Skip to main content

Chlorophyll-a Analogs for Cancer Imaging and Therapy (Theranostics)

  • Chapter
  • First Online:
Applications of Porphyrinoids

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 34))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AHM:

3-(Acryloyloxy)-2-hydroxypropyl methacrylate

APMA:

N-(3-Aminopropyl)methacrylamide

CA:

Contrast agent

CE:

Contrast enhancement

CLIO:

Cross-linked iron oxide

CT:

Computed tomography

DOTA:

1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid

DTPA:

Diethylene triamine pentaacetic acid

FDA:

Food and drug administration

FDG:

Fluorodeoxyglucose

FITC:

Fluorescein isothiocyanate

FMT:

Fluorescence-mediated tomography

FRET:

Fluorescence resonance energy transfer

GQL:

Good quality of life

HPPH:

3-(1′-hexyloxy)ethyl-3-devinyl pyropheophorbide-alpha

ICG:

Indocyanine green

MB:

Methylene blue

MRI:

Magnetic resonance imaging

NIR:

Near infrared

NP:

Nanoparticle

PAA:

Polyacrylamide

PDT:

Photodynamic therapy

PEG:

Polyethylene glycol

PET:

Positron emission tomography

PS:

Photosensitizer

ROI:

Region of interest

SPECT:

Single-photon emission computed tomography

US:

Ultrasound

References

  1. National Center for Health Statistics (2011) Health, United States, 2010: with special feature on death and dying. National Center for Health Statistics, Hyattsville

    Google Scholar 

  2. American Cancer Society (2013) Cancer facts & figures 2013. American Cancer Society, Atlanta

    Google Scholar 

  3. Runge VM (2002) Clinical MRI. Saunders, Philadelphia, pp 454–457

    Google Scholar 

  4. Han JS, Mandell DM, Poublanc J, Mardimae A, Slessarev M, Jaigobin C, Fisher JA, Mikulis DJ (2008) BOLD-MRI cerebrovascular reactivity findings in cocaine-induced cerebral vasculitis. Nat Clin Pract Neurol 4:628–632

    Article  Google Scholar 

  5. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589

    Article  CAS  Google Scholar 

  6. Bushong SC (2003) Magnetic resonance imaging: physical and biological principles. C.V. Mosby, Maryland Heights

    Google Scholar 

  7. James ML, Gambhir SS (2012) A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 92:897–965

    Article  CAS  Google Scholar 

  8. Afaq A, Koh DM, Padhani A, van As N, Sohaib SA (2011) Clinical utility of diffusion-weighted magnetic resonance imaging in prostate cancer. BJU Int 108:1716–1722

    Article  Google Scholar 

  9. McLaughlin BSA,Vallow LA, Hines SL, Tan W (2009) Lymph node micro-architecture can be imaged using optical coherence tomography. Cancer Res 69(2 Suppl 1)

    Google Scholar 

  10. Walker-Samuel S, Orton O, McPhail LD, Boult KR, Box G, Eccles SA, Robinson SP (2010) Bayesian estimation of changes in transverse relaxation rates. Magn Reson Med 64:914–921

    Article  Google Scholar 

  11. Walker-Samuel S, Orton M, McPhail LD, Robinson SP (2009) Robust estimation of the apparent diffusion coefficient (ADC) in heterogeneous solid tumours. Magn Reson Med 62:420–429

    Article  Google Scholar 

  12. Varma G, Clough RE, Acher P et al (2011) Positive visualization of implanted devices with susceptibility gradient mapping using the Original resolution (SUMO). Magn Reson Med 65:1483–1490

    Article  Google Scholar 

  13. Husband JE (2002) CT/MRI of nodal metastases in pelvic cancer. Cancer Imaging 2:123–129

    Google Scholar 

  14. Ametamey SM, Honer M, Schubiger PA (2008) Molecular imaging with PET. Chem Rev 108:1501–1516

    Article  CAS  Google Scholar 

  15. Behn CZ, Lindner JR (2006) Cellular and molecular imaging with targeted contrast ultrasound. Ultrasound Q 22:62–72

    Google Scholar 

  16. Azar FS, Intes X (2008) Translational multimodality optical imaging. Artech House, Boston

    Google Scholar 

  17. Stuker F, Ripoll J et al (2011) Fluorescence molecular tomography: principles and potential for pharmaceutical research. Pharmaceutics 3:229–274

