Skip to main content

Cyclic Peptidomimetics and Pseudopeptides from Multicomponent Reactions

  • Chapter
  • First Online:
Synthesis of Heterocycles via Multicomponent Reactions I

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 23))

Abstract

Multicomponent reactions (MCRs) that provide in the final product amides are suitable to produce peptides and peptide-like moieties. The Passerini and Staudinger reactions provide one amide bond, and the Ugi-four-component reaction generates two amides from three or even four (or more) components, respectively. The Ugi-reaction thus is most important to produce peptides and peptoids while the Passerini reaction is useful to generate depsipeptoid moieties. In order to produce cyclic peptides and pseudopeptides, the linear peptidic MCR products have to be cyclized, usually with the help of bifunctional or activatable building blocks. Orthogonal but cyclizable secondary functionalities that need no protection in isonitrile MCRs commonly include alkenes (for ring closing metathesis), azide/alkyne (for Huisgen click reactions) or dienes and enoates (Diels-Alder) etc. If MCR-reactive groups are to be used also for the cyclisation, monoprotected bifunctional building blocks are used and deprotected after the MCR, e.g. for Ugi reactions as Ugi-Deprotection-Cyclisation (UDC). Alternatively one of the former building blocks or functional groups generated by the MCR can be activated. Most commonly these are activated amides (from so-called convertible isonitriles) which can be used e.g. for Ugi-Activation-Cyclisation (UAC) protocols, or most recently for a simultaneous use of both strategies Ugi-Deprotection/Activation-Cyclisation (UDAC). These methods mostly lead to small, medicinally relevant peptide turn mimics. In an opposing strategy, the MCR is rather used as ring-closing reaction, thereby introducing a (di-)peptide moiety. Most recently these processes have been combined to use MCRs for both, linear precursor synthesis and cyclisation. These multiple MCR approaches allow the most efficient and versatile one pot synthesis of macrocyclic pseudopeptides known to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davies JS (2003) J Pept Sci 9:471–501

    Article  CAS  Google Scholar 

  2. Wessjohann LA, Ruijter E, Rivera DG, Brandt W (2005) Mol Divers 9:171–186

    Article  CAS  Google Scholar 

  3. Lambert JN, Mitchell JP, Roberts KD (2001) J Chem Soc Perkin Trans 1 471–484

    Article  Google Scholar 

  4. Gulevich AV, Shpilevaya IV, Nenajdenko VG (2009) Eur J Org Chem 22:3801–3808

    Article  Google Scholar 

  5. Brandt W, Haupt VJ, Wessjohann LA (2010) Cheminformatic analysis of biologically active macrocycles, Curr Top Med Chem, in print

    Google Scholar 

  6. Wessjohann LA, Andrade CKZ, Vercillo OE, Rivera DG (2007) In: Attanasi OA, Spinelli D (eds) Targets in heterocyclic systems: chemistry and properties. Royal Society of Chemistry, Cambridge, pp 24–53

    Google Scholar 

  7. Adessi C, Soto C (2002) Curr Med Chem 9:963

    Article  CAS  Google Scholar 

  8. Arbor S, Kao J, Wu Y, Marshall GR (2008) Biopolymers 3:384–393

    Article  Google Scholar 

  9. Xiao Q, Pei D (2007) J Med Chem 50:3132–3137

    Article  CAS  Google Scholar 

  10. Rezai T, Bock JE, Zhou MV, Kalyanaraman C, Lockey RS, Jacobson MP (2006) J Am Chem Soc 128:14073–14080

    Article  CAS  Google Scholar 

  11. Kessler H (1982) Angew Chem Int Ed Engl 21:512–523

    Article  Google Scholar 

  12. Wipf P (1995) Chem Rev 95:2115–2134

    Article  CAS  Google Scholar 

  13. Hamada Y, Shioiri T (2005) Chem Rev 105:4441–4482

    Article  CAS  Google Scholar 

  14. Pomilio AB, Battista ME, Vitale AA (2006) Curr Org Chem 10:2075–2121

    Article  CAS  Google Scholar 

  15. Marcaccini S, Torroba T (2005) In: Zhu J, Bienaymé H (eds) Multicomponent reactions. Wiley, Weinheim, pp 33–75, Chapter 2 (cf. also other chapters of this book)

