Skip to main content

Agricultural Soil Degradation in Germany

  • Chapter
  • First Online:
Impact of Agriculture on Soil Degradation II

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 121))

Abstract

Germany is a densely populated and highly developed country with multiple threats on soils still causing their degradation. Soil erosion by wind and water has been the most important process in Germany, which has been studied since the end of the nineteenth century. Soil erosion starts with the Neolithic Revolution. But erosion rates were in general low, even during Roman times. They increased during medieval times due to the strong expansion of agriculture and deforestation. Nowadays, at least 19% of Germany’s agricultural land is affected by very high soil erosion, which reaches values higher than tolerable. Intensification of agriculture and the use of heavy machinery have led to this substantial increase in the most evident and widespread soil degradation process. Soil erosion by wind is mainly found in northern Germany and is the result of the interaction of flat topography, sandy to loamy soils, and large agricultural fields.

In modern times additional threats contribute to soil degradation. Pollution by pesticides or heavy metals is ubiquitous and endangers soil health and agricultural land use. Microplastics are reaching the soils by multiple pathways. The main problems here are the lack of knowledge on a methodology for quantification and on the effect of microplastics in soils. Additionally, one of the major threats to German soils is the destruction by sealing of settlements and infrastructure. Despite having knowledge of soil, the different threats on soils, the pressure on them, and the dynamics of degradation are still high on Germany’s agricultural soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marahrens S, Schmidt S, Frauenstein J et al (2015) Bodenzustand in Deutschland. https://www.umweltbundesamt.de/publikationen/bodenzustand-in-deutschland

  2. Saggau P, Kuhwald M, Duttmann R (2019) Integrating soil compaction impacts of tramlines into soil erosion modelling: a field-scale approach. Soil Syst 3:51. https://doi.org/10.3390/soilsystems3030051

    Article  CAS  Google Scholar 

  3. Kuhwald M, Saggau P, Augustin K (2020) Konflikte um Flächennutzung und Bodenfunktionen in Agrarlandschaften. In: Duttmann R, Kühne O, Weber F (eds) Landschaft als Prozess. Springer Fachmedien Wiesbaden, Wiesbaden, pp 657–688

    Chapter  Google Scholar 

  4. Statistisches Bundesamt (2021) Bodenfläche insgesamt nach Nutzungsarten in Deutschland. https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Flaechennutzung/Tabellen/bodenflaeche-insgesamt.html. Accessed 9 Nov 2021

  5. Statistisches Bundesamt (2021) Flächenindikator “Anstieg der Siedlungs- und Verkehrsfläche”. https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Flaechennutzung/Tabellen/anstieg-suv2.html. Accessed 9 Nov 2021

  6. Penn-Bressel G (2017) Flächenverbrauch durch Siedlungen und Verkehr (Trends) und Flächenrucksäcke von Komponenten deutscher Energiesysteme. In: Meinel G, Schumacher U, Schwarz S et al (eds) Flächennutzungsmonitoring, vol 73. Rhombos-Verlag; Sächsische Landesbibliothek – Staats- und Universitätsbibliothek Dresden, Berlin, Dresden, pp 31–40

    Google Scholar 

  7. BodSchätzG (2019) Gesetz zur Schätzung des landwirtschaftlichen Kulturbodens. http://www.gesetze-im-internet.de/bodsch_tzg_2008/BJNR317600007.html. Accessed 11 Nov 2021

  8. Rothkegel W (1930) Handbuch der Schätzungslehre für Grundbesitzungen

    Google Scholar 

  9. Wollny E (1879) Forschungen auf dem Gebiete der Agrikultur-Physik, 1–20. Carl Winter’s Universitätsbuchhandlung

    Google Scholar 

  10. Richter G (1965) Bodenerosion: Schäden und gefährdete Gebiete in der Bundesrepublik Deutschland: Gutachten im Auftrag des Bundesministeriums für Ernährung, Landwirtschaft und Forsten. Bundesanstalt für Landeskunde und Raumforschung, Selbstrverlag