    Article  CAS  Google Scholar 

  18. Veiseh O, Sun C et al (2005) Optical and MRI multifunctional nanoprobe for targeting gliomas. Nanoletters 5:1003–1008

    Article  CAS  Google Scholar 

  19. Veiseh O, Sun C, Fang C et al (2009) Specific targeting of brain tumor with an optical/magnetic resonance imaging nanoprobe across the blood–brain barrier. Cancer Res 69:6200–6207

    Article  CAS  Google Scholar 

  20. Bell LK, Ainsworth NL, Lee S, Griffiths JR (2011) MRI & MRS assessment of the role of the tumour microenvironment in response to therapy. NMR Biomed 24:612–635

    Google Scholar 

  21. Van Dam GM, Themelis G, Crane LMA et al (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med 17:1315–1319

    Article  Google Scholar 

  22. Dougherty TJ (2002) An update on photodynamic therapy applications. J Clin Laser Med Surg 20:3–7

    Article  Google Scholar 

  23. Dougherty TJ, Levy JG (2003) In: Horspool W, Lenci F (eds) Clinical applications of photodynamic therapy in organic photochemistry and photobiology. CRC, Boca Raton

    Google Scholar 

  24. Ethirajan M, Chen Y, Joshi P, Pandey RK (2011) The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem Soc Rev 40:340–362

    Article  CAS  Google Scholar 

  25. Ethirajan M, Patel NJ, Pandey RK (2010) Porphyrin-based multifunctional agents for tumor-imaging and photodynamic therapy (PDT). Handbook of porphyrin science. World Scientific, New Jersey

    Google Scholar 

  26. Pandey RK, Goswami LN, Chen Y, Gryshuk A, Missert JR, Oseroff A, Dougherty TJ (2006) Nature: a rich source for developing multifunctional agents. Tumor-imaging and photodynamic therapy. Lasers Surg Med 38:445–467

    Article  Google Scholar 

  27. Pandey RK, James NS, Chen Y, Missert J, Sajjad M (2010) Bifunctional agents for imaging and therapy in photodynamic therapy. Methods and protocols, Springer protocols. Springer and Humana Press, New York

    Google Scholar 

  28. Castano AP, Mroz P, Hamblin MR (2006) Photodynamic therapy and antitumor immunity. Nature 6:535–545

    CAS  Google Scholar 

  29. Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy of cancer nature tevies. Cancer 3:380–387

    CAS  Google Scholar 

  30. Bonnett R, Martinez G (2001) Photobleaching of sensitisers used in photodynamic therapy. Tetrahedron 57:9513–9547

    Article  CAS  Google Scholar 

  31. Weishaupt KR, Gomer CJ, Dougherty TJ (1976) Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor. Cancer Res 36:2326–2329

    CAS  Google Scholar 

  32. Henderson BW, Gollnick SO (2002) In: Vo-Dinh T (ed) Mechanistic principles of photodynamic therapy in Biomedical Photonics Handbook. CRC Press, Boca Raton

    Google Scholar 

  33. MacDonald IJ, Dougherty TJ (2001) Basic principles of photodynamic therapy. J Porphyr Phthalocyanines 5:105–129

    Article  CAS  Google Scholar 

  34. Pandey RK, Bellnier DA, Smith KM, Dougherty TJ (1991) Chlorin and porphyrin derivatives as potential photosensitizers in photodynamic therapy. Photochem Photobiol 53:65–72

    Article  CAS  Google Scholar 

  35. Li G, Graham A, Chen Y, Dobhal MP, Morgan J, Zheng G, Kozyrev A, Oseroff A, Pandey RK (2003) Synthesis comparative photosensitizing efficacy, human serum albumin (site II) binding ability, and intracellular localization characteristics of novel benzobacteriochlorins derived from vic-dihydroxybacteriochlorins. J Med Chem 46:5349–5359

    Article  CAS  Google Scholar 

  36. Gryshuk AL, Chen Y, Potter W, Ohulchanskyy T, Oseroff A, Pandey RK (2006) In vivo stability and photodynamic efficacy of fluorinated bacteriopurpurinimides derived from bacteriochlorophyll-a. J Med Chem 49:1874–1881

    Article  CAS  Google Scholar 

  37. Pandey RK, Sumlin AB, Potter WR, Bellnier DA, Henderson BW, Constantine S, Aoudia M, Rodgers MR, Smith KM, Dougherty TJ (1996) Structure and photodynamic efficacy among alkyl ether analogs of chlorophyll-a derivatives. Photochem Photobiol 63:194–205

