Skip to main content

Synthetic Routes to Unsymmetrical Porphyrins

  • Chapter
  • First Online:
Synthesis and Modifications of Porphyrinoids

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 33))

Abstract

The richness of properties showed by porphyrins and related compounds has attracted the attention of researchers for many years, because the attempt to mimic the essential role that these macrocycles have in nature make them of potential interest as organic materials in a number of application fields. Many of these exploitations require the presence of diverse functionalities on the peripheral positions of the tetrapyrrolic macrocycles, to finely tune the porphyrin properties or to covalently attach them to a particular substrate. For this reason in the last decade a particular attention has been focused on the developments of rational or statistical synthetic protocols, aimed for the preparation of unsymmetrically substituted porphyrin derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sharman WM, van Lier JE (1999) Photodynamic therapeutics: basic principles and clinical applications. Drug Discov Today 4:507–517

    Article  CAS  Google Scholar 

  2. (2010) Phototherapy, Immunotherapy and Imaging. In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science, vol 4. Academic, Singapore

    Google Scholar 

  3. Moore TA, Moore AL, Gust D (2009) Fuels via artificial photosynthesis. Acc Chem Res 42:1890–1898

    Article  Google Scholar 

  4. Collman JP, Fu L (2001) Mimicking photosynthetic solar energy transduction. Acc Chem Res 34:40–48

    Article  Google Scholar 

  5. Meunier B (1992) Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage. Chem Rev 92:1411–1456

    Article  CAS  Google Scholar 

  6. Brulè E, de Miguel YR (2006) Supported metalloporphyrin catalysts for alkene epoxidation. Org Biomol Chem 4:599–609

    Article  Google Scholar 

  7. Paolesse R, Monti D, Nardis S, Di Natale C (2011) Porphyrin-based chemical sensors. In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 12. Academic, Singapore

    Google Scholar 

  8. Maeda C, Kamada T, Aratani N, Osuka A (2007) Chiral self-discriminative self-assembling of meso–meso linked diporphyrins. Coord Chem Rev 251:2743–2752

    Article  CAS  Google Scholar 

  9. Yoon ZS, Yoon MC, Kim D (2005) Excitonic coupling in covalently linked multiporphyrin systems by matrix diagonalization. J Photochem Photobiol C 6:249–263

    Article  CAS  Google Scholar 

  10. Wagner RW, Johnson TE, Lindsey JS (1996) Soluble synthetic multiporphyrin arrays. 1. Modular design and synthesis. J Am Chem Soc 118:11166–11180

    Article  CAS  Google Scholar 

  11. Kodis G, Terazono Y, Bhushan K, Zaks J, Madden C, Moore AL, Moore TA, Fleming GR, Gust D (2011) Mimicking the role of the antenna in photosynthetic photoprotection. J Am Chem Soc 133:2916–2922

    Article  Google Scholar 

  12. Hyakutake T, Okura I, Asai K, Nishide H (2008) Dual-mode oxygen-sensing based on oxygen-adduct formation at cobaltporphyrin–polymer and luminescence quenching of pyrene: an optical oxygen sensor for a practical atmospheric pressure. J Mater Chem 18:917–922

    Article  CAS  Google Scholar 

  13. Liddell PA, Gervaldo M, Bridgewater JW, Keirstead AE, Lin S, Moore TA, Moore AL, Gust D (2008) Porphyrin-based hole conducting electropolymer. Chem Mater 20:135–142

    Article  CAS  Google Scholar 

  14. Brennan BJ, Kenney MJ, Liddell PA, Cherry BR, Li J, Moore AL, Moore TA, Gust D (2011) Oxidative coupling of porphyrins using copper(II) salts. Chem Commun 47:10034–10036

    Article  CAS  Google Scholar 

  15. Li WS, Aida T (2009) Dendrimer porphyrins and phthalocyanines. Chem Rev 109:6047–6076

    Article  CAS  Google Scholar 

  16. Fukuzumi S, Saito K, Ohkubo K, Khoury T, Kashiwagi Y, Absalom MA, Gadde S, D’Souza F, Araki Y, Ito O, Crossley MJ (2011) Multiple photosynthetic reaction centres composed of supramolecular assemblies of zinc porphyrin dendrimers with a fullerene acceptor. Chem Commun 47:7980–7982