    Google Scholar 

  11. Batjes NH, Bridges EM (1993) Soil vulnerability to pollution in Europe. Soil Use Manage 9:25–29. https://doi.org/10.1111/j.1475-2743.1993.tb00923.x

    Article  Google Scholar 

  12. Emadodin I, Reiss S, Mitusov AV et al (2009) Interdisciplinary and multidisciplinary approaches to the study of long-term soil degradation: a case study from Schleswig-Holstein, Germany. Land Degrad Dev 20:551–561. https://doi.org/10.1002/ldr.941

    Article  Google Scholar 

  13. Techen A-K, Helming K (2017) Pressures on soil functions from soil management in Germany. A foresight review. Agron Sustain Dev 37:64. https://doi.org/10.1007/s13593-017-0473-3

    Article  Google Scholar 

  14. Richter G (1980) Three years of plot measurements in vineyards of the Moselle region some preliminary results. Zeitschrift fur Geomorphologie, Supplementband 35:81–91

    Google Scholar 

  15. Richter G (1979) (Soil erosion in vine growing areas of the Mosel region: the results of quantitative research, 1974-77). Forschungstelle Bodenerosion der Universitat Trier, Mertesdorf, (Ruwertal) 3

    Google Scholar 

  16. Richter G (1991) Combating soil erosion in vineyards of the Mosel-region. Forschungsstelle Bodenerosion – Universitat Trier 10

    Google Scholar 

  17. Auerswald K, Fiener P, Dikau R (2009) Rates of sheet and rill erosion in Germany – a meta-analysis. Geomorphology 111:182–193. https://doi.org/10.1016/j.geomorph.2009.04.018

    Article  Google Scholar 

  18. Verheijen F, Jones R, Rickson RJ et al (2009) Tolerable versus actual soil erosion rates in Europe. Earth Sci Rev 94:23–38. https://doi.org/10.1016/j.earscirev.2009.02.003

    Article  Google Scholar 

  19. Alewell C, Egli M, Meusburger K (2015) An attempt to estimate tolerable soil erosion rates by matching soil formation with denudation in Alpine grasslands. J Soil Sediment 15:1383–1399. https://doi.org/10.1007/s11368-014-0920-6

    Article  Google Scholar 

  20. Schwertmann U, Vogl W, Kainz M (1987) Bodenerosion durch Wasser. Ulmer Verlag. 64 p

    Google Scholar 

  21. Dreibrodt S, Bork H-R (2005) Historical soil erosion and landscape development at Lake Belau (North Germany) – a comparison of colluvial deposits and lake sediments. Zeitschrift fur Geomorphologie, Supplementband 139:101–128

    Google Scholar 

  22. Reiß S, Dreibrodt S, Lubos C et al (2009) Land use history and historical soil erosion at Albersdorf (northern Germany) – ceased agricultural land use after the pre-historical period. Catena 77:107–118

    Article  Google Scholar 

  23. Bork H-R, Schmidtchen G (2001) Soils: development, destruction, and conservation in Germany. Geogr Rundsch 53:4–9

    Google Scholar 

  24. Dreibrodt S, Lubos C, Terhorst B et al (2010) Historical soil erosion by water in Germany: scales and archives, chronology, research perspectives. Quat Int 222:80–95. https://doi.org/10.1016/j.quaint.2009.06.014

    Article  Google Scholar 

  25. Dotterweich M, Haberstroh J, Siegmüller A et al (2003) Frühgeschichtliche Boden-und Reliefentwicklung am Talrand der Regnitz bei Altendorf (Oberfranken). Die Erde 134:4

    Google Scholar 

  26. Schmidtchen G, Bork H-R, Dotterweich M (2001) A case of severe gully erosion in eastern Brandenburg (Germany). Petermanns Geogr Mitt 145:74–82

