1081/NCN-100108325

    CAS  Google Scholar 

  294. Kiss L, Forró E, Sillanpää R et al (2008) Novel functionalized cispentacin derivatives. Synthesis of 1,2,3-triazole-substituted 2-aminocyclopentane carboxylate stereoisomers. Tetrahedron Asymmetry 19:2856–2860. doi:10.1016/j.tetasy.2008.11.035

    CAS  Google Scholar 

  295. Wang Q, Li Y, Song C et al (2010) Synthesis and anti-HIV activity of 2′-deoxy-2′-fluoro-4′-C-ethynyl nucleoside analogs. Bioorg Med Chem Lett 20:4053–4056. doi:10.1016/j.bmcl.2010.05.090

    CAS  Google Scholar 

  296. Guo X, Li Y, Tao L et al (2011) Synthesis and anti-HIV-1 activity of 4-substituted-7-(2′-deoxy-2,-fluoro-4′-azido-β-D-ribofuranosyl)pyrrolo[2,3-d]pyrimidine analogues. Bioorg Med Chem Lett 21:6770–6772. doi:10.1016/j.bmcl.2011.09.040

    CAS  Google Scholar 

  297. Wu J, Yu W, Fu L et al (2013) Design, synthesis, and biological evaluation of new 2′-deoxy-2-fluoro-4′-triazole cytidine nucleosides as potent antiviral agents. Eur J Med Chem 63:782–792. doi:10.1016/j.ejmech.2013.02.042

    Google Scholar 

  298. Kumar K, Carrère-Kremer S, Kremer L et al (2013) Azide-alkyne cycloaddition en route towards 1H-1,2,3-triazole-tethered β-lactam-ferrocene and β-lactam-ferrocenylchalcone conjugates: synthesis and in vitro anti-tubercular evaluation. Dalton Trans 42:1492–1500. doi:10.1039/c2dt32148c

    CAS  Google Scholar 

  299. Behbehani H, Ibrahim HM, Makhseed S et al (2011) Applications of 2-arylhydrazononitriles in synthesis: Preparation of new indole containing 1,2,3-triazole, pyrazole and pyrazolo[1,5-a]pyrimidine derivatives and evaluation of their antimicrobial activities. Eur J Med Chem 46:1813–1820. doi:10.1016/j.ejmech.2011.02.040

    CAS  Google Scholar 

  300. Darandale SN, Mulla NA, Pansare DN et al (2013) A novel amalgamation of 1,2,3-triazoles, piperidines and thieno pyridine rings and evaluation of their antifungal activity. Eur J Med Chem 65:527–532. doi:10.1016/j.ejmech.2013.04.045

    CAS  Google Scholar 

  301. Merino-Montiel P, López O, Álvarez E et al (2012) Synthesis of conformationally-constrained thio(seleno)hydantoins and α-triazolyl lactones from D-arabinose as potential glycosidase inhibitors. Tetrahedron 68:4888–4898. doi:10.1016/j.tet.2012.03.087

    CAS  Google Scholar 

  302. Bengtsson C, Lindgren AEG, Uvell H et al (2012) Design, synthesis and evaluation of triazole functionalized ring-fused 2-pyridonesas antibacterial agents. Eur J Med Chem 54:637–646. doi:10.1016/j.ejmech.2012.06.018

    CAS  Google Scholar 

  303. Piotrowska DG, Balzarini J, Glowacka IE (2012) Design, synthesis, antiviral and cytostatic evaluation of novel isoxazolidine nucleotide analogues with a 1,2,3-triazole linker. Eur J Med Chem 47:501–509. doi:10.1016/j.ejmech.2011.11.021

    CAS  Google Scholar 

  304. Sangaraiah N, Murugan S, Poovan S et al (2012) Facile water promoted synthesis of 1,2,3-triazolyl dihydropyrimidine-2-thione hybrids – highly potent antibacterial agents. Eur J Med Chem 58:464–469. doi:10.1016/j.ejmech.2012.10.029

    Google Scholar 

  305. Slámová K, Marhol P, Bezouška K et al (2010) Synthesis and biological activity of glycosyl-1H-1,2,3-triazoles. Bioorg Med Chem Lett 20:4263–4265. doi:10.1016/j.bmcl.2010.04.151

    Google Scholar 

  306. Nakazawa T, Ohmae T, Fujimuro M et al (2012) Syntheses, molecular structures, and antiviral activities of 1- and 2-(2′-deoxy-D-ribofuranosyl)cyclohepta[d][1,2,3]triazol-6(1H)-ones and 1-(2′-deoxy-D-ribofuranosyl)cyclohepta[b]pyrrol-8(1H)-one. Tetrahedron 68:5368–5374. doi:10.1016/j.tet.2012.04.109

    CAS  Google Scholar 

  307. Jordão AK, Ferreira VF, Souza TML et al (2011) Synthesis and anti-HSV-1 activity of new 1,2,3-triazole derivatives. Bioorg Med Chem 19:1860–1865. doi:10.1016/j.bmc.2011.02.007

    Google Scholar 

  308. Kim S, Cho SN, Oh T et al (2012) Design and synthesis of 1H-1,2,3-triazoles derived from econazole as antitubercular agents. Bioorg Med Chem Lett 22:6844–6847. doi:10.1016/j.bmcl.2012.09.041

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor F. Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Carvalho da Silva, F., Cardoso, M.F.d.C., Ferreira, P.G., Ferreira, V.F. (2014). Biological Properties of 1H-1,2,3- and 2H-1,2,3-Triazoles. In: Dehaen, W., Bakulev, V. (eds) Chemistry of 1,2,3-triazoles. Topics in Heterocyclic Chemistry, vol 40. Springer, Cham. https://doi.org/10.1007/7081_2014_124

Download citation

Publish with us

Policies and ethics