    Chapter  Google Scholar 

  16. Dömling A (2006) Chem Rev 106:17–89

    Article  Google Scholar 

  17. Fischer PM (2003) J Pept Sci 9:9–35

    Article  CAS  Google Scholar 

  18. Dinsmore CJ, Beshore DC (2002) Tetrahedron 58:3297–3312

    Article  CAS  Google Scholar 

  19. Martins MB, Carvalho I (2007) Tetrahedron 63:9923–9932

    Article  CAS  Google Scholar 

  20. Szardenings AK, Antonenko V, Campbell DA, De Francisco N, Ida S, Shi L, Sharkov N, Tien D, Wang Y, Navre M (1999) J Med Chem 42:1348–1357

    Article  CAS  Google Scholar 

  21. Bryant SD, Balboni G, Guerrini R, Salvadori S, Tomatis R, Lazarus LH (1997) Biol Chem 378:107–114

    Article  CAS  Google Scholar 

  22. Houston DR, Synstad B, Eijsink VGH, Stark MJR, Eggleston IM, van Aalten MF (2004) J Med Chem 47:5713–5720

    Article  CAS  Google Scholar 

  23. Byun H-G, Zhang H, Mochizuki M, Adachi K, Shizuri Y, Lee W-J, Kim S-K (2003) J Antibiot 56:102–106

    Article  CAS  Google Scholar 

  24. Fdhila F, Vázquez V, Sánchez JL, Riguera R (2003) J Nat Prod 66:1299–1301

    Article  CAS  Google Scholar 

  25. Abraham W-R (2005) Drug Des Rev 2:13

    CAS  Google Scholar 

  26. Funabashi Y, Horiguchi T, Iinum S, Tanida S, Harada S (1994) J Antibiot 47:1202–1218

    Article  CAS  Google Scholar 

  27. Gellerman G, Hazan E, Kovaliov M, Albeck A, Shatzmiler S (2009) Tetrahedron 65:1389–1396

    Article  CAS  Google Scholar 

  28. Cain JP, Mayorov AV, Hruby V (2006) J Bioorg Med Chem Lett 16:5462–5467

    Article  CAS  Google Scholar 

  29. Pedro B, Mamedova L, Jacobson KA (2005) Org Biomol Chem 3:2016–2025

    Article  Google Scholar 

  30. Souers AJ, Ellman JA (2001) Tetrahedron 57:7431–7448

    Article  CAS  Google Scholar 

  31. Jainta M, Nieger M, Bräse S (2008) Eur J Org Chem 5418

    Google Scholar 

  32. Stark T, Hofmann T (2005) J Agric Food Chem 53:7222–7231

    Article  CAS  Google Scholar 

  33. Hulme C, Cherrier M-P (1999) Tetrahedron Lett 40:5295–5299

    Article  CAS  Google Scholar 

  34. Hulme C, Morrissette MM, Volz FA, Burns CJ (1998) Tetrahedron Lett 39:1113–1116

    Article  CAS  Google Scholar 

  35. El Kaim L, Gageat M, Gaultier L, Grimaud L (2007) Synlett 56:500–502

    Article  Google Scholar 

  36. Santra S, Andreana P (2007) Org Lett 9:5035–5038

    Article  CAS  Google Scholar 

  37. Rhoden CRB, Westerman B, Wessjohann LA (2008) Synthesis 2077–2082

    Google Scholar 

  38. Bruttomesso AC, Eiras J, Ramírez JA, Galagovsky LR (2009) Tetrahedron Lett 50:4022–4024

    Article  CAS  Google Scholar 

  39. Hulme C, Chappeta S, Dietrich J (2009) Tetrahedron Lett 50:4054–4057

    Article  CAS  Google Scholar 

  40. Rhoden CRB, Rivera DG, Kreye O, Bauer AK, Westermann B, Wessjohann LA (2009) J Comb Chem 11:1078–1082