    Google Scholar 

  27. Bork H-R (1998) Landschaftsentwicklung in Mitteleuropa: Wirkungen des Menschen auf Landschaften

    Google Scholar 

  28. BGR (ed) (2016) Bodenatlas Deutschland. Schweizerbart Science Publishers, Stuttgart

    Google Scholar 

  29. BGR (2014) Potentielle Gefährdung. https://www.bgr.bund.de/DE/Themen/Boden/Ressourcenbewertung/Bodenerosion/Wasser/Karte_Erosionsgefahr_node.html;jsessionid=ED60CE5DA43B8C1BBC8792E1133B0BC5.1_cid321. Accessed 8 Nov 2021

  30. DIN 19708 DIN 19708:2017-08, Bodenbeschaffenheit_ – Ermittlung der Erosionsgefährdung von Böden durch Wasser mit Hilfe der ABAG

    Google Scholar 

  31. Auerswald K, Schmidt F (1986) Atlas der Erosionsgefährdung in Bayern. Karten zum flächenhaften Bodenabtrag durch Regen. GLA-Fachberichte, München

    Google Scholar 

  32. Auerswald K (1998) Bodenerosion durch Wasser. In: Richter G (ed) Bodenerosion: Analyse und Bilanz eines Umweltproblems; mit 38 Tabellen. Wiss. Buchges, Darmstadt, pp 33–42

    Google Scholar 

  33. Stroosnijder L (2005) Measurement of erosion: is it possible? Catena 64:162–173. https://doi.org/10.1016/j.catena.2005.08.004

    Article  Google Scholar 

  34. Bug J, Mosimann T (2012) Lineare Erosion in Niedersachsen–Ergebnisse einer elfjährigen Messreihe zu Ausmaß, kleinräumiger Verbreitung und Ursachen des Bodenabtrags. Die Bodenkultur 63:2–3

    Google Scholar 

  35. Richter G, Negendank JFW (1977) Soil erosion processes and their measurement in the German area of the Moselle river. Earth Surf Process 2:261–278. https://doi.org/10.1002/esp.3290020217

    Article  Google Scholar 

  36. Stehling E, Schmidt RG (2017) Das Datenarchiv der Forschungsstelle Bodenerosion in Mertesdorf (Ruwertal): Eine Dokumentation über 25 Messjahre (1974-1999); Informationszusammenstellung zum Gebrauch der Daten-CD, vol 16, Trier

    Google Scholar 

  37. Hacisalihoglu S (2007) Determination of soil erosion in a steep hill slope with different land-use types: a case study in Mertesdorf (Ruwertal/Germany). J Environ Biol 28:433

    Google Scholar 

  38. Richter G (1991) Erosion control in vineyards of the Mosel-region, FRG. Soil erosion protection measures in Europe. Proc EC Workshop Freising 1988:149–156

    Google Scholar 

  39. Seeger M, Rodrigo-Comino J, Iserloh T et al (2019) Dynamics of runoff and soil erosion on abandoned steep vineyards in the Mosel area, Germany. Water 11:2596

    Article  Google Scholar 

  40. Kirchhoff M, Rodrigo-Comino J, Seeger M et al (2017) Soil erosion in sloping vineyards under conventional and organic land use managements (Saar-mosel valley, Germany) Erosión del suelo en viñas cultivadas en pendiente bajo sistemas de gestión convencional y orgánica (valle de Saar-mosela, Glemania). Cuadernos de Investigacion Geografica 43:119–140

    Article  Google Scholar 

  41. Rodrigo Comino J, Brings C, Lassu T et al (2015) Rainfall and human activity impacts on soil losses and rill erosion in vineyards (Ruwer Valley, Germany). Solid Earth 6:823–837. https://doi.org/10.5194/se-6-823-2015

    Article  Google Scholar 

  42. Kirchhoff M, Rodrigo-Comino J, Seeger M et al (2017) Soil erosion in sloping vineyards under conventional and organic land use managements (Saar-Mosel Valley, Germany). Cuadernos de Investigación Geográfica 43:119–140