    Article  Google Scholar 

  38. Henderson BW, Bellnier DA, Greco WR, Sharma A, Pandey RK, Vaughan K, Weishaupt R, Rodgers MAJ, Smith KM, Dougherty TJ (1996) Alkyl ether analogs of chlorophyll-a derivatives: part 1. Synthesis, photophysical properties and photodynamic efficacy. Cancer Res 64:194–204

    Google Scholar 

  39. Lowen GM, Pandey RK, Bellnier DA, Henderson BW, Dougherty TJ (2006) Endobronchial photodynamic therapy for lung cancer. Lasers Surg Med 38:364–370

    Article  Google Scholar 

  40. Chen Y, Miclea R, Srikrishnan T, Balasubramanian S, Dougherty TJ, Pandey RK (2005) Investigation of human serum albumin (HSA) binding specificity of certain photosensitizers related to pyropheophorbide-a and bacteriopurpurinimide by circular dichroism spectroscopy and its correlation with in vivo photosensitizing efficacy. Bioorg Med Chem Lett 15:3189–3192

    Article  CAS  Google Scholar 

  41. Bellnier DA, Greco WR, Loewen GL, Nava H, Oseroff A, Pandey RK, Dougherty TJ (2003) Population pharmacokinetics of the photodynamic therapy agent 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a in cancer patients. Cancer Res 63:1806–1813

    CAS  Google Scholar 

  42. Bellnier DA, Greco WR, Loewen GM, Oseriff AO, Dougherty TJ (2005) Mild skin photosensitivity in cancer patients following injection of Photochlor (2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a; HPPH) for photodynamic therapy. Cancer Chemother Pharmacol 57:40–45

    Article  Google Scholar 

  43. Lobel J, MacDonald I, Ciesielski MJ, Barone T, Potter WR, Pollina J, Plunkett RJ, Fenstermaker RA, Dougherty TJ (2001) 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH) in a nude rat glioma model: implications for photodynamic therapy. Lasers Surg Med 29:397–405

    Article  CAS  Google Scholar 

  44. Dougherty TJ, Pandey RK, Nava H, Smith A, Douglass HO, Edge SB, Bellnier DA, Cooper M (2000) Optical methods for tumor treatment and detection: mechanisms and techniques in photodynamic therapy IX. Proc SPIE 3909:25–27

    Article  CAS  Google Scholar 

  45. Magnem ML, Rodriguez CO, Autry SA, Edwards BF, Theon AP, Madewell BR (1997) Photodynamic therapy of facial squamous cell carcinoma in cats using a new photosensitizer. Lasers Surg Med 20:202–209

    Article  Google Scholar 

  46. Potter WR, Henderson BW, Bellnier DA, Pandey RK, Vaughan LA, Weishaupt KR, Dougherty TJ (1999) Parabolic quantitative structure-activity relationships and photodynamic therapy: application of a three-compartment model with clearance to the in vivo quantitative structure-activity relationships of a congeneric series of pyropheophorbide derivatives used as photosensitizers for photodynamic therapy. Photochem Photobiol 70:781–788

    CAS  Google Scholar 

  47. Wilson BC, Farrell TJ, Patterson MS (1999) An optical fiber-based diffuse reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in vivo. Proc SPIE 156:219–231

    Google Scholar 

  48. Lomnes SJ, Healey AH, Fomitchov PA (2008) Intraoperative near-infrared fluorescent imaging exogenous fluorescence contrast agents in Translational Multimodality Optical Imaging. Artech House, Boston

    Google Scholar 

  49. Achilefu S, Dorshow RB, Bugaj JE, Rajagopalan R (2000) Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging. Investigating Radiol 35:479–485

    Article  CAS  Google Scholar 

  50. Eljamel MS (2008) Photodiagnosis Photodyn Ther 5:29–35

    Article  Google Scholar 

  51. Azar FS, Intes X (2005) Translational multimodality optical imaging. Artech House, Boston

    Google Scholar 

  52. Lee T, Zhang X, Dhar S, Faas H, Lippard SL, Jasanoff A (2010) In vivo imaging with a cell-permeable porphyrin-based MRI contrast agent. Chem Biol 17:665–673

    Article  CAS  Google Scholar 

  53. Chen Y, Ohkubo K, Zhang M, Wenbo E, Liu W, Pandey SK, Ciesielski M, Baumann H, Erin T, Fukuzumi S, Kadish KM, Fenstermaker R, Pandey RK (2007) Photophysical, electrochemical characteristics and cross-linking of STAT-3 protein by an efficient bifunctional agent for fluorescence image-guided photodynamic therapy. Photochem Photobiol Sci 6:1257–1267