    Article  CAS  Google Scholar 

  41. Kreye O, Westermann B, Wessjohann LA (2007) Synlett 3188–3192

    Google Scholar 

  42. Venkatesan N, Kim BH (2002) Curr Med Chem 9:2243–2270

    Article  CAS  Google Scholar 

  43. Myers AC, Kowalski JA, Lipton MA (2004) Bioorg Med Chem Lett 14:5219–5222

    Article  CAS  Google Scholar 

  44. Zega A (2005) Curr Med Chem 12:589–597

    CAS  Google Scholar 

  45. Piliero PJ (2004) Drugs Today 40:901–912

    Article  CAS  Google Scholar 

  46. Sañudo M, Marcaccini S, Basurto SJ, Torroba T (2006) J Org Chem 71:4578–4584

    Article  Google Scholar 

  47. Cuny G, Bois-Choussy M, Zhu J (2004) J Am Chem Soc 126:14474–14484

    Article  Google Scholar 

  48. Bonnaterre F, Bois-Choussy M, Zhu J (2006) Org Lett 8:4351–4354

    Article  CAS  Google Scholar 

  49. Kalinski C, Umkehrer M, Ross G, Kolb J, Burdack C, Hiller W (2006) Tetrahedron Lett 47:3423–3426

    Article  CAS  Google Scholar 

  50. Horton DA, Bourne GT, Smythe ML (2003) Chem Rev 103:893–930

    Article  CAS  Google Scholar 

  51. Herpin TF, Van Kirk KG, Salvino JM, Yu ST, Labaudinière RF (2000) J Comb Chem 2:513–521

    Article  CAS  Google Scholar 

  52. Carlier PR, Zhao H, MacQuarrie-Hunter SL, De Guzman JC, Hsu DC (2006) J Am Chem Soc 128:15215–15220

    Article  CAS  Google Scholar 

  53. Joseph CG, Wilson KR, Wood MS, Sorenson NB, Phan DV, Xiang Z, Witek RM, Haskell-Luevano C (2008) J Med Chem 51:1423–1431

    Article  CAS  Google Scholar 

  54. Ramajayam R, Girdhar R, Yadav MR (2007) Mini Rev Med Chem 7:793–812

    Article  CAS  Google Scholar 

  55. Butini S, Gabellieri E, Huleatt PB, Campiani G, Franceschini S, Brindisi M, Ros S, Coccone SS, Fiorini I, Novellino E, Giorgi G, Gemma S (2008) J Org Chem 73:8458–8468

    Article  CAS  Google Scholar 

  56. Blakeney JS, Reid RC, Le GT, Fairlie DP (2007) Chem Rev 107:2960–3041

    Article  CAS  Google Scholar 

  57. Butler MS (2005) Nat Prod Rep 22:162–195

    Article  CAS  Google Scholar 

  58. Evans BE, Bock MG, Rittle KE, DiPardo RM, Whitter WL, Veber DF, Anderson PS, Freidinger RM (1986) Proc Natl Acad Sci USA 83:4918–4922

    Article  CAS  Google Scholar 

  59. Faggi C, Marcaccini S, Pepino R, Pozo MC (2002) Synthesis 2756–2760

    Google Scholar 

  60. Marcaccini S, Miliciani M, Pepino R (2005) Tetrahedron Lett 46:711–713

    Article  CAS  Google Scholar 

  61. Sañudo M, García-Valverde M, Marcaccini S, Delgado JJ, Rojo J, Torroba T (2009) J Org Chem 74:2189–2192

    Article  Google Scholar 

  62. Akritopoulou-Zanze I, Gracias V, Djuric SW (2004) Tetrahedron Lett 45:8439–8441

    Article  CAS  Google Scholar 

  63. Golebiowski A, Jozwik J, Klopfenstein R, Colson A, Grieb AL, Russell AF, Rastogi VL, Diven CF, Portlock D, Chen J (2002) J Comb Chem 4:584–590

