Skip to main content

β-Diketo Building Blocks for MCRs-Based Syntheses of Heterocycles

  • Chapter
  • First Online:
Synthesis of Heterocycles via Multicomponent Reactions I

Abstract

In the context of sustainable chemistry, because of economic and ecological increasing pressure, domino multicomponent reactions (MCRs) constitute a central academic and industrial investigation domain in diversity-oriented synthesis of functionalized heterocycles. Although isocyanide-based MCRs generally predominate nowadays, the use of 1,3-dicarbonyls as substrates, proposed as early as 1882 by Hantzsch, proved to be highly efficient, but have been relatively unexplored until recently. In the last few years, such transformations received a growing attention as new useful methodologies valuable for the selective direct access to highly functionalized small organic molecules of primary synthetic and biological value. This review focuses on the more significant recent developments on the use of β-diketo building blocks for MCRs published in the last 5 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

aemim:

Aminoethyl methylimidazolium

BDMS:

Bromodimethylsulfonium bromide

bmim:

Butyl methylimidazolium

CAN:

Cerium(IV) ammonium nitrate

cat:

Catalyst

DABCO:

Diazabicyclo[2.2.2]octane

DBU:

1,8-Diazabicyclo[5.4.0]undec-7-ene

DCE:

Dichloroethane

DHP:

Dihydropyridine

DHPM:

Dihydropyrimidinone

DMF:

Dimethylformamide

ee:

Enantiomeric excess

HPLC:

High performance liquid chromatography

IBX:

2-Iodoxybenzoic acid

L*:

Ligand

LUMO:

Lowest unoccupied molecular orbital

MARDi:

Michael addition-Aldolisation-Retro-Dieckmann

MCR:

Multicomponent reaction

MS:

Molecular sieves

MW:

Microwave

PFO:

Perfluorooctanoate

p-TSA:

Para-toluenesulfonic acid

RCM:

Ring closing metathesis

rt:

Room temperature

TBAF:

Tetrabutylammonium fluoride

TEBA:

Triethylbenzylammonium chloride

THF:

Tetrahydrofurane

TMAH:

Tetramethylammonium hydroxide

TMSCl:

Trimethylsilyl chloride

Yb:

Ytterbium

References

  1. For a special issue in green chemistry (2007) see: Chem Rev 107:2167–2820

    Google Scholar 

  2. Zhu J, Bienaime H (2005) Multicomponent reactions. Wiley-VCH, Weinheim

    Google Scholar 

  3. Tietze LF, Brasche G, Gericke KM (2006) Domino reactions in organic synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  4. Orru RVA, de Greef M (2003) Recent advances in solution-phase multicomponent methodology for the synthesis of heterocyclic compounds. Synthesis 10:1471–1499

    Google Scholar 

  5. Ramon DJ, Yus M (2005) Asymmetric multicomponent reactions (AMCRs): the new frontier. Angew Chem Int Ed 44:1602–1634

    CAS  Google Scholar 

  6. Guillena G, Ramon DJ, Yus M (2007) Organocatalytic enantioselective multicomponent reactions (OEMCRs). Tetrahedron-Asymmetry 18:693–700

    CAS  Google Scholar 

  7. Padwa A, Bur SK (2007) The domino way to heterocycles. Tetrahedron 63:5341–5378

    CAS  Google Scholar 

  8. Vugts DJ, Koningstein MM, Schmitz RF, de Kanter FJJ, Groen MB, Orru RVA (2006) Multicomponent synthesis of dihydropyrimidines and thiazines. Chem Eur J 12:7178–7189

    CAS  Google Scholar 

  9. Nielsen TE, Schreiber SL (2008) Diversity-oriented synthesis – towards the optimal screening collection: a synthesis strategy. Angew Chem Int Ed 47:48–56

    CAS  Google Scholar 

  10. Trost BM (2002) On inventing reactions for atom economy. Acc Chem Res 35:695–705

    CAS  Google Scholar 

  11. Wender PA, Baryza JL, Brenner SE, Clarke MO, Gamber CG, Horan JC, Jessop TC, Kan C, Pattabiraman K, Williams TJ (2003) Inspirations from nature. New reactions, therapeutic leads, and drug delivery systems. Pure Appl Chem 75:143–155

    CAS  Google Scholar 

  12. Wender PA, Gamber GG, Hubbard RD, Pham SM, Zhang L (2005) Inspirations from nature. New reactions, therapeutic leads, and drug delivery systems. J Am Chem Soc 127:2836–2837

    CAS  Google Scholar 

  13. Wender PA, Handy ST, Wright DL (1997) Towards the ideal synthesis. Chem Ind 765–768

    Google Scholar 

  14. Zhu JP (2003) Recent developments in the isonitrile-based multicomponent synthesis of heterocycles. Eur J Org Chem 1133–1144

    Google Scholar 

  15. Domling A (2006) Recent developments in isocyanide-based multicomponent reactions in applied chemistry. Chem Rev 106:17–89

    Google Scholar 

  16. Simon C, Constantieux T, Rodriguez J (2004) Utilisation of 1,3-dicarbonyl derivatives in multicomponent reactions. Eur J Org Chem 4957–4980

    Google Scholar 

  17. Reddy GM, Shiradkar M, Chakravarthy AK (2007) Chemical and pharmacological significance of 1,4-dihydropyridines. Curr Org Chem 11:847–852

    CAS  Google Scholar 

  18. Murakami Y, Kikuchi J, Hisaeda Y, Hayashida O (1996) Artificial enzymes. Chem Rev 96:721–758

    CAS  Google Scholar 

  19. Sambongi Y, Nitta H, Ichihashi K, Futai M, Ueda I (2002) A novel water-soluble Hantzsch 1,4-dihydropyridine compound that functions in biological processes through NADH regeneration. J Org Chem 67:3499–3501

    CAS  Google Scholar 

  20. Moseley JD (2005) Alternative esters in the synthesis of ZD0947. Tetrahedron Lett 46:3179–3181

    CAS  Google Scholar 

  21. Mobinikhaledi A, Foroughifar N, Fard MAB, Moghanian H, Ebrahimi S, Kalhor M (2009) Efficient one-pot synthesis of polyhydroquinoline derivatives using silica sulfuric acid as a heterogeneous and reusable catalyst under conventional heating and energy-saving microwave irradiation. Synth Commun 39:1166–1174

