Skip to main content

When Drosophila Meets Retrovirology: The gypsy Case

  • Chapter
  • First Online:
Transposons and the Dynamic Genome

Part of the book series: Genome Dynamics and Stability ((GENOME,volume 4))

Abstract

Insect endogenous retroviruses (IERVs) are present in the genome of several species. It was shown that gypsy is an active endogenous retrovirus in Drosophila melanogaster, which could be transmitted to individuals fed with gypsy-containing extracts. Moreover, gypsy replication depends on cell-cell transfer. Here, we review recent findings which help to elucidate the structure and the role of gypsy Env protein during gypsy horizontal and vertical transfers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberola TM, De Frutos R (1996) Molecular structure of a gypsy element of Drosophila subobscura (gypsyDs) constituting a degenerate form of insect retroviruses. Nucl Acids Res 24:914–923

    Article  PubMed  CAS  Google Scholar 

  2. Bayev AA Jr, Lyubomirskaya NV, Dzhumagaliev EB, Ananiev EV, Amiantova IG, Ilyin YV (1984) Structural organization of transposable element mdg4 from Drosophila melanogaster and a nucleotide sequence of its long terminal repeats. Nucl Acids Res 12:3707–3723

    Article  PubMed  CAS  Google Scholar 

  3. Brasset E, Taddei AR, Arnaud F, Faye B, Fausto AM, Mazzini M, Giorgi F, Vaury C (2006) Viral particles of the endogenous retrovirus ZAM from Drosophila melanogaster use a pre-existing endosome/exosome pathway for transfer to the oocyte. Retrovirology 3:25

    Article  PubMed  CAS  Google Scholar 

  4. Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089–1103

    Article  PubMed  CAS  Google Scholar 

  5. Brennecke J, Malone CD, Aravin AA, Sachidanandam R, Stark A, Hannon GJ (2008) An epigenetic role for maternally inherited piRNAs in transposon silencing. Science 322:1387–1392

    Article  PubMed  CAS  Google Scholar 

  6. Bucheton A (1995) The relationship between the flamenco gene and gypsy in Drosophila: how to tame a retrovirus. Trends Genet 11:349–353

    Article  PubMed  CAS  Google Scholar 

  7. Callebaut I, Labesse G, Durand P, Poupon A, Canard L, Chomilier J, Henrissat B, Mornon JP (1997) Deciphering protein sequence information through hydrophobic cluster analysis (HCA): current status and perspectives. Cell Mol Life Sci 53:621–645

    Article  PubMed  CAS  Google Scholar 

  8. Chalvet F, Teysset L, Terzian C, Prud'homme N, Santamaria P, Bucheton A, Pélisson A (1999) Proviral amplification of the Gypsy endogenous retrovirus of Drosophila melanogaster involves env-independent invasion of the female germline. EMBO J 18:2659–2669

    Article  PubMed  CAS  Google Scholar 

  9. Desset S, Meignin C, Dastugue B, Vaury C (2003) COM, a heterochromatic locus governing the control of independent endogenous retroviruses from Drosophila melanogaster. Genetics 164:501–509

    PubMed  CAS  Google Scholar 

  10. Eickbush TH, Furano AV (2002) Fruit flies and humans respond differently to retrotransposons. Curr Opin Genet Dev 12:669–674

    Article  PubMed  CAS  Google Scholar 

  11. Forterre P (2006) Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain. Proc Natl Acad Sci USA 103:3669–3674

    Article  PubMed  CAS  Google Scholar 

  12. Friesen PD, Nissen MS (1990) Gene organization and transcription of TED, a lepidopteran retrotransposon integrated within the baculovirus genome. Mol Cell Biol 10:3067–3077

    PubMed  CAS  Google Scholar 

  13. Herédia F, Loreto EL, Valente VL (2004) Complex evolution of gypsy in Drosophilid species. Mol Biol Evol 21:1831–1842

    Article  PubMed  CAS  Google Scholar 

  14. IJkel WF, Westenberg M, Goldbach RW, Blissard GW, Vlak JM, Zuidema D (2000) A novel baculovirus envelope fusion protein with a proprotein convertase cleavage site. Virology 275:30–41

    Article  PubMed  CAS  Google Scholar 

  15. Inouye S, Yuki S, Saigo K (1986) Complete nucleotide sequence and genome organization of a Drosophila transposable genetic element, 297. Eur J Biochem 154:417–425

