Skip to main content

Offshore Wind Energy: Resource Assessment

  • Chapter
  • First Online:
Alternative Energy Resources

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 99))

Abstract

Recent advancements in technologies and increased attention towards renewable energy sources have made offshore wind energy systems as one of the largest and significant electrical power generators. In this chapter, fundamentals of offshore wind energy physics along with resource assessment methodology are described in detail. The process of resource assessment consists of the use of different data sets, different resource and energy estimation models. Wind, being an intermittent resource for power generation, mandates statistical methods to estimate the parameters with uncertainties. Researchers have employed several methodologies to assess offshore wind power density using resource estimation models and geographical information systems. Present chapter will be beneficial in getting familiar with the wind resource data analysis and different aspects of resource assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cruz J, Atcheson M (2016) Floating offshore wind energy – the next generation of wind energy. Springer, Berlin

    Book  Google Scholar 

  2. Mathew S (2007) Wind energy: fundamentals, resource analysis and economics. Springer, New York

    Google Scholar 

  3. Manwell JF, McGowan JG (2009) ALR wind energy explained: theory, design and application.2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  4. Arrambide I, Zubia I, Madariaga A (2019) Critical review of offshore wind turbine energy production and site potential assessment. Electr Power Syst Res 167:39–47

    Article  Google Scholar 

  5. GWEC (2018) Global wind report 2018. Global wind energy council, Brussels. https://gwec.net/global-wind-report-2018/. Accessed 20 Sep 19

  6. Manwell JF (2012) Offshore wind energy technology trends, challenges, and risks. In: Meyers RA (ed) Encyclopedia of sustainability science and technology. Springer, New York

    Google Scholar 

  7. Harish VSKV, Anwer N, Kumar A (2019) Development of a peer to peer electricity exchange model in micro grids for rural electrification. In: 2019 2nd international conference on power energy, environment and intelligent control (PEEIC). IEEE, pp 259–263

    Google Scholar 

  8. IEC (2009) Wind turbines, part 3: design requirements for offshore wind turbines, 61400-3. International Electrotechnical Commission, Geneva

    Google Scholar 

  9. Harish VSKV, Kumar A (2019) Stability analysis of reduced order building energy models for optimal energy control. In: 2019 2nd international conference on power energy, environment and intelligent control (PEEIC). IEEE, pp 327–331

    Google Scholar 

  10. Strahler AH, Strahler AN (1992) Modern physical geography.4th edn. Wiley, New York

    Google Scholar 

  11. Jain P (2010) Wind energy engineering. McGraw-Hill

    Google Scholar 

  12. Nagababu G, Kachhwaha SS, Naidu NK, Savsani V (2017) Application of reanalysis data to estimate offshore wind potential in EEZ of India based on marine ecosystem considerations. Energy 118:622–631. https://doi.org/10.1016/j.energy.2016.10.097

    Article  Google Scholar 

  13. Kumar SVA, Nagababu G, Sharma R, Kumar R (2020) Synergetic use of multiple scatterometers for offshore wind energy potential assessment. Ocean Eng 196:106745

    Article  Google Scholar 

  14. Surisetty VVAK, Nagababu G, Kumar R (2019) Comparative study of offshore winds and wind energy production derived from multiple scatterometers and met buoys. Energy 185:599–611. https://doi.org/10.1016/j.energy.2019.07.064

    Article  Google Scholar 

  15. Jani HK, Nagababu G, Patel RP, Kachhwaha SS (2019) Comparative study of meteorological and reanalysis wind data for offshore wind resource assessment. In: ICTEA: international conference on thermal engineering

    Google Scholar 

  16. Capps SB, Zender CS (2010) Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting. J Geophys Res Atmos 115:1–13

    Article  Google Scholar 

  17. Beaucage P, Lafrance G, Lafrance J et al (2011) Synthetic aperture radar satellite data for offshore wind assessment a strategic sampling approach. J Wind Eng Ind Aerodyn 99:27–36

    Article  Google Scholar 

  18. Hasager CB, Bingöl F, Badger M et al (2011) Offshore wind potential in South India from synthetic aperture radar. In: Denmark. Forskningscenter Risoe. Risoe-R; No. 1780(EN). Danmarks Tekniske Universitet, Roskilde, p 31

    Google Scholar 

  19. Hasager CB, Mouche A, Badger M et al (2015) Offshore wind climatology based on synergetic use of Envisat ASAR, ASCAT and QuikSCAT. Remote Sens Environ 156:247–263. https://doi.org/10.1016/j.rse.2014.09.030