    Article  CAS  Google Scholar 

  17. Megiatto JD Jr, Spencer R, Schuster DI (2009) Efficient one-pot synthesis of rotaxanes bearing electron donors and [60]fullerene. Org Lett 11:4152–4155

    Article  CAS  Google Scholar 

  18. Faiz JA, Heiz V, Sauvage JP (2009) Design and synthesis of porphyrin-containing catenanes and rotaxanes. Chem Soc Rev 38:422–442

    Article  CAS  Google Scholar 

  19. Megiatto JD Jr, Abwandner S, de Miguel G, Guldi DM (2010) [2]Catenanes decorated with porphyrin and [60]fullerene groups: design, convergent synthesis, and photoinduced processes. J Am Chem Soc 132:3847–3861

    Article  CAS  Google Scholar 

  20. Thordarson P, Bijsterveld EJA, Rowan AE, Nolte RJM (2003) Epoxidation of polybutadiene by a topologically linked catalyst. Nature 424:915–918

    Article  CAS  Google Scholar 

  21. Sourav Saha AHF, Stoddart JF, Impellizzeri S, Silvi S, Venturi M, Credi A (2007) A redox-driven multicomponent molecular shuttle. J Am Chem Soc 129:12159–12171

    Article  Google Scholar 

  22. Smith KM (2000) Strategies for the synthesis of octaalkylporphyrin systems. In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 1. Academic, San Diego

    Google Scholar 

  23. Brückner C, Posakony JJ, Johnson CK, Boyle RW, Dolphin D (1998) Novel and improved syntheses of 5,15-diphenylporphyrin and its dipyrrolic precursors. J Porphyr Phthalocyanines 2:455–465

    Article  Google Scholar 

  24. Jaquinod L (2000) Functionalization of 5,10,15,20-tetrasubstituted porphyrins. In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 1. Academic, San Diego

    Google Scholar 

  25. Wiehe A, Shaker YM, Brandt JC, Mebs S, Senge MO (2005) Lead structures for applications in photodynamic therapy. Part 1: synthesis and variation of m-THPC (Temoporfin) related amphiphilic A2BC-type porphyrins. Tetrahedron 61:5535–5564

    Article  CAS  Google Scholar 

  26. Wiehe A, Simonenko EJ, Senge MO, Röder B (2001) Hydrophilicity vs hydrophobicity – varying the amphiphilic structure of porphyrins related to the photosensitizer m-THPC. J Porphyr Phthalocyanines 5:758–761

    Article  CAS  Google Scholar 

  27. Drain CM, Goldberg I, Sylvain I, Falber A (2005) Synthesis and applications of supramolecular porphyrinic materials. Top Curr Chem 245:55–88

    CAS  Google Scholar 

  28. Drain CM, Varotto A, Radivojevic I (2009) Self-organized porphyrinic materials. Chem Rev 109:1630–1658

    Article  CAS  Google Scholar 

  29. Holten D, Bocian DF, Lindsey JS (2002) Probing electronic communication in covalently linked multiporphyrin arrays. A guide to the rational design of molecular photonic devices. Acc Chem Res 35:57–69

    Article  CAS  Google Scholar 

  30. Senge MO, Fazekas M, Notaras EGA, Blau WJ, Zawadzka M, Locos OB, Ni Mhuircheartaigh EM (2007) Nonlinear optical properties of porphyrins. Adv Mater 19:2737–2774

    Article  CAS  Google Scholar 

  31. Sariola-Leikas E, Hietala M, Veselov A, Okhotnikov O, Semjonov SL, Tkachenko NV, Lemmetyinen H, Efimov A (2012) Synthesis of porphyrinoids with silane anchors and their covalent self-assembling and metalation on solid surface. J Colloid Interface Sci 369:58–70

    Article  CAS  Google Scholar 

  32. Lindsey S (2000) Synthesis of meso-substituted porphyrins. In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 1. Academic, San Diego

    Google Scholar 

  33. Geier GR III, Lindsey JS (2001) Investigation of porphyrin-forming reactions. Part 2 examination of the reaction course in two steps, one flask syntheses of meso substituted porphyrins. J Chem Soc Perkin Trans 2:687–700

    Google Scholar 

  34. Balakumar A, Muthukumaran K, Lindsey JS (2004) A new route to meso-formyl porphyrins. J Org Chem 69:5112–5115

    Article  CAS  Google Scholar 

  35. Laha JK, Dhanalekshmi S, Tamiguchi M, Ambroise A, Lindsey JS (2003) A scalable synthesis of meso-substituted dipyrromethanes. Org Process Res Dev 7:799–812