    Article  Google Scholar 

  43. Seeger M, Dittrich F, Iserloh T et al (2020) Diversifying steep slope viticulture – towards a sustainable intensive agriculture? Proceedings 30:51. Multidisciplinary Digital Publishing Institute

    Google Scholar 

  44. Dittrich F, Iserloh T, Treseler C-H et al (2021) Crop diversification in viticulture with aromatic plants: effects of intercropping on grapevine productivity in a steep-slope vineyard in the Mosel area, Germany. Agriculture 11:95

    Article  CAS  Google Scholar 

  45. Richter G (1998) Bodenerosion: Analyse und Bilanz eines Umweltproblems. Wissenschaftliche Buchgesellschaft

    Google Scholar 

  46. Fiener P, Wilken F (2021) 3.2 Bodenerosion in Mitteleuropa-Auswirkungen des Klima-und Landmanagementwandels

    Google Scholar 

  47. Welle D (2022) Sandsturm löst Massenunfall bei Rostock aus | DW | 09.04.2011. Accessed 18 Jan 2022

    Google Scholar 

  48. Mangler J (2015) Unfall nach Sandsturm auf der A19: Verursacherin verurteilt. WELT

    Google Scholar 

  49. Mal P, Hesse JW, Schmitz M et al (2015) Konservierende Bodenbearbeitung in Deutschland als Lösungsbeitrag gegen Bodenerosion. Journal für Kulturpflanzen 67:310–319

    Google Scholar 

  50. Deumlich D, Funk R, Frielinghaus M et al (2006) Basics of effective erosion control in German agriculture. Z Pflanzenernähr Bodenk 169:370–381. https://doi.org/10.1002/jpln.200621983

    Article  CAS  Google Scholar 

  51. Nerger R (2020) Detection of changes in soil using the long-term soil monitoring network Boden-Dauerbeobachtung Schleswig-Holstein (BDF-SH), Germany

    Google Scholar 

  52. Goossens D, Gross J, Spaan W (2001) Aeolian dust dynamics in agricultural land areas in lower saxony, Germany. Earth Surf Process Landf 26:701–720

    Article  Google Scholar 

  53. Marzen M, Porten M, Ries JB (2022) Quantification of dust emissions during tillage operations in steep slope vineyards in the Moselle area. Agriculture 12:100

    Article  Google Scholar 

  54. Goossens D, Poesen J, Gross J et al (2000) Splash drift on light sandy soils: a field experiment. Agronomie 20:12. https://doi.org/10.1051/agro:2000126

    Article  Google Scholar 

  55. Fister W, Schmidt R-G (2008) Concept of a single device for simultaneous simulation of wind and water erosion in the field. In: Gabriels D, Cornelis W (eds) Proceedings of conference on desertification, vol 13. Gent, Belgium, pp 106–113

    Google Scholar 

  56. Marzen M, Iserloh T, Fister W et al (2019) On-site water and wind erosion experiments reveal relative impact on total soil erosion. Geosciences 9:478

    Article  CAS  Google Scholar 

  57. Marzen M, Iserloh T, Casper MC et al (2015) Quantification of particle detachment by rain splash and wind-driven rain splash. Catena 127:135–141. https://doi.org/10.1016/j.catena.2014.12.023

    Article  Google Scholar 

  58. Richter G (ed) (1998) Bodenerosion: Analyse und Bilanz eines Umweltproblems; mit 38 Tabellen. Wiss. Buchges, Darmstadt

    Google Scholar 

  59. Ledermüller S, Fick J, Jacobs A (2021) Perception of the relevance of soil compaction and application of measures to prevent it among German farmers. Agronomy 11