    CAS  Google Scholar 

  22. Sapkal SB, Shelke KF, Shingate BB, Shingare MS (2009) Nickel nanoparticle-catalyzed facile and efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation under solvent-free conditions. Tetrahedron Lett 50:1754–1756

    CAS  Google Scholar 

  23. Kumar A, Maurya RA (2008) Efficient synthesis of Hantzsch esters and polyhydroquinoline derivatives in aqueous micelles. Synlett 883–885

    Google Scholar 

  24. Wang SX, Li ZY, Zhang JC, Li JT (2008) The solvent-free synthesis of 1,4-dihydropyridines under ultrasound irradiation without catalyst. Ultrason Sonochem 15:677–680

    CAS  Google Scholar 

  25. Mekheimer RA, Hameed AA, Sadek KU (2008) Solar thermochemical reactions: four-component synthesis of polyhydroquinoline derivatives induced by solar thermal energy. Green Chem 10:592–593

    CAS  Google Scholar 

  26. Bandgar BP, More PE, Kamble VT, Totre JV (2008) Synthesis of polyhydroquinoline derivatives under aqueous media. Arkivoc 1–8

    Google Scholar 

  27. Heydari A, Khaksar S, Tajbakhsh M, Bijanzadeh HR (2009) One-step, synthesis of Hantzsch esters and polyhydroquinoline derivatives in fluoro alcohols. J Fluor Chem 130:609–614

    CAS  Google Scholar 

  28. Kumar S, Sharma P, Kapoor KK, Hundal MS (2008) An efficient, catalyst- and solvent-free, four-component, and one-pot synthesis of polyhydroquinolines on grinding. Tetrahedron 64:536–542

    CAS  Google Scholar 

  29. Legeay JC, Goujon JY, Eynde JJV, Toupet L, Bazureau JP (2006) Liquid-phase synthesis of polyhydroquinoline using task-specific ionic liquid technology. J Comb Chem 8:829–833

    CAS  Google Scholar 

  30. Wang LM, Sheng J, Zhang L, Han JW, Fan ZY, Tian H, Qian CT (2005) Facile Yb(OTf)(3) promoted one-pot synthesis of polyhydroquinoline derivatives through Hantzsch reaction. Tetrahedron 61:1539–1543

    CAS  Google Scholar 

  31. Nagarapu L, Kumari MD, Kumari NV, Kantevari S (2007) MCM-41 catalyzed rapid and efficient one-pot synthesis of polyhydroquinolines via the Hantzsch reaction under solvent-free conditions. Catal Commun 8:1871–1875

    CAS  Google Scholar 

  32. Kumar A, Maurya RA (2007) Bakers' yeast catalyzed synthesis of polyhydroquinoline derivatives via an unsymmetrical Hantzsch reaction. Tetrahedron Lett 48:3887–3890

    CAS  Google Scholar 

  33. Kumar A, Maurya RA (2007) Synthesis of polyhydroquinoline derivatives through unsymmetric Hantzsch reaction using organocatalysts. Tetrahedron 63:1946–1952

    CAS  Google Scholar 

  34. Das Sharma S, Hazarika P, Konwar D (2008) A simple, green and one-pot four-component synthesis of 1,4-dihydropyridines and their aromatization. Catal Commun 9:709–714

    CAS  Google Scholar 

  35. Debache A, Boulcina R, Belfaitah A, Rhouati S, Carboni B (2008) One-pot synthesis of 1,4-dihydropyridines via a phenylboronic acid catalyzed Hantzsch three-component reaction. Synlett 509–512

    Google Scholar 

  36. Cherkupally SR, Mekala R (2008) P-TSA catalyzed facile and efficient synthesis of polyhydroquinoline derivatives through Hantzsch multi-component condensation. Chem Pharm Bull 56:1002–1004

    CAS  Google Scholar 

  37. Akbari JD, Tala SD, Dhaduk MF, Joshi HS (2008) Molecular iodine-catalyzed one-pot synthesis of some new Hantzsch 1,4-dihydropyridines at ambient temperature. Arkivoc 126–U21

    Google Scholar 

  38. Sabitha G, Arundhathi K, Sudhakar K, Sastry BS, Yadav JS (2009) CeCl3 center dot 7H2O-Catalyzed one-pot synthesis of Hantzsch 1,4-dihydropyridines at room temperature. Synth Commun 39:2843–2851

    CAS  Google Scholar 

  39. Suresh KD, Sandhu JS (2009) New efficient protocol for the production of Hantzsch 1,4-dihydropyridines using RuCl3. Synth Commun 39:1957–1965

    CAS  Google Scholar 

  40. Debache A, Ghalem W, Boulcina R, Belfaitah A, Rhouati S, Carboni B (2009) An efficient one-step synthesis of 1,4-dihydropyridines via a triphenylphosphine-catalyzed three-component Hantzsch reaction under mild conditions. Tetrahedron Lett 50:5248–5250

    CAS  Google Scholar 

  41. Evans CG, Gestwicki JE (2009) Enantioselective organocatalytic Hantzsch synthesis of polyhydroquinolines. Org Lett 11:2957–2959

    CAS  Google Scholar 

  42. Martin NJA, Cheng X, List B (2008) Organocatalytic asymmetric transferhydrogenation of beta-nitroacrylates: accessing beta(2)-amino acids. J Am Chem Soc 130:13862–13863

    CAS  Google Scholar 

  43. Simon L, Goodman JM (2008) Theoretical study of the mechanism of Hantzsch ester hydrogenation of imines catalyzed by chiral BINOL-phosphoric acids. J Am Chem Soc 130:8741–8747

    CAS  Google Scholar 

  44. Franke PT, Johansen RL, Bertelsen S, Jorgensen KA (2008) Organocatalytic enantioselective one-pot synthesis and application of substituted 1,4-dihydropyridines – Hantzsch ester analogues. Chem Asian J 3:216–224

