Skip to main content

Microbial Hazards in Treated Wastewater: Challenges and Opportunities for Their Reusing in Egypt

  • Chapter
  • First Online:
Unconventional Water Resources and Agriculture in Egypt

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 75))

  • 2071 Accesses

Abstract

The scientific and managerial challenges around the multiple processes, i.e., reclaimed wastewater, green energy, etc., are so similar in many countries. Many countries, including Egypt, countenance great challenges consequent the limited water and energy resources. These limitations have boosted the benefit in finding alternative water and renewable energy origins to output biofuels on one side and to reuse wastewater in agriculture. Conventional aerobic wastewater treatment plants require intensive oxygenation; a large numeral of chemicals and the implementation and maintenance are energy demanding. By using green technologies, i.e., integrating developed oxidation processes and microalgae-based systems, removal of biological pathogens and nutrients, i.e., ammonium and phosphate, can be recovered by microbial assimilation and operational cost of oxygenation avoided by in situ production via photosynthesis. Thus, the microalgae biomass should be harvested and utilized as the substrate for anaerobic digestion. Integration wastewater treatment, algal biomass production, and valorization via anaerobic digestion have the potential to raise the economic feasibility of providing the new provenance of energy and amendment of water quality in water bodies. This chapter discusses the wastewater treatment process challenges and opportunities for reusing unconventional water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ghaitidak DM, Yadav KD (2015) Effect of coagulant in greywater treatment for reuse: selection of optimal coagulation condition using analytic hierarchy process. Desalin Water Treat 55(4):913–925

    Article  CAS  Google Scholar 

  2. Ghunmi LA, Zeeman G, Fayyad M, van Lier JB (2010) Grey water treatment in a series anaerobic – aerobic system for irrigation. Bioresour Technol 101(1):41–50

    Article  Google Scholar 

  3. Taylor J, Laia K, Davies M, Clifton D, Ridley I, Biddulph P (2011) Flood management: prediction of microbial contamination in large-scale floods in urban environments. Environ Int 37:1019–1029

    Article  Google Scholar 

  4. WHO (2006) Guidelines for the safe use of wastewater, excreta and greywater: policy and regulatory aspects. World Health Organization

    Google Scholar 

  5. Cardenas MAR, Imtiaj Ali I, Lai FY, Dawes L, Their R, Rajapakse J (2016) Removal of micropollutants through a biological wastewater treatment plant in a subtropical climate, Queensland-Australia. J Environ Health Sci Eng 14:14

    Article  Google Scholar 

  6. Kyle A, Thompson KA, Shimabuku KK, Kearns JP, Knappe DRU, Summers RS, Cook SM (2016) Environmental comparison of biochar and activated carbon for tertiary wastewater treatment. Environ Sci Technol 50(20):11253–11262

    Article  Google Scholar 

  7. Michael I, Rizzo L, McArdell CS, Manaia CM, Merlin C, Schwartz T, Dagot C, Fatta-Kassinos D (2013) Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Res 47(3):957–995

    Article  CAS  Google Scholar 

  8. Mahgoub S, Abdelbasit H, Abdelfattah H (2015) Removal of phenol and zinc by Candida isolated from wastewater for integrated biological treatment. Desalin Water Treat 53(12):3381–3387

    Article  CAS  Google Scholar 

  9. Mahgoub S, Abdelbasit H, Abdelfattah H, Hamed S (2015) Monitoring phenol degrading Candida and bacterial pathogens in sewage treatment plant. Desalin Water Treat 54(8):2059–2066

    Article  CAS  Google Scholar 

  10. Mahgoub S, Samaras P, Abdelbasit H, Abdelfattah H (2016) Seasonal variation in microbiological and physicochemical characteristics of municipal wastewater in Al-Sharqiya province, Egypt (case study). Desalin Water Treat 57:2355–2364

    Article  CAS  Google Scholar 

  11. Fatta-Kassinos D, Kalavrouziotis IK, Koukoulakis PH, Vasqu ez MI (2011) The risks associated with the wastewater reuse and xenobiotics in the agroecological environment. Sci Total Environ 409:3555–3563

    Article  CAS  Google Scholar 

  12. Benz D, Paxéus NA, Ginn TR, Loge FJ (2005) Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Hoje River in Sweden. J Hazard Mater 122:195–204

    Article  Google Scholar 

  13. Byrne JA, Dunlop PSM, Hamilton JWJ, Fernández-Ibáñez P, Polo-López I, Sharma PK, Vennard ASM (2015) A review of heterogeneous photocatalysis for water and surface disinfection. Molecules 20:5574–5615

    Article  CAS  Google Scholar 

  14. Al-Assil B, Mahfoud M, Hamzeh AR (2013) Resistance trends and risk factors of extended spectrum β-lactamases in Escherichia coli infections in Aleppo, Syria. Am J Infect Control 41(7):597–600