    Google Scholar 

  60. Augustin K, Kuhwald M, Brunotte J et al (2020) Wheel load and wheel pass frequency as indicators for soil compaction risk: a four-year analysis of traffic intensity at field scale. Geosciences 10:292. https://doi.org/10.3390/geosciences10080292

    Article  Google Scholar 

  61. Duttmann R, Schwanebeck M, Nolde M et al (2014) Predicting soil compaction risks related to field traffic during silage maize harvest. Soil Sci Soc Am J 78:408–421. https://doi.org/10.2136/sssaj2013.05.0198

    Article  CAS  Google Scholar 

  62. Horn R, Fleige H (2009) Risk assessment of subsoil compaction for arable soils in Northwest Germany at farm scale. Appl Vis Soil Eval 102:201–208. https://doi.org/10.1016/j.still.2008.07.015

    Article  Google Scholar 

  63. Pulido-Moncada M, Munkholm LJ, Schjønning P (2019) Wheel load, repeated wheeling, and traction effects on subsoil compaction in northern Europe. Applications of Visual Soil Evaluation 186:300–309. https://doi.org/10.1016/j.still.2018.11.005

    Article  Google Scholar 

  64. Dambeck R, Skrybeck C, Thiemeyer H (2015) Bodenphysikalische Untersuchungen zur Bewertung der Bodenverdichtung durch Forstmaschineneinsatz auf Lössstandorten im Marxheimer Wald (Hofheim a. Ts)

    Google Scholar 

  65. Hümann M (2010) Auswirkungen von Tieflockerung auf erstaufgeforsteten Ackerflächen. AFZ 65, H. 5:8

    Google Scholar 

  66. Hümann M, Schüler G, Müller C et al (2011) Identification of runoff processes – the impact of different forest types and soil properties on runoff formation and floods. J Hydrol 409:637–649. https://doi.org/10.1016/j.jhydrol.2011.08.067

    Article  Google Scholar 

  67. Mercier P, Aas G, Dengler J (2019) Effects of skid trails on understory vegetation in forests: a case study from northern Bavaria (Germany). For Ecol Manage 453:117579

    Article  Google Scholar 

  68. Saggau P, Kuhwald M, Hamer WB et al (2022) Are compacted tramlines underestimated features in soil erosion modeling? A catchment-scale analysis using a process-based soil erosion model. Land Degrad Dev 33:452–469. https://doi.org/10.1002/ldr.4161

    Article  Google Scholar 

  69. Alakukku L (1999) Subsoil compaction due to wheel traffic. AFSci 8:333–351. https://doi.org/10.23986/afsci.5634

    Article  Google Scholar 

  70. Kuhwald M, Dörnhöfer K, Oppelt N et al (2018) Spatially explicit soil compaction risk assessment of arable soils at regional scale: the SaSCiA-model. Sustainability 10. https://doi.org/10.3390/su10051618

  71. Augustin K, Kuhwald M, Brunotte J et al (2019) FiTraM: a model for automated spatial analyses of wheel load, soil stress and wheel pass frequency at field scale. Biosyst Eng 180:108–120. https://doi.org/10.1016/j.biosystemseng.2019.01.019

    Article  Google Scholar 

  72. Völkel J (2000) Bodenbelastung durch Schwermetalle. In: Leibnitz-Institut für Länderkunde (ed) Nationalatlas Bundesrepublik Deutschland. Spektrum, Akad. Verl., Leipzig, Heidelberg [u.a.], pp 112–113

    Google Scholar 

  73. Lottermoser BG (2012) Effect of long-term irrigation with sewage effluent on the metal content of soils, Berlin, Germany. Environ Geochem Health 34:67–76. https://doi.org/10.1007/s10653-011-9391-5

    Article  CAS  Google Scholar 

  74. Neitsch J, Schwack W, Weller P (2016) How do modern pesticide treatments influence the mobility of old incurred DDT contaminations in agricultural soils? J Agric Food Chem 64:7445–7451. https://doi.org/10.1021/acs.jafc.6b03168