    Article  CAS  Google Scholar 

  36. Wickramasinghe A, Jaquinod L, Nurco DJ, Smith KM (2001) Investigations on the directive effects of a single meso-substituent via nitration of 5,12,13,17,18-pentasubstituted porphyrins: syntheses of conjugated β-nitroporphyrins. Tetrahedron 57:4261–4269

    Article  CAS  Google Scholar 

  37. Trova MP, Gauuan PJF, Pechulis AD, Bubb SM, Bocckino SB, Crapo JD, Day B (2003) Superoxide dismutase mimetics. Part 2: synthesis and structure–activity relationship of glyoxylate- and glyoxamide-derived metalloporphyrins. J Bioorg Med Chem 11:2695–2707

    Article  CAS  Google Scholar 

  38. Kral V, Vasek P, Dolensky B (2004) Green chemistry for preparation of oligopyrrole macrocycle precursors: novel methodology for dipyrromethanes and tripyrromethanes synthesis in water. Collect Czech Chem Commun 69:1126–1136

    Article  CAS  Google Scholar 

  39. Rao PD, Littler BJ, Geier GR III, Lindsey JS (2000) Efficient synthesis of monoacyl dipyrromethanes and their use in the preparation of sterically unhindered trans-porphyrins. J Org Chem 65:1084–1092

    Article  CAS  Google Scholar 

  40. Lindsey JS (2010) Synthetic routes to meso-patterned porphyrins. Acc Chem Res 43:300–311

    Article  CAS  Google Scholar 

  41. Muthukumaran K, Ptaszek M, Noll B, Scheidt WR, Lindsey JS (2004) Boron-complexation strategy for use with 1-acyldipyrromethanes. J Org Chem 69:5354–5364

    Article  CAS  Google Scholar 

  42. Dogutan DK, Ptaszek M, Lindsey JS (2008) Rational or statistical routes from 1-acyldipyrrimethanes to meso-substituted porphyrins. Distinct patterns, multiple pyridyl substituents, and amphipathic architectures. J Org Chem 73:6187–6201

    Article  CAS  Google Scholar 

  43. Melgiatto JD, Patterson D, Sherman BD, Moore TA, Gust D, Moore A (2012) Intramolecular hydrogen bonding as a synthetic tool to induce chemical selectivity in acid catalyzed porphyrin synthesis. Chem Commun 48:4558–4560

    Article  Google Scholar 

  44. Tamaru SI, Yu L, Youngblood WJ, Muthukumaran K, Taniguchi M, Lindsey JS (2004) A tin-complexation strategy for use with diverse acylation methods in the preparation of 1,9-diacyldipyrromethanes. J Org Chem 69:765–777

    Article  CAS  Google Scholar 

  45. Zaidi SHH, Muthukumaran K, Tamaru SI, Lindsey JS (2004) 9-Acylation of 1-acyldipyrromethane containing a dialkylboron mask for the α-acyldipyrrole motif. J Org Chem 69:8356–8365

    Article  CAS  Google Scholar 

  46. Rao PD, Dhanalekshmi S, Littler BJ, Lindsey JS (2000) Rational syntheses of porphyrins bearing up to four different meso substituents. J Org Chem 65:7323–7344

    Article  CAS  Google Scholar 

  47. Taniguchi M, Balakumar A, Fan D, McDowell BE, Lindsey JS (2005) Imine-substituted dipyrromethanes in the synthesis of porphyrins bearing one or two meso substituents. J Porphyr Phthalocyanines 9:554–574

    Article  CAS  Google Scholar 

  48. Fan D, Taniguchi M, Yao Z, Dhanalekshmi S, Lindsey JS (2005) 1,9-bis(N, N- dimethylaminomethyl)dipyrromethanes in the synthesis of porphyrins bearing one or two meso-substituents. Tetrahedron 61:10291–10302

    Article  CAS  Google Scholar 

  49. Broadhurst MJ, Grigg R, Johnson AW (1971) Synthesis of porphin analogues containing furan and/or thiophen rings. J Chem Soc C 3681–3690

    Google Scholar 

  50. Nguyen LT, Senge MO, Smith KM (1996) Simple methodology for syntheses of porphyrins possessing multiple peripheral substituents with an element of symmetry. J Org Chem 61:998–1003