    Article  PubMed  CAS  Google Scholar 

  16. Inouye S, Yuki S, Saigo K (1984) Sequence-specific insertion of the Drosophila transposable genetic element 17.6. Nature 310:332–333

    Article  PubMed  CAS  Google Scholar 

  17. Jehle JA, Blissard GW, Bonning BC, Cory JS, Herniou EA, Rohrmann GF, Theilmann DA, Thiem SM, Vlak JM (2006) On the classification and nomenclature of baculoviruses: a proposal for revision. Arch Virol 151:1257–1266

    Article  PubMed  CAS  Google Scholar 

  18. Jordan IK, Matyunina LV, McDonald JF (1999) Evidence for the recent horizontal transfer of long terminal repeat retrotransposon. Proc Natl Acad Sci USA 96:12621–12625

    Article  PubMed  CAS  Google Scholar 

  19. Katzourakis A, Rambaut A, Pybus OG (2005) The evolutionary dynamics of endogenous retroviruses. Trends Microbiol 13:463–468

    Article  PubMed  CAS  Google Scholar 

  20. Kim A, Terzian C, Santamaria P, Pélisson A, Purd'homme N, Bucheton A (1994) Retroviruses in invertebrates: the gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster. Proc Natl Acad Sci USA 15:1285–1289

    Article  Google Scholar 

  21. Koonin EV, Wolf YI, Nagasaki K, Dolja VV (2008) The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups. Nat Rev Microbiol 6:925–939

    Article  PubMed  CAS  Google Scholar 

  22. Leblanc P, Desset S, Giorgi F, Taddei AR, Fausto AM, Mazzini M, Dastugue B, Vaury C (2000) Life cycle of an endogenous retrovirus, ZAM, in Drosophila melanogaster. J Virol 74:10658–10669

    Article  PubMed  CAS  Google Scholar 

  23. Llorens JV, Clark JB, Martínez-Garay I, Soriano S, De Frutos R, Martínez-Sebastián MJ (2008) Gypsy endogenous retrovirus maintains potential infectivity in several species of Drosophilids. BMC Evol Biol 8:302

    Article  PubMed  CAS  Google Scholar 

  24. Lung O, Blissard GW (2005) A cellular Drosophila melanogaster protein with similarity to baculovirus F envelope fusion proteins. J Virol 79:7979–7989

    Article  PubMed  CAS  Google Scholar 

  25. Lécher P, Bucheton A, Pélisson A (1997) Expression of the Drosophila retrovirus gypsy as ultrastructurally détectable particles in the ovaries of flies carrying a permissive flamenco allele. J Gen Virol 78:2379–2388

    PubMed  Google Scholar 

  26. Malik HS, Henikoff S (2005) Positive selection of Iris, a retroviral envelope-derived host gene in Drosophila melanogaster. PLoS Genet 1:e44

    Article  PubMed  CAS  Google Scholar 

  27. Malik HS, Henikoff S, Eickbush TH (2000) Poised for contagion: evolutionary origins of the infectious abilities of invertebrate retroviruses. Genome Res 10:1307–1318

    Article  PubMed  CAS  Google Scholar 

  28. Marlor RL, Parkhurst SM, Corces VG (1986) The Drosophila melanogaster gypsy transposable element encodes putative gene products homologous to retroviral proteins. Mol Cell Biol 6:1129–1134

    PubMed  CAS  Google Scholar 

  29. Misseri Y, Cerutti M, Devauchelle G, Bucheton A, Terzian C (2004) Analysis of the Drosophila gypsy endogenous retrovirus envelope glycoprotein. J Gen Virol 85:3325–3331

    Article  PubMed  CAS  Google Scholar 

  30. Misseri Y, Labesse G, Bucheton A, Terzian C (2003) Comparative sequence analysis and predictions for the envelope glycoproteins of insect endogenous retroviruses. Trends Microbiol 11:253–256

    Article  PubMed  CAS  Google Scholar 

  31. Modolell J, Bender W, Meselson M (1983) Drosophila melanogaster mutations suppressible by the suppressor of Hairy-wing are insertions of a 7.3-kilobase mobile element. Proc Natl Acad Sci USA 80:1678–1682

    Article  PubMed  CAS  Google Scholar 

  32. Mével-Ninio M, Mariol MC, Gans M (1989) Mobilization of the gypsy and copia retrotransposons in Drosophila melanogaster induces reversion of the ovo dominant female-sterile mutations: molecular analysis of revertant alleles. EMBO J 8:1549–1558