    CAS  Google Scholar 

  45. Heravi MM, Behbahani FK, Oskooie HA, Shoar RH (2005) Catalytic aromatization of Hantzsch 1,4-dihydropyridines by ferric perchlorate in acetic acid. Tetrahedron Lett 46:2775–2777

    CAS  Google Scholar 

  46. Yadav JS, Reddy BVS, Basak AK, Baishya G, Narsaiah AV (2006) Iodoxybenzoic acid (IBX): an efficient and novel oxidizing agent for the aromatization of 1,4-dihydropyridines. Synthesis 451–454

    Google Scholar 

  47. Xia JJ, Wang GW (2005) One-pot synthesis and aromatization of 1,4-dihydropyridines in refluxing water. Synthesis 2379–2383

    Google Scholar 

  48. Tu SJ, Jiang B, Jia RH, Zhang JY, Zhang Y (2007) An efficient and expeditious microwave-assisted synthesis of 4-azafluorenones via a multi-component reaction. Tetrahedron Lett 48:1369–1374

    CAS  Google Scholar 

  49. Shen L, Cao S, Wu JJ, Zhang J, Li H, Liu NJ, Qian XH (2009) A revisit to the Hantzsch reaction: unexpected products beyond 1,4-dihydropyridines. Green Chem 11:1414–1420

    CAS  Google Scholar 

  50. Tu SJ, Wu SS, Yan S, Hao WJ, Zhang XH, Cao XD, Han ZG, Jiang B, Shi F, Xia M, Zhou JF (2009) Design and microwave-assisted synthesis of naphtho 2,3-f quinoline derivatives and their luminescent properties. J Comb Chem 11:239–242

    CAS  Google Scholar 

  51. Shi F, Yan S, Zhou DX, Tu SJ, Zou X, Hao WJ, Zhang XH, Han ZG, Wu SS, Cao XD (2009) A facile and efficient synthesis of novel pyrimido 5,4-b 4,7 phenanthroline-9,11(7H, 8H, 10H, 12H)-dione derivatives via microwave-assisted multicomponent reactions. J Heterocycl Chem 46:563–566

    CAS  Google Scholar 

  52. Wang XH, Hao WJ, Tu SJ, Zhang XH, Cao XD, Yan S, Wu SS, Han ZG, Shi F (2009) Microwave-assisted multicomponent reaction for the synthesis of new and significative bisfunctional compounds containing two furo 3,4-b quinoline and acridinedione skeletons. J Heterocycl Chem 46:742–747

    CAS  Google Scholar 

  53. Tu SJ, Cao LJ, Zhang Y, Shao QQ, Zhou DX, Li CM (2008) An efficient synthesis of pyrido 2,3-d pyrimidine derivatives and related compounds under ultrasound irradiation without catalyst. Ultrason Sonochem 15:217–221

    CAS  Google Scholar 

  54. Wang XS, Zhang MM, Jiang H, Shi DQ, Tu SJ, Wei XY, Zong ZM (2006) An improved and benign synthesis of 9,10-diarylacridine-1,8-dione and indenoquinoline derivatives from 3-anilino-5,5-dimethylcyclohex-2-enones, benzaldehydes, and 1,3-dicarbonyl compounds in an ionic liquid medium. Synthesis 4187–4199

    Google Scholar 

  55. Dondoni A, Massi A, Aldhoun M (2007) Hantzsch-type three-component approach to a new family of carbon-linked glycosyl amino acids. synthesis of C-glycosylmethyl pyridylalanines. J Org Chem 72:7677–7687

    CAS  Google Scholar 

  56. Ducatti DRB, Massi A, Noseda MD, Duarte MER, Dondoni A (2009) Dihydropyridine C-glycoconjugates by organocatalytic Hantzsch cyclocondensation. Stereoselective synthesis of alpha-threofuranose C-nucleoside enantiomers. Org Biomol Chem 7:1980–1986

    CAS  Google Scholar 

  57. Muravyova EA, Shishkina SV, Musatov VI, Knyazeva IV, Shishkin OV, Desenko SM, Chebanov VA (2009) Chemoselectivity of multicomponent condensations of barbituric acids, 5-aminopyrazoles, and aldehydes. Synthesis 1375–1385

    Google Scholar 

  58. Chebanov VA, Saraev VE, Desenko SM, Chernenko VN, Knyazeva IV, Groth U, Glasnov TN, Kappe CO (2008) Tuning of chemo- and regioselectivities in multicomponent condensations of 5-aminopyrazoles, dimedone, and aldehydes. J Org Chem 73:5110–5118

    CAS  Google Scholar 

  59. Tu SJ, Zhang Y, Jiang H, Jiang B, Zhang JY, Jia RH, Shi F (2007) A simple synthesis of furo 3′,4′: 5,6 pyrido 2,3-d pyrimidine derivatives through multicomponent reactions in water. Eur J Org Chem 1522–1528

    Google Scholar 

  60. Shaabani A, Rahmati A, Rezayan AH, Darvishi M, Badri Z, Sarvari A (2007) Clean synthesis in water: Uncatalyzed three-component condensation reaction of 3-amino-1,2,4-triazole or 2-aminobenzimidazole with aldehyde in the presence of activated CH-Acids. QSAR Comb Sci 26:973–979

    CAS  Google Scholar 

  61. Kolosov MA, Orlov VD, Beloborodov DA, Dotsenko VV (2009) A chemical placebo: NaCl as an effective, cheapest, non-acidic and greener catalyst for Biginelli-type 3,4-dihydropyrimidin-2(1H)-ones (-thiones) synthesis. Mol Divers 13:5–25

    CAS  Google Scholar 

  62. De Souza R, da Penha ET, Milagre HMS, Garden SJ, Esteves PM, Eberlin MN, Antunes OAC (2009) The three-component Biginelli reaction: a combined experimental and theoretical mechanistic investigation. Chem Eur J 15:9799–9804

    Google Scholar 

  63. Sabitha G, Reddy KB, Yadav JS, Shailaja D, Sivudu KS (2005) Ceria/vinylpyridine polymer nanocomposite: an ecofriendly catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Lett 46:8221–8224

    CAS  Google Scholar 

  64. Shaabani A, Rahmati A (2005) Ionic liquid promoted efficient synthesis of 3,4-dihydropyrimidin-2-(1H)-ones. Catal Lett 100:177–179