    Article  CAS  Google Scholar 

  51. Lash TD (1996) Porphyrin synthesis by the “3+1” approach: new applications for an old methodology. Chem Eur J 2:1197–1200

    Article  CAS  Google Scholar 

  52. Wiehe A, Ryppa C, Senge MO (2002) A practical synthesis of meso-monosubstituted, β-unsubstituted porphyrins. Org Lett 4:3807–3809

    Article  CAS  Google Scholar 

  53. Briñas RP, Brückner C (2002) Synthesis of 5,10-diphenylporphyrin. Tetrahedron 58:4375–4381

    Article  Google Scholar 

  54. Senge MO, Ryppa C, Fazekas M, Zawadzka M, Dahms K (2011) 5,10-A2B2-type meso-substituted porphyrins-A unique class of porphyrins with a realigned dipole moment. Chem Eur J 17:13562–13573

    Article  CAS  Google Scholar 

  55. Brückner C, Sternberg ED, Boyle RW, Dolphin D (1997) 5,10-Diphenyltripyrrane, a useful building block for the synthesis of meso-phenyl substituted expanded macrocycles. Chem Commun 1689–1690

    Google Scholar 

  56. Nielsen KA, Levillain E, Lynch VM, Sessler JL, Jeppesen JO (2009) Tetrathiafulvalene porphyrins. Chem Eur J 15:506–516

    Article  CAS  Google Scholar 

  57. Dogutan DK, Zaidi SHH, Thamyongkit P, Lindsey JS (2007) New route to ABCD-porphyrins via bilanes. J Org Chem 72:7701–7714

    Article  CAS  Google Scholar 

  58. Dogutan DK, Lindsey JS (2008) Investigation of the scope of a new route to ABCD-bilanes and ABCD-porphyrins. J Org Chem 73:6728–6742

    Article  CAS  Google Scholar 

  59. Fuhrhop J-H (1978) Irreversible reactions on the porphyrin periphery (excluding oxidations, reductions, and photochemical reactions). In: Dolphin D (ed) The porphyrins, vol II. Academic, New York

    Google Scholar 

  60. Senge MO, Kalisch WW, Bischoff I (2000) The reaction of porphyrins with organolithium reagents. Chem Eur J 6:15

    Article  Google Scholar 

  61. Dahms K, Senge MO, Bakar MB (2007) Exploration of meso-substituted formylporphyrins and their Grignard and Wittig reactions. Eur J Org Chem 3833–3848

    Google Scholar 

  62. Kawamata Y, Tokuji S, Yorimitsu H, Osuka A (2011) Palladium-catalyzed β-selective direct arylation of porphyrins. Angew Chem Int Ed 50:8867–8870

    Article  CAS  Google Scholar 

  63. Tokuji S, Awane H, Yorimitsu H, Osuka A (2013) Direct arylation of meso-formyl porphyrin. Chem Eur J 19:64–68

    Article  CAS  Google Scholar 

  64. Sharman WM, Van Lier JE (2000) Use of palladium catalysis in the synthesis of novel porphyrins and phthalocyanines. J Porphyr Phthalocyanines 4:441–453

    Article  CAS  Google Scholar 

  65. Locos OB, Arnold DP (2006) The Heck reaction for porphyrin functionalization: synthesis of meso-alkenyl monoporphyrins and palladium-catalyzed formation of unprecedented meso-β ethene-linked diporphyins. Org Biomol Chem 4:902–916

    Article  CAS  Google Scholar 

  66. Notaras EGA, Fazekas M, Doyle JJ, Blau WJ, Senge MO (2007) A2B2-type push-pull porphyrins as reverse saturable and saturable absorbers. Chem Commun 2166–2168

    Google Scholar 

  67. Shi B, Boyle RW (2002) Synthesis of unsymmetrically substituted meso-phenylporphyrins by Suzuki cross coupling reactions. J Chem Soc Perkin Trans 1:1397–1400

    Article  Google Scholar 

  68. Horn S, Cundell B, Senge MO (2009) Exploration of the reaction of potassium organotrifluoroborates with porphyrins. Tetrahedron Lett 50:2562–2565

    Article  CAS  Google Scholar 

  69. Tomizaki K, Lysenko AB, Taniguchi M, Lindsey JS (2004) Synthesis of phenylethyne-linked porphyrin dyads. Tetrahedron 60:2011–2023