    PubMed  Google Scholar 

  33. Mével-Ninio M, Pelisson A, Kinder J, Campos AR, Bucheton A (2007) The flamenco locus controls the gypsy and ZAM retroviruses and is required for Drosophila oogenesis. Genetics 175:1615–1624

    Article  PubMed  CAS  Google Scholar 

  34. Pearson MN, Rohrmann GF (2004) Conservation of a proteinase cleavage site between an insect retrovirus (gypsy) Env protein and a baculovirus envelope fusion protein. Virology 322:61–68

    Article  PubMed  CAS  Google Scholar 

  35. Prud'homme N, Gans M, Masson M, Terzian C, Bucheton A (1995) Flamenco, a gene controlling the gypsy retrovirus of Drosophila melanogaster. Genetics 139:697–711

    PubMed  Google Scholar 

  36. Pélisson A, Sarot E, Payen-Groschêne G, Bucheton A (2007) A novel repeat-associated small interfering RNA-mediated silencing pathway downregulates complementary sense gypsy transcripts in somatic cells of the Drosophila ovary. J Virol 81:1951–1960

    Article  PubMed  CAS  Google Scholar 

  37. Rohrmann GF, Karplus PA (2001) Relatedness of baculovirus and gypsy retrotransposon envelope proteins. BMC Evol Biol 1:1

    Article  PubMed  CAS  Google Scholar 

  38. Sarot E, Payen-Groschêne G, Bucheton A, Pélisson A (2004) Evidence for a piwi-dependent RNA silencing of the gypsy endogenous retrovirus by the Drosophila melanogaster flamenco gene. Genetics 166:1313–1321

    Article  PubMed  CAS  Google Scholar 

  39. Song SU, Kurkulos M, Boeke JD, Corces VG (1997) Infection of the germ line by retroviral particles produced in the follicle cells: a possible mechanism for the mobilization of the gypsy retroelement of Drosophila. Development 124:2789–2798

    PubMed  CAS  Google Scholar 

  40. Song SU, Gerasimova T, Kurkulos M, Boeke JD, Corces VG (1994) An env-like protein encoded by a Drosophila retroelement: evidence that gypsy is an infectious retrovirus. Genes Dev 8:2046–2057

    Article  PubMed  CAS  Google Scholar 

  41. Tanda S, Mullor JL, Corces VG (1994) The Drosophila tom retrotransposon encodes an envelope protein. Mol Cell Biol 14:5392–5401

    PubMed  CAS  Google Scholar 

  42. Temin HM (1980) Origin of retroviruses from cellular moveable genetic elements. Cell 21:599–600

    Article  PubMed  CAS  Google Scholar 

  43. Terzian C, Ferraz C, Demaille J, Bucheton A (2000) Evolution of the Gypsy endogenous retrovirus in the Drosophila melanogaster subgroup. Mol Biol Evol 17:908–914

    PubMed  CAS  Google Scholar 

  44. Teysset L, Burns JC, Shike H, Sullivan BL, Bucheton A, Terzian C (1998) A Moloney murine leukemia virus-based retroviral vector pseudotyped by the insect retroviral gypsy envelope can infect Drosophila cells. J Virol 72:853–856

    PubMed  CAS  Google Scholar 

  45. Vázquez-Manrique RP, Hernández M, Martínez-Sebastián MJ, De Frutos R (2000) Evolution of gypsy endogenous retrovirus in the Drosophila obscura species group. Mol Biol Evol 17:1185–1193

    PubMed  Google Scholar 

  46. Weissenhorn W, Hinz A, Gaudin Y (2007) Virus membrane fusion. FEBS Lett 581:2150–2155

    Article  PubMed  CAS  Google Scholar 

  47. Westenberg M, Veenman F, Roode EC, Goldbach RW, Vlak JM, Zuidema D (2004) Functional analysis of the putative fusion domain of the baculovirus envelope fusion protein F. J Virol 78:6946–6954

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Terzian .

Editor information

Dirk-Henner Lankenau Jean-Nicolas Volff

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Terzian, C., Pelisson, A., Bucheton, A. (2009). When Drosophila Meets Retrovirology: The gypsy Case. In: Lankenau, DH., Volff, JN. (eds) Transposons and the Dynamic Genome. Genome Dynamics and Stability, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7050_2009_045

Download citation

Publish with us

Policies and ethics