    Article  Google Scholar 

  20. Karamanis D, Tsabaris C, Stamoulis K, Georgopoulos D (2011) Wind energy resources in the Ionian Sea. Renew Energy 36:815–822. https://doi.org/10.1016/j.renene.2010.08.007

    Article  Google Scholar 

  21. Jiang D, Zhuang D, Huang Y et al (2013) Evaluating the spatio-temporal variation of China’s offshore wind resources based on remotely sensed wind field data. Renew Sust Energ Rev 24:142–148

    Article  Google Scholar 

  22. Soukissian TH, Papadopoulos A (2015) Effects of different wind data sources in offshore wind power assessment. Renew Energy 77:101–114

    Article  Google Scholar 

  23. Pimenta F, Kempton W, Garvine R (2008) Combining meteorological stations and satellite data to evaluate the offshore wind power resource of Southeastern Brazil. Renew Energy 33:2375–2387

    Article  Google Scholar 

  24. Carvalho D, Rocha A, Gómez-Gesteira M, Silva Santos C (2014) Comparison of reanalyzed, analyzed, satellite-retrieved and NWP modelled winds with buoy data along the Iberian Peninsula coast. Remote Sens Environ 152:480–492. https://doi.org/10.1016/j.rse.2014.07.017

    Article  Google Scholar 

  25. Carvalho D, Rocha A, Gómez-Gesteira M, Silva Santos C (2014) Sensitivity of the WRF model wind simulation and wind energy production estimates to planetary boundary layer parameterizations for onshore and offshore areas in the Iberian Peninsula. Appl Energy 135:234–246. https://doi.org/10.1016/j.apenergy.2014.08.082

    Article  Google Scholar 

  26. Chang R, Zhu R, Badger M et al (2015) Offshore wind resources assessment from multiple satellite data and WRF modeling over South China Sea. Remote Sens 7:467–487. https://doi.org/10.3390/rs70100467

    Article  Google Scholar 

  27. Gadad S, Deka PC (2016) Offshore wind power resource assessment using Oceansat-2 scatterometer data at a regional scale. Appl Energy 176:157–170

    Article  Google Scholar 

  28. Carvalho D, Rocha A, Gómez-Gesteira M, Santos CS (2017) Offshore winds and wind energy production estimates derived from ASCAT, OSCAT, numerical weather prediction models and buoys–a comparative study for the Iberian Peninsula Atlantic coast. Renew Energy 102:433–444

    Article  Google Scholar 

  29. Soukissian T, Karathanasi F, Axaopoulos P (2017) Satellite-based offshore wind resource assessment in the Mediterranean Sea. IEEE J Ocean Eng 42:73–86

    Article  Google Scholar 

  30. Guo Q, Xu X, Zhang K et al (2018) Assessing global ocean wind energy resources using multiple satellite data. Remote Sens 10:1–13

    Google Scholar 

  31. Remmers T, Cawkwell F, Desmond C et al (2019) The potential of advanced scatterometer (ASCAT) 12.5 km coastal observations for offshore wind farm site selection in Irish waters. Energies 12:206

    Article  Google Scholar 

  32. Elsner P (2019) Continental-scale assessment of the African offshore wind energy potential: spatial analysis of an under-appreciated renewable energy resource. Renew Sust Energ Rev 104:394–407

    Article  Google Scholar 

  33. Ahmad Zaman AA, Hashim FE, Yaakob O (2019) Satellite-based offshore wind energy resource mapping in Malaysia. J Mar Sci Appl 18:114–121

    Article  Google Scholar 

  34. Kanamitsu M, Ebisuzaki W, Woollen J et al (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643. https://doi.org/10.1175/BAMS-83-11-1631

    Article  Google Scholar 

  35. Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  36. Archer CL, Caldeira K (2009) Global assessment of high-altitude wind power. Energies 2:307–319

    Article  Google Scholar 

  37. Ban M, Perković L, Duić N, Penedo R (2013) Estimating the spatial distribution of high altitude wind energy potential in Southeast Europe. Energy 57:24–29

    Article  Google Scholar 

  38. Kiss P, Jánosi IM (2008) Limitations of wind power availability over Europe: a conceptual study. Nonlinear Process Geophys 15:803–813. https://doi.org/10.5194/npg-15-803-2008

    Article  Google Scholar 

  39. Gunturu UB, Schlosser CA (2012) Characterization of wind power resource in the United States. Atmos Chem Phys 12:9687–9702. https://doi.org/10.5194/acp-12-9687-2012