    CAS  Google Scholar 

  65. Dabiri M, Salehi P, Baghbanzadeh M, Shakouri M, Otokesh S, Ekrami T, Doosti R (2007) Efficient and eco-friendly synthesis of dihydropyrimidinones, bis(indolyl) methanes, and N-alkyl and N-arylimides in ionic liquids. J Iran Chem Soc 4:393–401

    CAS  Google Scholar 

  66. Legeay JC, Eynde JJV, Bazureau JP (2008) Ionic liquid phase organic synthesis (IoLiPOS) methodology applied to the preparation of new 3,4-dihydropyrimidine-2(1H)-ones bearing bioisostere group in N-3 position. Tetrahedron 64:5328–5335

    CAS  Google Scholar 

  67. Gui JZ, Liu D, Wang C, Lu F, Lian JZ, Jiang H, Sun ZL (2009) One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones Catalyzed by Acidic Ionic Liquids Under Solvent-Free Conditions. Synth Commun 39:3436–3443

    CAS  Google Scholar 

  68. Putilova ES, Troitskii NA, Zlotin SG, Khudina OG, Burgart YV, Saloutin VI, Chupakhin ON (2006) One-step solvent-free synthesis of fluoroalkyl-substituted 4-hydroxy-2-oxo(thioxo)hexahydropyrimidines in the presence of 1-butyl-3-methylimidazolium tetrafluoroborate. Russ J Org Chem 42:1392–1395

    CAS  Google Scholar 

  69. Ming L, Guo WS, Wen LR, Li YF, Yang HZ (2006) One-pot synthesis of Biginelli and Hantzsch products catalyzed by non-toxic ionic liquid (BMImSac) and structural determination of two products. J Mol Catal A: Chem 258:133–138

    Google Scholar 

  70. Bose DS, Sudharshan M, Chavhan SW (2005) New protocol for Biginelli reaction-a practical synthesis of monastrol. Arkivoc 228–236

    Google Scholar 

  71. Dong F, Jun L, Xinli Z, Zhiwen Y, Zuliang L (2007) One-pot green procedure for Biginelli reaction catalyzed by novel task-specific room-temperature ionic liquids. J Mol Catal A: Chem 274:208–211

    CAS  Google Scholar 

  72. Comas H, Buisson DA, Najman R, Kozielski F, Rousseau B, Lopez R (2009) Synthesis of 5-Acyl-3,4-dihydropyrimidine-2-thiones via solvent-free, solution-phase and solid-phase Biginelli procedures. Synlett 1737–1740

    Google Scholar 

  73. Bahrami K, Khodaei MM, Farrokhi A (2009) Highly efficient solvent-free synthesis of dihydropyrimidinones catalyzed by zinc oxide. Synth Commun 39:1801–1808

    CAS  Google Scholar 

  74. Gross GA, Wurziger H, Schober A (2006) Solid-phase synthesis of 4,6-diaryl-3,4-dihydropyrimidine-2(1H)-one-5-carboxylic acid amide derivatives: a Biginelli three-componentcondensation protocol based on immobilized beta-ketoamides. J Comb Chem 8:153–155

    CAS  Google Scholar 

  75. Desai B, Dallinger D, Kappe CO (2006) Microwave-assisted solution phase synthesis of dihydropyrimidine C5 amides and esters. Tetrahedron 62:4651–4664

    CAS  Google Scholar 

  76. Kumar A, Maurya RA (2007) An efficient bakers' yeast catalyzed synthesis of 3,4-dihydropyrimidin-2-(1H)-ones. Tetrahedron Lett 48:4569–4571

    CAS  Google Scholar 

  77. Zalavadiya P, Tala S, Akbari J, Joshi H (2009) Multi-component synthesis of dihydropyrimidines by iodine catalyst at ambient temperature and in-vitro anti mycobacterial activity. Arch Pharm 342:469–475

    CAS  Google Scholar 

  78. Hegedus A, Hell Z, Vigh I (2006) Convenient one-pot heterogeneous catalytic method for the preparation of 3,4-dihydropyrimidin-2(1H)-ones. Synth Commun 36:129–136

    Google Scholar 

  79. Joseph JK, Jain SL, Sain B (2006) Ion exchange resins as recyclable and heterogeneous solid acid catalysts for the Biginelli condensation: an improved protocol for the synthesis of 3,4-dihydropyrimidin-2-ones. J Mol Catal A: Chem 247:99–102

    CAS  Google Scholar 

  80. Han XY, Xu F, Luo YQ, Shen Q (2005) An efficient one-pot synthesis of dihydropyrimidinones by a samarium diiodide catalyzed Biginelli reaction under solvent-free conditions. Eur J Org Chem 1500–1503

    Google Scholar 

  81. Putilova ES, Troitskii NA, Zlotin SG (2005) Reaction of aromatic aldehydes with beta-dicarbonyl compounds in a catalytic system: piperidinium acetate – 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. Russ Chem Bull 54:1233–1238

    CAS  Google Scholar 

  82. Khunt RC, Akbari JD, Manvar AT, Tala SD, Dhaduk MF, Joshi HS, Shah A (2008) Green chemistry approach to synthesis of some new trifluoromethyl containing tetrahydropyrimidines under solvent-free conditions. Arkivoc 277–U8

    Google Scholar 

  83. Ryabukhin SV, Plaskon AS, Ostapchuk EN, Volochnyuk DM, Shishkin OV, Tolmachev AA (2008) CF3-substituted 1,3-dicarbonyl compounds in the Biginelli reaction promoted by chlorotrimethylsilane. J Fluor Chem 129:625–631

    CAS  Google Scholar 

  84. Azizian J, Mirza B, Mojtahedi MM, Abaee MS, Sargordan M (2008) Biginelli reaction for synthesis of novel trifluoromethyl derivatives of bis(tetrahydropyrimidinone)benzenes. J Fluor Chem 129:1083–1089

    CAS  Google Scholar 

  85. Amini MM, Shaabani A, Bazgir A (2006) Tangstophosphoric acid (H3PW12O40): an efficient and eco-friendly catalyst for the one-pot synthesis of dihydropyrimidin-2(1H)-ones. Catal Commun 7:843–847