    Article  CAS  Google Scholar 

  54. Chen Y, Gryshuk A, Achilefu A, Ohulchanskyy T, Morgan J, Chance B, Prasad PN, Henderson BW, Oseroff A, Pandey RK (2005) A novel approach to a bifunctional photosensitizer for tumor imaging and phototherapy. Bioconjug Chem 16:1264–1274

    Article  CAS  Google Scholar 

  55. James NS, Chen Y, Joshi P, Ohulchanskyy TY, Ethirajan M, Henary M, Strekowsk L, Pandey RK (2013) Evaluation of polymethine dyes as potential probes for near infrared fluorescence imaging of tumors: part 1. Theranostics 3:692–702

    Article  Google Scholar 

  56. James NS, Ohulchanskyy TY, Vjen Y, Joshi P, Zheng X, Goswami LN, Pandey RK (2013) Evaluation of polymethine dyes as potential probes for near infrared fluorescence imaging of tumors: part 2. Theranostics 3:703–718

    Article  CAS  Google Scholar 

  57. Williams MPA, Ethirajan M, Ohkubo K, Chen P, Pera P, Morgan J, White WM, Shibata M, Fukuzumi S, Kadish KM, Pandey RK (2011) ynthesis, photophysical, electrochemical, tumor-imaging, and phototherapeutic properties of purpurinimide-N-substituted cyanine dyes joined with variable lengths of linkers. Bioconjug Chem 22:2283–2295

    Article  CAS  Google Scholar 

  58. Ethirajan M, Chen P, Ohulchanskyy TY, Goswami LN, Gupta A, Srivatsan A, Dobhal MP, Missert JR, Prasad PN, Kadish KM, Pandey RK (2013) Regioselective synthesis and photophysical and electrochemical studies of 20-substituted cyanine dye-purpurinimide conjugates: incorporation of Ni(II) into the conjugate enhances its tumor-uptake and fluorescence-imaging ability. Chem Eur J 19:6670–6684

    Article  CAS  Google Scholar 

  59. Young SW, Sidhu MK, Qing F, Muller HH, Neuder M, Zanassi G, Mody TD, Hemmi G, Dow W, Mutch JD (1994) Preclinical evaluation of gadolinium (III) texaphyrin complex. A new paramagnetic contrast agent for magnetic resonance imaging. Investig Radiol 29:330–338

    Article  CAS  Google Scholar 

  60. Ni Y, Adzamli K, Miao Y, Cresens E et al (2001) MRI contrast enhancement of necrosis by MP-2269 and gadoporphyrin-2 in a rat model of liver infarction. Invest Radiol 36:97–103

    Article  CAS  Google Scholar 

  61. Li G, Slansky A, Dobhal MP, Goswami LN, Pandey RK et al (2005) Chlorophyll-a analogues conjugated with aminobenzyl DTPA as potential bifunctional agents for magnetic resonance imaging and photodynamic therapy. Bioconjug Chem 16:32–42

    Article  CAS  Google Scholar 

  62. Goswami LN, White WH, Pandey RK et al (2010) Synthesis of tumor-avid photosensitizer-Gd(III)DTPA conjugates: impact of the number of gadolinium units in T1/T2 relaxivity, intracellular localization, and photosensitizing efficacy. Bioconjug Chem 21:816–827

    Article  CAS  Google Scholar 

  63. Spernyak JA, White WH, Pandey RK et al (2010) Hexylether derivative of pyropheophorbide-a (HPPH) on conjugating with 3Gadolinium (III) aminobenzyldiethylenetriaminepentaacetic acid shows potential for in vivo tumor imaging (MR, Fluorescence) and photodynamic therapy. Bioconjug Chem 21:828–835

    Article  CAS  Google Scholar 

  64. Galindev O, Dalantal M, Ahn WS, Shim YK (2009) Gadolinium complexes of chlorin derivatives applicable for MRI contrast agents and PDT. J Porphyrins Phthalocyanines 13:823–831