    Article  CAS  Google Scholar 

  75. Weller P, Neitsch J (2017) Führt der Einsatz moderner Pflanzenschutzmittel zur Mobilisierung alter DDT-Rückstände in landwirtschaftlichen Nutzflächen? Mitteilungen der Fachgruppe Umweltchemie und Ökotoxikologie 2017:40–42

    Google Scholar 

  76. Rillig MC (2012) Microplastic in terrestrial ecosystems and the soil? Environ Sci Technol 46:6453–6454. https://doi.org/10.1021/es302011r

    Article  CAS  Google Scholar 

  77. Leifheit EF, Rillig MC (2020) Mikroplastik in landwirtschaftlichen Böden - eine versteckte Gefahr? Berichte über Landwirtschaft - Zeitschrift für Agrarpolitik und Landwirtschaft, Aktuelle Beiträge https://doi.org/10.12767/BUEL.V98I1.279

  78. Bertling J, Bertling R, Hamann L (2018) Mikro- und Makroplastik. Kurzfassung der Konsortialstudie. UMSICHT, Ursachen, Mengen, Umweltschicksale, Wirkungen, Lösungsansätze, Empfehlungen

    Google Scholar 

  79. Sommer F, Dietze V, Baum A et al (2018) Tire abrasion as a major source of microplastics in the environment. Aerosol Air Qual Res 18:2014–2028. https://doi.org/10.4209/aaqr.2018.03.0099

    Article  CAS  Google Scholar 

  80. Piehl S, Leibner A, Löder MGJ et al (2018) Identification and quantification of macro- and microplastics on an agricultural farmland. Sci Rep 8:17950. https://doi.org/10.1038/s41598-018-36172-y

    Article  CAS  Google Scholar 

  81. Harms IK, Diekötter T, Troegel S et al (2021) Amount, distribution and composition of large microplastics in typical agricultural soils in northern Germany. Sci Total Environ 758:143615. https://doi.org/10.1016/j.scitotenv.2020.143615

    Article  CAS  Google Scholar 

  82. Jepsen D, Zimmermann T, Spengler L et al (2020) Kunststoffe in der Umwelt – Erarbeitung einer Systematik für erste Schätzungen zum Verbleib von Abfällen und anderen Produkten aus Kunststoffen in verschiedenen Umweltmedien. Texte, 198/2020, Dessau

    Google Scholar 

  83. Brandes E, Henseler M, Kreins P (2021) Identifying hot-spots for microplastic contamination in agricultural soils-a spatial modelling approach for Germany. 16:104041. https://doi.org/10.1088/1748-9326/ac21e6

  84. Bertling J, Zimmermann T, Rödig L (2021) Kunststoffe in der Umwelt: Emissionen in landwirtschaftlich genutzte Böden. Fraunhofer-Gesellschaft

    Google Scholar 

  85. Schneider I, Scholz K-N, Biegel-Engler A et al (2021) Kunststoffe in Böden, Dessau

    Google Scholar 

  86. Weber CJ, Opp C (2020) Spatial patterns of mesoplastics and coarse microplastics in floodplain soils as resulting from land use and fluvial processes. Environ Pollut 267:115390. https://doi.org/10.1016/j.envpol.2020.115390

    Article  CAS  Google Scholar 

  87. Rehm R, Zeyer T, Schmidt A et al (2021) Soil erosion as transport pathway of microplastic from agriculture soils to aquatic ecosystems. Sci Total Environ 795:148774. https://doi.org/10.1016/j.scitotenv.2021.148774

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Seeger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seeger, M. (2023). Agricultural Soil Degradation in Germany. In: Pereira, P., Muñoz-Rojas, M., Bogunovic, I., Zhao, W. (eds) Impact of Agriculture on Soil Degradation II. The Handbook of Environmental Chemistry, vol 121. Springer, Cham. https://doi.org/10.1007/698_2022_948

Download citation

Publish with us

Policies and ethics