    CAS  Google Scholar 

  86. Byk G, Kabha E (2006) A solid-supported stereoselective multicomponent reaction: One-pot generation of three asymmetric carbons. Synlett 747–748

    Google Scholar 

  87. Nilsson BL, Overman LE (2006) Concise synthesis of guanidine-containing heterocycles using the Biginelli reaction. J Org Chem 71:7706–7714

    CAS  Google Scholar 

  88. Hulme R, Zamora ODP, Mota EJ, Pasten MA, Contreras-Rojas R, Miranda R, Valencia-Hernandez I, Correa-Basurto J, Trujillo-Ferrara J, Delgado F (2008) Cyanamide: a convenient building block to synthesize 4-aryl-2-cyanoimino-3,4-dihydro-1H-pyrimidine systems via a multicomponent reaction. Tetrahedron 64:3372–3380

    CAS  Google Scholar 

  89. Kappe CO (2000) Biologically active dihydropyrimidones of the Biginelli-type – a literature survey. Eur J Med Chem 35:1043–1052

    CAS  Google Scholar 

  90. Kappe CO (2003) The generation of dihydropyrimidine libraries utilizing Biginelli multicomponent chemistry. QSAR Comb Sci 22:630–645

    CAS  Google Scholar 

  91. Gong LZ, Chen XH, Xu XY (2007) Asymmetric organocatalytic biginelli reactions: a new approach to quickly access optically active 3,4-dihydropyrimidin-2-(1H)-ones. Chem Eur J 13:8920–8926

    CAS  Google Scholar 

  92. Kappe CO, Uray G, Roschger P, Lindner W, Kratky C, Keller W (1992) Synthesis and reactions of Biginelli compounds. 5. Facile preparation and resolution of a stable 5-dihydropyrimidinecarboxylic acid. Tetrahedron 48:5473–5480

    CAS  Google Scholar 

  93. Schnell B, Strauss UT, Verdino P, Faber K, Kappe CO (2000) Synthesis of enantiomerically pure 4-aryl-3,4-dihydro-pyrimidin-2(1H)-ones via enzymatic resolution: preparation of the antihypertensive agent (R)-SQ 32926. Tetrahedron Asymmetry 11:1449–1453

    CAS  Google Scholar 

  94. Dondoni A, Massi A (2006) Design and synthesis of new classes of Heterocyclic C-glycoconjugates and carbon-linked sugar and heterocyclic amino acids by asymmetric multicomponent reactions (AMCRs). Acc Chem Res 39:451–463

    CAS  Google Scholar 

  95. Huang YJ, Yang FY, Zhu CJ (2005) Highly enantioseletive biginelli reaction using a new chiral ytterbium catalyst: Asymmetric synthesis of dihydropyrimidines. J Am Chem Soc 127:16386–16387

    CAS  Google Scholar 

  96. Chen XH, Xu XY, Liu H, Cun LF, Gong LZ (2006) Highly enantioselective organocatalytic Biginelli reaction. J Am Chem Soc 128:14802–14803

    CAS  Google Scholar 

  97. Li N, Chen XH, Song J, Luo SW, Fan W, Gong LZ (2009) Highly enantioselective organocatalytic Biginelli and Biginelli-like condensations: reversal of the stereochemistry by tuning the 3,3′-disubstituents of phosphoric acids. J Am Chem Soc 131:15301–15310

    CAS  Google Scholar 

  98. Goss JM, Schaus SE (2008) Enantioselective synthesis of SNAP-7941: chiral dihydropyrimidone inhibitor of MCH1-R. J Org Chem 73:7651–7656

    CAS  Google Scholar 

  99. Wu YY, Chai Z, Liu XY, Zhao G, Wang SW (2009) Synthesis of substituted 5-(Pyrrolidin-2-yl)tetrazoles and their application in the asymmetric Biginelli reaction. Eur J Org Chem 904–911.

    Google Scholar 

  100. Jeyaraman R, Avila S (1981) Chemistry of 3-azabicyclo 3.3.1 nonanes. Chem Rev 81:149–174

    CAS  Google Scholar 

  101. Metten B, Kostermans M, Van Baelen G, Smet M, Dehaen W (2006) Synthesis of 5-aryl-2-oxopyrrole derivatives as synthons for highly substituted pyrroles. Tetrahedron 62:6018–6028

    CAS  Google Scholar 

  102. Shen L, Cao S, Liu NJ, Wu JJ, Zhu LJ, Qian XH (2008) Ytterbium(III) perfluorooctanoate catalyzed one-pot, three-component synthesis of fully substituted pyrazoles under solvent-free conditions. Synlett 1341–1344

    Google Scholar 

  103. Shen L, Zhang J, Cao S, Yu JL, Liu NJ, Wu JJ, Qian XH (2008) One-pot synthesis of trifluoromethyl-containing pyrazoles via sequential Yb(PFO)(3)-catalyzed three-component reaction and IBX-mediated oxidation. Synlett 3058–3062

    Google Scholar 

  104. Khan AT, Parvin T, Choudhury LH (2008) Effects of Substituents in the beta-Position of 1,3-dicarbonyl compounds in bromodimethylsulfonium bromide-catalyzed multicomponent reactions: a facile access to functionalized piperidines. J Org Chem 73:8398–8402

    CAS  Google Scholar 

  105. Habib-Zahmani H, Hacini S, Charonnet E, Rodriguez J (2002) A new multicomponent domino transformation of 1,3-dicarbonyl compounds: one-pot regio-, chemo- and stereoselective access to valuable alpha,gamma-difunctionalized alpha-ketoesters and amides. Synlett 1827–1830

    Google Scholar 

  106. Wang XS, Li Q, Wu JR, Li YL, Yao CS, Tu SJ (2008) An efficient and highly selective method for the synthesis of 3-arylbenzoquinoline derivatives catalyzed by iodine via three-component reactions. Synthesis 1902–1910

    Google Scholar 

  107. Tu SJ, Zhang Y, Zhang JY, Jiang B, Jia RH, Zhang JP, Ji SJ (2006) A simple procedure for the synthesis of 4-aza-podophyllotoxin derivatives in water under microwave irradiation conditions. Synlett 2785–2790