    Article  Google Scholar 

  40. Pryor SC, Barthelmie RJ, Young DT et al (2009) Wind speed trends over the contiguous United States. J Geophys Res Atmos:114. https://doi.org/10.1029/2008JD011416

  41. Jin SL, Feng SL, Wang B et al (2014) Assessment of offshore wind resource in China using CFSR data. Adv Mater Res 1070–1072:303–308. https://doi.org/10.4028/www.scientific.net/AMR.1070-1072.303

    Article  Google Scholar 

  42. Sharp E, Dodds P, Barrett M, Spataru C (2015) Evaluating the accuracy of CFSR reanalysis hourly wind speed forecasts for the UK, using in situ measurements and geographical information. Renew Energy 77:527–538. https://doi.org/10.1016/j.renene.2014.12.025

    Article  Google Scholar 

  43. Hawkins S, Eager D, Harrison GP (2011) Characterising the reliability of production from future British offshore wind fleets. In: IET Conf Renew Power Gener (RPG 2011) 212–212. https://doi.org/10.1049/cp.2011.0183

  44. Menendez M, Tomas A, Camus P et al (2011) A methodology to evaluate regional-scale offshore wind energy resources. Ocean 2011 IEEE – Spain 1–8. https://doi.org/10.1109/Oceans-Spain.2011.6003595

  45. Staffell I, Green R (2014) How does wind farm performance decline with age? Renew Energy 66:775–786. https://doi.org/10.1016/j.renene.2013.10.041

    Article  Google Scholar 

  46. Stopa JE, Cheung KF (2014) Intercomparison of wind and wave data from the ECMWF reanalysis interim and the NCEP climate forecast system reanalysis. Ocean Model 75:65–83. https://doi.org/10.1016/j.ocemod.2013.12.006

    Article  Google Scholar 

  47. Dvorak MJ, Archer CL, Jacobson MZ (2010) California offshore wind energy potential. Renew Energy 35:1244–1254. https://doi.org/10.1016/j.renene.2009.11.022

    Article  Google Scholar 

  48. Yamaguchi A, Ishihara T (2014) Assessment of offshore wind energy potential using mesoscale model and geographic information system. Renew Energy 69:506–515. https://doi.org/10.1016/j.renene.2014.02.024

    Article  Google Scholar 

  49. Waewsak J, Landry M, Gagnon Y (2015) Offshore wind power potential of the Gulf of Thailand. Renew Energy 81:609–626. https://doi.org/10.1016/j.renene.2015.03.069

    Article  Google Scholar 

  50. Kim T, Park J-I, Maeng J (2016) Offshore wind farm site selection study around Jeju Island, South Korea. Renew Energy 94:619–628. https://doi.org/10.1016/j.renene.2016.03.083

    Article  Google Scholar 

  51. Hong L, Möller B (2011) Offshore wind energy potential in China: under technical, spatial and economic constraints. Energy 36:4482–4491. https://doi.org/10.1016/j.energy.2011.03.071

    Article  Google Scholar 

  52. Wu J, Wang J, Chi D (2013) Wind energy potential assessment for the site of Inner Mongolia in China. Renew Sustain Energy Rev 21:215–228. https://doi.org/10.1016/j.rser.2012.12.060

    Article  Google Scholar 

  53. Nielsen P (2010) WindPRO 2.7 user guide 3. Edition. EMD international A/S. http://www.emd.dk/files/windpro/manuals/for_print/MANUAL_2.7.pdf. Accessed 10 Jan 2020

  54. Landberg L, Myllerup L, Rathmann O et al (2003) Wind resource estimation – an overview. Wiley, Hoboken

    Book  Google Scholar 

  55. Mortensen NG, Heathfield DN, Myllerup L, et al (2007) Getting started with WAsP 9. 2571, p 72

    Google Scholar 

  56. IEC (2017) Wind energy generation systems – Part 12-1: Power performance measurements of electricity producing wind turbines. IEC 61400-12-1:2017 RLV, IEC Webstore. 0-860

    Google Scholar 

  57. Elliott DL (2002) Assessing the world wind resource. In: Power engineering review. IEEE, New York, pp 4–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. K. V. Harish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagababu, G., Harish, V.S.K.V. (2020). Offshore Wind Energy: Resource Assessment. In: Pathak, P., Srivastava, R.R. (eds) Alternative Energy Resources. The Handbook of Environmental Chemistry, vol 99. Springer, Cham. https://doi.org/10.1007/698_2020_630

Download citation

Publish with us

Policies and ethics