    Article  CAS  Google Scholar 

  70. Chinchilla R, Nagera C (2007) The Sonogashira reaction: a booming methodology in synthetic organic chemistry. Chem Rev 107:874–922

    Article  CAS  Google Scholar 

  71. Maeda C, Kim P, Cho S, Park JK, Lim JM, Kim D, Vura-Weis J, Wasielewski MR, Shinokubo H, Osuka A (2010) Large Porphyrin Squares from the self-assembly of meso-triazole-appended L-shaped meso-meso linked ZnII-triporphyrins: synthesis and efficient energy transfer. Chem Eur J 16:5052–5061

    Article  CAS  Google Scholar 

  72. Shea KM, Jaquinod L., Khoury R.G., Smith KM (1998) Dodecasubstituted metallochlorins (metallodihydroporphyrins). Chem Commun 759

    Google Scholar 

  73. Callot HJ (1972) Stereochimie de l’addition de carbenes sur la meso-tetraphenylporphine. Tetrahedron Lett 13:1011

    Article  Google Scholar 

  74. Takanami T, Wakita A, Sawaizumi A, Iso K, Onodera H, Suda K (2008) One-pot synthesis of meso-formylporphyrins by SNAr reaction of 5,15-disubstituted porphyrins with (2-pyridyldimethylsilyl)methyllithium. Org Lett 10:685–687

    Article  CAS  Google Scholar 

  75. Sugita N, Hayashi S, Hino F, Takanami T (2012) Palladium-catalyzed Kumada coupling reaction of bromoporphyrins with silylmethyl Grignard reagents: preparation of silylmethyl-substituted porphyrins as a multipurpose synthon for fabrication of porphyrin systems. J Org Chem 77:10488–10497

    Article  CAS  Google Scholar 

  76. Sergeeva NN, Scala A, Bakar MA, O’Riordan G, O’Brien J, Grassi G, Senge MO (2009) J Org Chem 74:7140–7147

    Article  CAS  Google Scholar 

  77. Senge MO (2011) Stirring the porphyrin alphabet soup-functionalization reactions for porphyrins. Chem Commun 47:1943–1960

    Article  CAS  Google Scholar 

  78. Senge MO, Shaker YM, Pintea M, Ryppa C, Hatscher SS, Ryan A, Sergeeva Y (2010) Synthesis of meso-substituted ABCD-type porphyrins by functionalization reactions. Eur J Org Chem 237–258

    Google Scholar 

  79. Senge MO, Feng X (2000) Regioselective reaction of 5,15-disubstituted porphyrins with organolithium reagents-synthetic access to 5,10,15-trisubstituted porphyrins and directly meso-meso linked bisporphyrins. J Chem Soc Perkin Trans 1:3615–3621

    Article  Google Scholar 

  80. Feng X, Senge MO (2000) One-pot synthesis of functionalized asymmetric 5,10,15,20-substituted porphyrins from 5,15-diaryl- or dialkyl-porphyrins. Tetrahedron 56:587–590

    Article  CAS  Google Scholar 

  81. Feng X, Bischoff I, Senge MO (2001) Mechanistic studies on the nucleophilic reaction of porphyrins with organolithium reagents. J Org Chem 66:8693–8700

    Article  CAS  Google Scholar 

  82. Charalambidis G, Ladomenou K, Boitrel B, Coutsolelos AG (2009) Synthesis and studies of a super-structured porphyrin derivative- a potential building block for CcO mimic models. Eur J Org Chem 1263–1268

    Google Scholar 

  83. Eckes F, Deiters E, Metivet A, Bulach V, Hosseini MW (2011) Synthesis and structural analysis of porphyrin-based polynucleating ligands bearing 8-methoxy- and 8-(allyloxy)quinoline units. Eur J Org Chem 2531–254

    Google Scholar 

  84. Boerner LJK, Nath M, Pink M, Zaleski JM (2011) Synthesis of unique extended π structures by Pt-mediated benzannulation of nickel tetraalkynylporphyrins. Chem Eur J 17:9311–9315

    Article  CAS  Google Scholar 

  85. Varamo M, Loock B, Maillards P, Grierson DS (2007) Developments of strategies for the regiocontrolled synthesis of meso-5,10,15,20-triaryl-2,3-chlorins. Org Lett 23:4689–4692