    Google Scholar 

  108. Wender PA, Zercher CK, Beckham S, Haubold EM (1993) A photochemically triggered DNA-cleaving agent – synthesis, mechanistic and DNA cleavage studies on a new analog of the antitumor antibiotic dynemicin. J Org Chem 58:5867–5869

    CAS  Google Scholar 

  109. Ori M, Toda N, Takami K, Tago K, Kogen H (2005) Stereospecific synthesis of 2,2,3-trisubstituted tetrahydroquinolines: application to the total syntheses of benzastatin E and natural virantmycin. Tetrahedron 61:2075–2104

    CAS  Google Scholar 

  110. Zhang W, Guo YP, Liu ZG, Jin XL, Yang L, Liu ZL (2005) Photochemically catalyzed Diels-Alder reaction of arylimines with N-vinylpyrrolidinone and N-vinylcarbazole by 2,4,6-triphenylpyrylium salt: synthesis of 4-heterocycle-substituted tetrahydroquinoline derivatives. Tetrahedron 61:1325–1333

    CAS  Google Scholar 

  111. Kadutskii AP, Kozlov NG (2006) A novel three-component reaction of anilines, formaldehyde and beta-diketones: simple synthesis of 3-spirosubstituted 1,2,3,4-tetrahydroquinolines. Synlett 3349–3351

    Google Scholar 

  112. Fujioka H, Murai K, Kubo O, Ohba Y, Kita Y (2007) New three-component reaction: novel formation of a seven-membered ring by the unexpected reaction at the gamma-position of the beta-keto ester. Org Lett 9:1687–1690

    CAS  Google Scholar 

  113. Sotoca E, Allais C, Constantieux T, Rodriguez J (2009) User-friendly stereoselective one-pot access to 1,4-diazepane derivatives by a cyclodehydrative three-component reaction with 1,3-dicarbonyls. Org Biomol Chem 7:1911–1920

    CAS  Google Scholar 

  114. Sotoca E, Constantieux T, Rodriguez J (2008) Solvent- and catalyst-free three-component reaction with beta-ketoamides for the stereoselective one-pot access to 1,4-diazepines. Synlett 1313–1316

    Google Scholar 

  115. Murai K, Nakatani R, Kita Y, Fujioka H (2008) One-pot three-component reaction providing 1,5-benzodiazepine derivatives. Tetrahedron 64:11034–11040

    CAS  Google Scholar 

  116. Tietze LF (1990) Domino-reactions – the tandem-Knoevenagel-hetero-Diels-Alder reaction and its application in natural product synthesis. J Heterocycl Chem 27:47–69

    CAS  Google Scholar 

  117. Heravi MM, Baghernejad B, Oskooie HA, Hekmatshoar R (2008) A novel and facile synthesis of 2-(cyclohexylamino)-6,7-dihydro-3-aryl-1H-indole-4(5H)-ones via a one-pot multi-component reaction. Tetrahedron Lett 49:6101–6103

    CAS  Google Scholar 

  118. Gozalishvili LL, Beryozkina TV, Omelchenko IV, Zubatyuk RI, Shishkin OV, Kolos NN (2008) A rapid and facile synthesis of new spiropyrimidines from 5-(2-arylethylidene-2-oxo)-1,3-dimethylpyrimidine-2,4,6-triones. Tetrahedron 64:8759–8765

    CAS  Google Scholar 

  119. Nagarapu L, Bantu R, Mereyala HB (2009) TMSCl-mediated one-pot, three-component synthesis of 2H-indazolo 2, 1-b phthalazine-triones. J Heterocycl Chem 46:728–731

    CAS  Google Scholar 

  120. Li M, Yang WL, Wen LR, Li FQ (2008) A first resource-efficient and highly flexible procedure for a four-component synthesis of dispiropyrrolidines. Eur J Org Chem 2751–2758

    Google Scholar 

  121. Peng YQ, Song GH (2007) Amino-functionalized ionic liquid as catalytically active solvent for microwave-assisted synthesis of 4H-pyrans. Catal Commun 8:111–114

    CAS  Google Scholar 

  122. Babu NS, Pasha N, Rao KTV, Prasad PSS, Lingalah N (2008) A heterogeneous strong basic Mg/La mixed oxide catalyst for efficient synthesis of polyfunctionalized pyrans. Tetrahedron Lett 49:2730–2733

    CAS  Google Scholar 

  123. Balalaie S, Bararjanian M, Amani AM, Movassagh B (2006) (S)-Proline as a neutral and efficient catalyst for the one-pot synthesis of tetrahydrobenzo b pyran derivatives in aqueous media. Synlett 263–266

    Google Scholar 

  124. Balalaie S, Sheikh-Ahmadi M, Bararjanian M (2007) Tetra-methyl ammonium hydroxide: an efficient and versatile catalyst for the one-pot synthesis of tetrahydrobenzo b pyran derivatives in aqueous media. Catal Commun 8:1724–1728

    CAS  Google Scholar 

  125. Zhu SL, Ji SJ, Zhang Y (2007) A simple and clean procedure for three-component synthesis of spirooxindoles in aqueous medium. Tetrahedron 63:9365–9372

    CAS  Google Scholar 

  126. Song SD, Song LP, Dai BF, Yi H, Jin GF, Zhu SZ, Shao M (2008) A convenient one-pot synthesis of 2-(trifluoromethyl)-3,4,7,8-tetrahydro-2H-chromen-5(6H)-one derivatives and their further transformations. Tetrahedron 64:5728–5735

    CAS  Google Scholar 

  127. Prajapati D, Gohain M (2006) An efficient synthesis of novel pyrano 2,3-d - and furopyrano 2,3-d pyrimidines via indium-catalyzed multi-component domino reaction. Beilstein J Org Chem 2. Doi:10.1186/1860-5397-2-11

    Google Scholar 

  128. Gerencser J, Dorman G, Darvas F (2006) Meldrum's acid in multicomponent reactions: applications to combinatorial and diversity-oriented synthesis. QSAR Comb Sci 25:439–448