    Article  CAS  Google Scholar 

  15. Bitton G (1994) Indicator microorganisms. In: Wastewater microbiology. Wiley-Liss, Inc., New York

    Google Scholar 

  16. Bitton G (2005) Microbial indicators of fecal contamination: application to microbial source tracking. Report submitted to the Florida Stormwater Association, pp 1–71

    Google Scholar 

  17. Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (2008) Climate change and water technical paper of the intergovernmental panel on climate change. IPCC Secretariat, Geneva

    Google Scholar 

  18. Walden C, Carbonero F, Zhang W (2017) Assessing impacts of DNA extraction methods on next generation sequencing of water and wastewater samples. J Microbiol Methods 141:10–16

    Article  CAS  Google Scholar 

  19. Shrestha BG, Tanaka Y, Bikash Malla B, Bhandari D, Haramoto E (2017) Next-generation sequencing identification of pathogenic bacterial genes and their relationship with fecal indicator bacteria in different water sources in the Kathmandu Valley, Nepal. Sci Total Environ 601–602:278–284

    Article  Google Scholar 

  20. Matsuki T, Watanabe K, Fujimoto J, Miyamoto Y, Takada T, Matsumoto K, Oyaizu H, Tanaka R (2002) Development of 16S rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Appl Environ Microbiol 68(11):5445–5451

    Article  CAS  Google Scholar 

  21. Nguyen HN, Rodrigues DF (2018) Chronic toxicity of graphene and graphene oxide in sequencing batch bioreactors: a comparative investigation. J Hazard Mater 343:200–207

    Article  CAS  Google Scholar 

  22. WHO (World Health Organization) (2004) Guidelines for drinking water quality. Recommendations, vol 1, 3rd edn. World Health Organization, Geneva

    Google Scholar 

  23. APHA (American Public Health Association) (2005) Standard methods for the examination of water and wastewater, 21st edn. Washington, DC, USA

    Google Scholar 

  24. APHA (American Public Health Association) (1998) Standard methods for the examination of water and wastewater, 20th edn. Washington, DC, USA

    Google Scholar 

  25. Bartram J, Cotruvo J, Exner M, Fricker C, Glasmacher A (2003) Heterotrophic plate counts and drinking-water safety. Published on behalf of WHO by IWA Publishing, UK, ISBN:9241562269

    Google Scholar 

  26. APHA (American Public Health Association) (2011) Standard methods for the examination of water and wastewater, 22nd edn. Washington, DC, USA

    Google Scholar 

  27. Lechevallier MW, Cameron SC, Mc Feters GA (1983) New medium for the improved recovery of coliform bacteria from drinking water. Appl Environ Microbiol 45:484–492

    CAS  Google Scholar 

  28. Eregno FE, Tryland I, Myrmel M, Wennberg A, Heistad A (2018) Decay rate of virus and faecal indicator bacteria (FIB) in seawater and the concentration of FIBs in different wastewater systems. Microb Risk Anal. doi: https://doi.org/10.1016/j.mran.2018.01.001

    Article  Google Scholar 

  29. Noble RT, Moore DF, Leecaster MK, McGee CD, Weisberg SB (2003) Comparison of total coliform, faecal coliform and Enterococcus bacterial indicator response for ocean recreational water quality testing. Water Res 37:1637–1643

    Article  CAS  Google Scholar 

  30. Haller L, Pote J, Loizeau JL, Wildi W (2009) Distribution and survival of fecal indicator bacteria in the sediments of the Bay of Vidy, lake Geneva, Switzerland. Biol Indic 9:540–547

    Google Scholar 

  31. Edberg SC, Rice EW, Karlin RJ, Allen MJ (2000) Escherichia coli: The best biological drinking water indicator for public health protection. J Appl Microbiol 88:106–116

    Article  Google Scholar 

  32. Doyle MP, Erickson MC (2006) Closing door on the fecal coliform assay. Microbiology 1:162–163

    Google Scholar 

  33. Kay D, Edwards AC, Ferrier RC, Francis C, Kay C, Rushby L (2007) Catchment microbial dynamics: the emergence of a research agenda. Prog Phys Geogr 31:59–76

    Article  Google Scholar 

  34. Al-Gheethi AA, Ismail N, Lalung J, Talib A, Kadir MOA (2013) Reduction of faecal indicators and elimination of pathogens from sewage treated effluents by heat treatment. Caspian J Appl Sci Res 2(2):29–45

    Google Scholar 

  35. Sneath PH (1986) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore

    Google Scholar 

  36. Watanabe IH, Shimohashi YK, Mutai M (1981) Studies on streptococci I. Distribution of fecal streptococci in man. Microbiol Immunol 25:257–260

    Article  CAS  Google Scholar 

  37. De Giglio O, Caggiano G, Bagordo F, Barbuti G, Brigida S, Lugoli F, Grassi T, La Rosa G, Lucentini L, Uriccho VF, De Donno A, Montagna MT (2017) Enteric virus and fecal bacteria indicators to assess groundwater quality and suitability for irrigation. Int J Environ Res Public Health 14(6):558