    Article  Google Scholar 

  86. Achell S, Couleaud P, Baldeck P, Teulade-Fichou MP, Maillard P (2011) Carbohydrate-porphyrin conjugates with two-photon absorption properties as potential photosensitizing agents for photodynamic therapy. Eur J Org Chem 1271–1279

    Google Scholar 

  87. Whitlock HW, Hanauer R, Oster MY, Bower BK (1969) Diimide reduction of porphyrins. J Am Chem Soc 91:7485–7489

    Article  CAS  Google Scholar 

  88. Locos OB, Heindl CC, Corral A, Senge MO, Scanlan EM (2010) Efficient synthesis of glycoporphyrins by microwave-mediated “click” reactions. Eur J Org Chem 1026–1028

    Google Scholar 

  89. Huisgen R (1984) In: Padwa A (ed) 1,3-dipolar cycloaddition chemistry. New York, Wiley

    Google Scholar 

  90. Monnereau C, Rebilly J-N, Reinaud O (2011) Synthesis and first studies of the host-guest and substrate recognition properties of a porphyrin-tethered calyx[6]arene ditopic ligand. Eur J Org Chem 166–175

    Google Scholar 

  91. Stoddart JF (2001) Molecular machines. Acc Chem Res 34:410–411

    Article  CAS  Google Scholar 

  92. Flood AH, Ramirez RJA, Deng WQ, Muller RP, Goddard WA III, Stoddart JF (2004) Meccano on the nanoscale—a blueprint for making some of the world’s tiniest machines. Aust J Chem 57:301–322

    Article  CAS  Google Scholar 

  93. Sauvage JP (2001) A light-driven linear motor at the molecular level. Science 291:2105–2106

    Article  CAS  Google Scholar 

  94. Guenet A, Graf E, Kyritsakas N, Hosseini MW (2011) Porphyrin-based switchable molecular turnstiles. Chem Eur J 17:6443–6452

    Article  CAS  Google Scholar 

  95. Muraoka T, Kinbara K, Aida T (2006) A self-locking molecule operative with a photoresponsive key. J Am Chem Soc 128:11600–11605

    Article  CAS  Google Scholar 

  96. Lindsey JS, Prathapan S, Johnson JS, Wagner RW (1994) Porphyrin building blocks for modular construction of bioorganic model systems. Tetrahedron 50:8941–8968

    Article  CAS  Google Scholar 

  97. Rajeswara Rao M, Ravikanth M (2011) Synthesis and studied of covalently linked porphyrin-expanded heteroporphyrin dyads. Eur J Org Chem 1335–1345

    Google Scholar 

  98. Mizumura M, Shinokubo H, Osuka A (2008) Synthesis of chiral porphyrins through Pd-catalyzed [3+2] annulation and heterochiral self-assembly. Angew Chem Int Ed 47:5378–5381

    Article  CAS  Google Scholar 

  99. Yao Z, Bhaumik J, Dhanalekshmi S, Ptaszek M, Rodriguez P, Lindsey JS (2007) Synthesis of porphyrins bearing 1–4 hydroxymethyl groups and other one-carbon oxygenic substituents in distinct patterns. Tetrahedron 63:10657–10670

    Article  CAS  Google Scholar 

  100. Muresan AZ, Lindsey JS (2008) Design and synthesis of water-soluble bioconjugatable trans-AB-porphyrins. Tetrahedron 64:11440–11448

    Article  CAS  Google Scholar 

  101. Fujisawa K, Satake A, Hirota S, Kobuke Y (2008) Construction of giant porphyrin macrorings self-assembled from thiophenylene-linked bisporphyrins for light-harvesting antennae. Chem Eur J 14:10735–10744

    Article  CAS  Google Scholar 

  102. Maes W, Ngo TH, Starukhin AS, Kruk MM, Dehaen W (2010) meso-Indolo[3,2-b]carbazolyl-substituted porphyrinoids: synthesis, characterization and effect of the number of indolocarbazole moieties on the photophysical properties. Eur J Org Chem 2576–2586

    Google Scholar 

  103. Suijkerbuijk BMJM, Gebbink JMK (2008) Merging porphyrins with organometallics: synthesis and applications. Angew Chem Int Ed 47:7396–7421

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Nardis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nardis, S. (2013). Synthetic Routes to Unsymmetrical Porphyrins. In: Paolesse, R. (eds) Synthesis and Modifications of Porphyrinoids. Topics in Heterocyclic Chemistry, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2013_109

Download citation

Publish with us

Policies and ethics