    CAS  Google Scholar 

  129. Jimenez-Alonso S, Chavez H, Estevez-Braun A, Ravelo AG, Feresin G, Tapia A (2008) An efficient synthesis of embelin derivatives through domino Knoevenagel hetero Diels-Alder reactions under microwave irradiation. Tetrahedron 64:8938–8942

    CAS  Google Scholar 

  130. Jimenez-Alonso S, Estevez-Braun A, Ravelo AG, Zarate R, Lopez M (2007) Double domino Knoevenagel hetero Diels-Alder strategy towards bis-pyrano-1,4-benzoquinones. Tetrahedron 63:3066–3074

    CAS  Google Scholar 

  131. Gu Y, De Sousa R, Frapper P, Bachmann C, Barrault J, Jérôme F (2009) Catalyst-free aqueous multicomponent domino reaction from formaldehyde and 1,3-dicarbonyls derivatives. Green Chem 11:1968–1972

    CAS  Google Scholar 

  132. Nandi GC, Samai S, Kumar R, Singh MS (2009) An efficient one-pot synthesis of tetrahydrobenzo a xanthene-11-one and diazabenzo a anthracene-9,11-dione derivatives under solvent free condition. Tetrahedron 65:7129–7134

    CAS  Google Scholar 

  133. Gao SJ, Tsai CH, Yao CF (2009) A simple and green approach for the synthesis of tetrahydrobenzo a xanthen-11-one derivatives using tetrabutyl ammonium fluoride in water. Synlett 949–954

    Google Scholar 

  134. Khurana JM, Magoo D (2009) pTSA-catalyzed one-pot synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo a xanthen-11-ones in ionic liquid and neat conditions. Tetrahedron Lett 50:4777–4780

    CAS  Google Scholar 

  135. Wang RZ, Zhang LF, Cui ZS (2009) Iodine-catalyzed synthesis of 12-aryl-8,9,10,12-tetrahydro-benzo a xanthen-11-one derivatives via multicomponent reaction. Synth Commun 39:2101–2107

    CAS  Google Scholar 

  136. Das B, Laxminarayana K, Krishnaiah M, Srinivas Y (2007) An efficient and convenient protocol for the synthesis of novel 12-aryl- or 12-alkyl-8,9,10,12-tetrahydrobenzo a xanthen-11-one derivatives. Synlett 3107–3112

    Google Scholar 

  137. Nagarajan AS, Reddy BSR (2009) Synthesis of substituted pyranopyrazoles under neat conditions via a multicomponent reaction. Synlett 2002–2004

    Google Scholar 

  138. Vasuki G, Kumaravel K (2008) Rapid four-component reactions in water: synthesis of pyranopyrazoles. Tetrahedron Lett 49:5636–5638

    CAS  Google Scholar 

  139. Litvinov YM, Shestopalov AA, Rodinovskaya LA, Shestopalov AM (2009) New convenient four-component synthesis of 6-amino-2,4-dihydropyrano 2,3-c pyrazol-5-carbonitriles and one-pot synthesis of 6′-aminospiro (3H)-indol-3,4′-pyrano 2,3-c pyrazol -(1H)-2-on-5′-carbonitriles. J Comb Chem 11:914–919

    CAS  Google Scholar 

  140. Kumaravel K, Vasuki G (2009) Four-component catalyst-free reaction in water: combinatorial library synthesis of novel 2-amino-4-(5-hydroxy-3-methyl-1H-pyrazol-4-yl)-4H-chromene-3-carbonitrile derivatives. Green Chem 11:1945–1947

    CAS  Google Scholar 

  141. Shanthi G, Perumal PT (2009) InCl3-catalyzed efficient one-pot synthesis of 2-pyrrolo-3 '-yloxindoles. Tetrahedron Lett 50:3959–3962

    CAS  Google Scholar 

  142. Dey S, Pal C, Nandi D, Giri VS, Zaidlewicz M, Krzeminski M, Smentek L, Hess BA, Gawronski J, Kwit M, Babu NJ, Nangia A, Jaisankar P (2008) Lewis acid-catalyzed one-pot, three-component route to chiral 3,3′-bipyrroles. Org Lett 10:1373–1376

    CAS  Google Scholar 

  143. Alizadeh A, Rezvanian A, Zhu LG (2008) One-pot synthesis of 4,5-dihydro-1H-pyrrol-3-carboxamide derivatives via a four-component reaction. Tetrahedron 64:351–355

    CAS  Google Scholar 

  144. Simon C, Peyronel JF, Rodriguez J (2001) A new multicomponent domino reaction of 1,3-dicarbonyl compounds: One-pot access to polycyclic N/O-, N/S-, and N/N-aminals. Org Lett 3:2145–2148

    CAS  Google Scholar 

  145. Noel R, Fargeau-Bellassoued MC, Vanucci-Bacque C, Lhommet G (2008) Convenient one-pot synthesis of chiral tetrahydropyridines via a multicomponent reaction. Synthesis 1948–1954

    Google Scholar 

  146. Sridharan V, Maiti S, Menendez JC (2009) A very efficient cerium(IV) ammonium nitrate catalyzed, four-component synthesis of tetrahydropyridines and its application in the concise generation of functionalized homoquinolizine frameworks. Chem Eur J 15:4565–4572

    CAS  Google Scholar 

  147. Maiti S, Menendez JC (2009) A mild protocol for the efficient synthesis of 5,6-unsubstituted 1,4-dihydropyridines. Synlett 2249–2252

    Google Scholar 

  148. Sridharan V, Perumal PT, Avendano C, Menendez JC (2007) A new three-component domino synthesis of 1,4-dihydropyridines. Tetrahedron 63:4407–4413

    CAS  Google Scholar 

  149. Kumar A, Maurya RA (2008) Organocatalysed three-component domino synthesis of 1,4-dihydropyridines under solvent free conditions. Tetrahedron 64:3477–3482

    CAS  Google Scholar 

  150. Das B, Suneel K, Venkateswarlu K, Ravikanth B (2008) Sulfonic acid functionalized silica: an efficient heterogeneous catalyst for a three-component synthesis of 1,4-dihydropyridines under solvent-free conditions. Chem Pharm Bull 56:366–368