    Article  CAS  Google Scholar 

  64. Golebiowski A, Klopfenstein R, Shao X, Chen JJ, Colson A-O, Grieb AL, Russell AF (2000) Org Lett 2:2615–2617

    Article  CAS  Google Scholar 

  65. Oikawa M, Naito S, Sasaki M (2006) Tetrahedron Lett 47:4763–4767

    Article  CAS  Google Scholar 

  66. Banfi L, Basso A, Guanti G, Riva R (2003) Tetrahedron Lett 44:7655–7658

    Article  CAS  Google Scholar 

  67. Dietrich SA, Banfi L, Basso A, Damonte G, Guanti G, Riva R (2005) Org Biomol Chem 3:97–106

    Article  CAS  Google Scholar 

  68. Dechantsreiter MA, Planker E, Matha B, Lohof E, Hoelzemann G, Jonczyk A, Goodman SL, Kessler H (1999) J Med Chem 42:3033–3040

    Article  CAS  Google Scholar 

  69. Wessjohann LA, Ruijter E (2005) Top Curr Chem 243:137–184

    CAS  Google Scholar 

  70. Wessjohann LA, Ruijter E (2005) Mol Divers 9:159–169

    Article  CAS  Google Scholar 

  71. Wessjohann LA, Rivera DG, Vercillo OE (2009) Chem Rev 109:796–814

    Article  CAS  Google Scholar 

  72. Bauer SM, Armstrong RW (1999) J Am Chem Soc 121:6355–6366

    Article  CAS  Google Scholar 

  73. Bowers MM, Carroll P, Joullié MM (1989) J Chem Soc Perkin Trans 1, 857–865

    Article  Google Scholar 

  74. Joullié MM, Nutt RF (1985) In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives, vol 3. Wiley, New York, 3:113pp