    Article  CAS  Google Scholar 

  65. Stanciu AE (2012) Rev Radionuclides in targeted therapy of cancer. Roum Chim 57:5–13

    Google Scholar 

  66. Pandey SK, Gryshuk AL, Sajjad M, Zheng X, Chen Y, Abouzeid MM, Morgan J, Charamisinau I, Nabi HA, Oseroff A, Pandey RK (2005) Multimodality agents for tumor imaging (PET, fluorescence) and photodynamic therapy. A possible “see and treat” approach. J Med Chem 48:6286–6295

    Article  CAS  Google Scholar 

  67. Pandey SK, Sajjad M, Chen Y, Pandey A, Missert JR, Batt C, Yao R, Nabi HA, Oseroff AR, Pandey RK (2009) Compared to purpurinimides, the pyropheophorbide containing an iodobenzyl group showed enhanced PDT efficacy and tumor imaging (124I-PET) ability. Bioconjug Chem 20:274–282

    Article  CAS  Google Scholar 

  68. Chen Y, Sajjad M, Wang Y, Batt C, Nabi HA, Pandey RK (2011) TSPO 18 kDa (PBR) targeted photosensitizers for cancer imaging (PET) and PDT. ACS Med Chem Lett 2:136–141

    Article  CAS  Google Scholar 

  69. Srivatsan A, Wang Y, Joshi P, Sajjad M, Chen Y, Liu C, Thankppn K, Missert JR, Tracy E, Morgan J, Rigual N, Baumann H, Pandey RK (2011) In vitro cellular uptake and dimerization of signal transducer and activator of transcription-3 (STAT3) identify the photosensitizing and imaging-potential of isomeric photosensitizers derived from chlorophyll-a and bacteriochlorophyll-a. J Med Chem 54:6859–6873

    Article  CAS  Google Scholar 

  70. Konecky SD, Yodh AG (2008) Diffuse optical imaging and PET imaging in translational multimodality optical imaging. Artech House, Boston

    Google Scholar 

  71. Kelkar SS, Reineke TM (2011) Theranostics: combining imaging and therapy. Bioconjug Chem 22:1879–1903

    Article  CAS  Google Scholar 

  72. Maeda HJ (2012) Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. Control Release 164:138–144

    Google Scholar 

  73. Kopelman R, Philbert M et al (2005) Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer. J Magn Magn Mater 293:404–410

    Article  CAS  Google Scholar 

  74. Tang W, Xu H, Park EJ, Philbert MA, Kopelman R et al (2008) Encapsulation of methylene blue in polyacrylamide nanoparticle platforms protects its photodynamic effectiveness. Biochem Biophys Res Commun 369:579–583

    Article  CAS  Google Scholar 

  75. Qin M, Hah HJ, Kim G, Nie G, Lee YE, Kopelman R et al (2011) Methylene blue covalently loaded polyacrylamide nanoparticles for enhanced tumor-targeted photodynamic therapy. Photochem Photobiol Sci 10:832–841

    Article  CAS  Google Scholar 

  76. Moffat BA, Reddy GR, McConville P, Hall DE et al (2003) A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI. Mol Imaging 2:324–332

    Article  CAS  Google Scholar 

  77. Reddy GR, Bhojani MS, McConville P, Moody J, Moffat BA, Hall DE et al (2006) Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res 12:6677–6686

    Article  CAS  Google Scholar 

  78. Wang S, Kim G, Lee YE, Hah HJ, Ethirajan M, Pandey RK, Kopelman R (2012) Multifunctional biodegradable polyacrylamide nanocarriers for cancer theranostics—a “See and Treat” strategy. ACS Nano 6:6843–6851

    Article  CAS  Google Scholar 

  79. Gupta A, Wang S, Pera P, Rao KV, Patel N, Ohulchanskyy TY et al (2012) Multifunctional nanoplatforms for fluorescence imaging and photodynamic therapy developed by post-loading photosensitizer and fluorophore to polyacrylamide nanoparticles. Nanomedicine 8:941–950

    Article  CAS  Google Scholar 

  80. Gupta A, Pandey RK (2012) Ph.D. Thesis, RPCI Graduate Division, SUNY Buffalo

    Google Scholar 

Download references

Acknowledgments

The financial assistance provided by the NIH (CA 127369, CA 119358, CA 114053, CA 109914, PO1 55791) and Alliance Foundation is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra K. Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, S., Patel, N.J., Pandey, R.K. (2014). Chlorophyll-a Analogs for Cancer Imaging and Therapy (Theranostics). In: Paolesse, R. (eds) Applications of Porphyrinoids. Topics in Heterocyclic Chemistry, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2013_117

Download citation

Publish with us

Policies and ethics