    CAS  Google Scholar 

  151. Kantam ML, Ramani T, Chakrapani L, Choudary BM (2009) Synthesis of 1,4-dihydropyridine derivatives using nanocrystalline copper(II) oxide catalyst. Catal Commun 10:370–372

    CAS  Google Scholar 

  152. Jiang J, Yu J, Sun XX, Rao QQ, Gong LZ (2008) Organocatalytic asymmetric three-component cyclization of cinnamaldehydes and primary amines with 1,3-dicarbonyl compounds: straightforward access to enantiomerically enriched dihydropyridines. Angew Chem Int Ed 47:2458–2462

    CAS  Google Scholar 

  153. Bagley MC, Chapaneri K, Dale JW, Xiong X, Bower J (2005) One-pot multistep Bohlmann-Rahtz heteroannulation reactions: synthesis of dimethyl sulfomycinamate. J Org Chem 70:1389–1399

    CAS  Google Scholar 

  154. Blayo AL, Le Meur S, Gree D, Gree R (2008) New enantioselective synthesis of monofluorinated pyridines designed for the preparation of chemical libraries. Adv Synth Cat 350:471–476

    CAS  Google Scholar 

  155. Kantevari S, Chary MV, Vuppalapati SVN (2007) A highly efficient regioselective one-pot synthesis of 2,3,6-trisubstituted pyridines and 2,7,7-trisubstituted tetrahydroquinolin-5-ones using K5CoW12O40 center dot 3H(2)O as a heterogeneous recyclable catalyst. Tetrahedron 63:13024–13031

    CAS  Google Scholar 

  156. Lieby-Muller F, Simon C, Constantieux T, Rodriguez J (2006) Current developments in Michael addition-based multicomponent domino reactions involving 1,3-dicarbonyls and derivatives. QSAR Comb Sci 25:432–438

    CAS  Google Scholar 

  157. Lieby-Muller F, Allais C, Constantieux T, Rodriguez J (2008) Metal-free Michael addition initiated multicomponent oxidative cyclodehydration route to polysubstituted pyridines from 1,3-dicarbonyls. Chem Commun 4207–4209

    Google Scholar 

  158. Allais C, Constantieux T, Rodriguez J (2009) Highly Efficient Synthesis of trans-beta,gamma-Unsaturated alpha-Keto Amides. Synthesis 2523–2530

    Google Scholar 

  159. Allais C, Constantieux T, Rodriguez J (2009) Use of β, γ-unsaturated α-ketocarbonyls for a totally regioselective oxidative multicomponent synthesis of polyfunctionalized pyridines. Chem Eur J 15:12945–12948

    CAS  Google Scholar 

  160. Coquerel Y, Bensa D, Moret V, Rodriguez J (2006) Synthetic studies on the MARDi cascade: stereoselective preparation of sulfonyl-substituted seven-membered rings. Synlett 2751–2754

    Google Scholar 

  161. Coquerel Y, Bensa D, Doutheau A, Rodriguez J (2006) Synthetic studies on the MARDi cascade: stereoselective synthesis of heterocyclic seven-membered rings. Org Lett 8:4819–4822

    CAS  Google Scholar 

  162. Coquerel Y, Filippini MH, Bensa D, Rodriguez J (2008) The MARDi cascade: a Michael-initiated domino-multicomponent approach for the stereoselective synthesis of seven-membered rings. Chem Eur J 14:3078–3092

    CAS  Google Scholar 

  163. Lieby-Muller F, Simon C, Imhof K, Constantieux T, Rodriguez J (2006) A multicomponent domino reaction and in situ aerobic oxidation sequence for the first one-pot synthesis of polycyclic benzimidazoles from 1,3-dicarbonyl derivatives. Synlett 1671–1674

    Google Scholar 

  164. Lieby-Muller F, Constantieux T, Rodriguez J (2007) Highly efficient access to original polycyclic pyrrolopiperazine scaffolds by a three-component reaction with 1,3-dicarbonyls. Synlett 1323–1325

    Google Scholar 

  165. Lieby-Muller F, Constantieux T, Rodriguez J (2005) Multicomponent domino reaction from beta-ketoamides: highly efficient access to original polyfunctionalized 2,6-diazabicyclo 2.2.2 octane cores. J Am Chem Soc 127:17176–17177

    CAS  Google Scholar 

  166. Habib-Zahmani H, Viala J, Hacini S, Rodriguez J (2007) Synthesis of functionalized spiroheterocycles by sequential multicomponent reaction/metal-catalyzed carbocylizations from simple beta-ketoesters and amides. Synlett 1037–1042

    Google Scholar 

  167. Radi M, Bernardo V, Bechi B, Castagnolo D, Pagano M, Botta M (2009) Microwave-assisted organocatalytic multicomponent Knoevenagel/hetero Diels-Alder reaction for the synthesis of 2,3-dihydropyran 2,3-c pyrazoles. Tetrahedron Lett 50:6572–6575

    CAS  Google Scholar 

  168. Giorgi G, Miranda S, Lopez-Alvarado P, Avendano C, Rodriguez J, Menendez JC (2005) Unique Michael addition-initiated domino reaction for the stereoselective synthesis of functionalized macrolactones from alpha-nitroketones in water. Org Lett 7:2197–2200

    CAS  Google Scholar 

  169. Tietze LF, Bohnke N, Dietz S (2009) Synthesis of the deoxyaminosugar (+)-D-forosamine via a novel domino-Knoevenagel-hetero-Diels-Alder reaction. Org Lett 11:2948–2950

    CAS  Google Scholar 

Download references

Acknowledgments

C.A. thanks the French Research Ministry for a fellowship award. CNRS (UMR 6263 iSm2 and RDR2 research network), National Research Agency (ANR), French Research Ministry, University Paul Cézanne and Ville de Marseille are acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thierry Constantieux or Jean Rodriguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

del Duque, M.M.S., Allais, C., Isambert, N., Constantieux, T., Rodriguez, J. (2010). β-Diketo Building Blocks for MCRs-Based Syntheses of Heterocycles. In: Orru, R., Ruijter, E. (eds) Synthesis of Heterocycles via Multicomponent Reactions I. Topics in Heterocyclic Chemistry, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2010_26

Download citation

Publish with us

Policies and ethics