    Google Scholar 

  75. Gournelis DC, Laskaris GG, Verpoorte R (1997) Nat Prod Rep 14:75–82

    Article  CAS  Google Scholar 

  76. Cristau P, Vors J-P, Zhu J (2001) Org Lett 3:4079–4082

    Article  CAS  Google Scholar 

  77. Cristau P, Vors J-P, Zhu J (2003) Tetrahedron 59:7859–7870

    Article  CAS  Google Scholar 

  78. Cristau P, Vors J-P, Zhu J (2006) QSAR Comb Sci 25:519–526

    Article  CAS  Google Scholar 

  79. De Greef M, Abeln S, Belkasmi K, Dömling A, Orru RVA, Wessjohann LA (2006) Synthesis 3997–4004

    Google Scholar 

  80. Beck B, Larbig G, Mejat B, Magnin-Lachaux M, Picard A, Herdtweck E, Dömling A (2003) Org Lett 5:1047–1050

    Article  CAS  Google Scholar 

  81. Pirali T, Tron GC, Zhu J (2006) Org Lett 8:4145–4148

    Article  CAS  Google Scholar 

  82. Sun X, Janvier P, Zhao G, Bienaymé H, Zhu J (2001) Org Lett 3:877–880

    Article  CAS  Google Scholar 

  83. Janvier P, Sun X, Bienaymé H, Zhu J (2002) J Am Chem Soc 124:2560–2567

    Article  CAS  Google Scholar 

  84. Zhao G, Sun X, Bienaymé H, Zhu J (2001) J Am Chem Soc 123:6700–6701

    Article  CAS  Google Scholar 

  85. Bughin C, Zhao G, Bienaymé H, Zhu J (2006) Chem Eur J 12:1174–1184

    Article  CAS  Google Scholar 

  86. Hebach C, Kazmaier U (2003) Chem Comm 5:596–597

    Article  Google Scholar 

  87. Kazmaier U, Hebach C, Watzke A, Maier S, Mues H, Huch V (2005) Org Biomol Chem 3:136–145

    Article  CAS  Google Scholar 

  88. Bughin G, Masson G, Zhu J (2007) J Org Chem 72:1826–1829

    Article  CAS  Google Scholar 

  89. Pirali T, Tron GC, Masson G, Zhu J (2007) Org Lett 9:5275–5278

    Article  CAS  Google Scholar 

  90. Faure S, Hjelmgaard T, Roche SP, Aitken DJ (2009) Org Lett 11:1167–1170

    Article  CAS  Google Scholar 

  91. Owens TD, Araldi GL, Nutt RF, Semple JE (2001) Tetrahedron Lett 42:6271–6274

    Article  CAS  Google Scholar 

  92. Failli A, Immer H, Götz MD (1979) Can J Chem 57:3257–3261

    Article  CAS  Google Scholar 

  93. Vercillo OE, Andrade CKZ, Wessjohann LA (2008) Org Lett 10:205–208

    Article  CAS  Google Scholar 

  94. Vercillo OE, Andrade CKZ, Wessjohann LA. Unpublished

    Google Scholar 

  95. Vercillo OE (2007) Ugi reaction on the cyclopeptoids construction: Synthesis of a potencial inhibitor of Tat/TAR complex of HIV-1 virus. PhD thesis, Universidade de Brasília, Brasil

    Google Scholar 

  96. Wessjohann LA, Rivera DG, Coll F (2006) J Org Chem 71:7521–7526

    Article  CAS  Google Scholar 

  97. Leon F, Rivera DG, Wessjohann LA (2008) J Org Chem 73:7162–7167

    Article  Google Scholar 

  98. Michalik D, Schaks A, Wessjohann LA (2007) Eur J Org Chem 149–157

    Google Scholar 

  99. Westermann B, Michalik D, Schaks A, Kreye O, Wagner C, Merzweiler K, Wessjohann LA (2007) Heterocycles 73:863–872

    Article  CAS  Google Scholar 

  100. Rivera DG, Wessjohann LA (2006) J Am Chem Soc 128:7122–7123

    Article  CAS  Google Scholar 

  101. Rivera DG, Wessjohann LA (2009) J Am Chem Soc 131:3721–3723

    Article  CAS  Google Scholar 

  102. Nikulinkov M, Tsirulnikov S, Kysil V, Ivachtchenko A, Krasavin M (2009) Synlett 260–262

    Google Scholar 

  103. Da Settimo F, Taliani S, Trincavelli ML, Montali M, Martini C (2007) Curr Med Chem 14:2680–2701

    Article  Google Scholar 

  104. Whiting PJ (2006) Curr Opin Pharmacol 6:24–29

    Article  CAS  Google Scholar 

  105. Atack JR (2005) Expert Opin Investig Drugs 14:601–618

    Article  CAS  Google Scholar 

  106. Banfi L, Basso A, Damonte G, De Pellegrini F, Galatini A, Guanti G, Monfardini I, Riva R, Scapolla C (2007) Bioorg Med Chem Lett 17:1341–1345

    Article  CAS  Google Scholar 

  107. Wessjohann LA, Voigt B, Rivera DG (2005) Angew Chem Int Ed 44:4785–4790

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludger A. Wessjohann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wessjohann, L.A., Rhoden, C.R.B., Rivera, D.G., Vercillo, O.E. (2010). Cyclic Peptidomimetics and Pseudopeptides from Multicomponent Reactions. In: Orru, R., Ruijter, E. (eds) Synthesis of Heterocycles via Multicomponent Reactions I. Topics in Heterocyclic Chemistry, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2009_25

Download citation

Publish with us

Policies and ethics