    Article  Google Scholar 

  38. Mulani MS, Azhar S, Azharuddin S, Tambe S (2015) Harnessing the power of bacteriophages for pathogen reduction in wastewater. Int J Curr Microbiol App Sci 2:152–161

    Google Scholar 

  39. Deshmukh RA, Joshi K, Bhand S, Roy U (2016) Recent developments in detection and enumeration of waterborne bacteria: a retrospective mini-review. Microbiol Open 5(6):901–922

    Article  Google Scholar 

  40. Silwa-Dominiak J, Tokarz-Deptula B, Deptula W (2014) Occurrence of F-specific RNA coliphages and microbial indicators in municipal lake water. Polish J Environ Studies 23:467–473

    Google Scholar 

  41. Horan NJ (1990) Biological wastewater treatment systems. Theory and operation. Wiley, Chickester

    Google Scholar 

  42. Jimenez B, Chavez A (2000) Chlorine disinfection of advanced primary effluent for reuse in irrigation in Mexico. AWWA water reuse conference proceeding, San Antonio, TX

    Google Scholar 

  43. Schlȕsener MP, Hardenbicker P, Nilson E, Schulz M, Viergutz C, Ternes TA (2015) Occurrence of venlafaxine, other antidepressants and selected metabolites in the Rhine catchment in the face of climate change. Environ Pollut 196:247–256

    Article  Google Scholar 

  44. Ardakanian R, Liebe R, Mullin J, Bernhardt L (2015) Report on the achievements during the international decade for action, “water for life” 2005–2015. http://www.ais.unwater.org/water-for-life-decadereport/Water-for-Life-DecadeReport_WEB.pdf

  45. WHO (World Health Organization) (2009) Global health risks: mortality and burden of disease attributable to selected major risks. http://www.WHO.int/healthinfo/gloal_burden_disease/Global_Health_Risks_report_full.pdf

  46. Salah El-Din W (2005) Multiplex PCR to detect some pathogenic bacteria in water. MSc thesis. In: Microbiology. Fac. of Girls for Arts, Sci. and Edu., Ain Shams Univ., Egypt

    Google Scholar 

  47. Malik A, Yasar A, Tabinda AB, Abubakar M (2012) Water-borne diseases, cost of illness and willingness to pay for diseases interventions in rural communities of developing countries. Iran J Public Health 41(6):39–49

    CAS  Google Scholar 

  48. Novo A, André S, Viana P, Nunes O, Manaia C (2013) Antibiotic resistance, antimicrobial residues and bacterial community composition in urban wastewater. Water Res 47:1875–1887

    Article  CAS  Google Scholar 

  49. Qiang ZM, Macauley JJ, Mormile MR, Suram R, Adams CD (2006) Treatment of antibiotics and antibiotic resistant bacteria in swine wastewater with free chlorine. J Agric Food Chem 54:8144–8154

    Article  CAS  Google Scholar 

  50. Suliman K, Siddique R, Nabi G, Sajjad W, Heenatigala P, Jingjing Y, Li Q, Hou H, Ali I (2017) Investigation of sewage and drinking water in major healthcare centers for bacterial and viral pathogens. Hydrol Curr Res 8(2):272

    Article  Google Scholar 

  51. Messi P, Guerrieri E, Bondi M (2005) Antibiotic resistance and antibacterial activity in heterotrophic bacteria of mineral water origin. Sci Total Environ 346:213–219

    Article  CAS  Google Scholar 

  52. Reinthaler FF, Posch J, Feierl G, Wust G, Haas D, Ruckenbauer G, Mascher F, Marth E (2003) Antibiotic resistance of E. coli in sewage and sludge. Water Res 37(8):1685–1690

    Article  CAS  Google Scholar 

  53. Mena KD, Gerpa CP (2009) Risk assessment of Pseudomonas aeruginosa in water. Rev Environ Contam Toxoicol 201:71–115

    CAS  Google Scholar 

  54. Rasko DA, Sperandio V (2010) Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov 9(2):117–128

    Article  CAS  Google Scholar 

  55. Everage TJ, Boopathy R, Nathaniel R, Lafleur G, Doucet J (2014) A survey of antibiotic-resistant bacteria in a sewage treatment plant in Thibodaux, Louisiana, USA. Int Biodeter Biodegr 95:2–10

    Article  CAS  Google Scholar 

  56. Boopathy R (2017) Presence of methicillin resistant Staphylococcus aureus (MRSA) in sewage treatment plant. Bioresour Technol 240:144–148

    Article  CAS  Google Scholar 

  57. Ben Said M, Abbassi MS, Gamez P, Hassan A (2017) Staphylococcus aureus Isolated from wastewater treatment plants in Tunisia: occurrence of human and animal associated lineages. J Water Health 15(4):638–643

    Article  Google Scholar 

  58. Nishiyama M, Ogura Y, Hayashi T, Suzuki Y (2017) Antibiotic resistance profiling and genotyping of vancomycin-an urban river basin in the provincial city of Miyazaki, Japan. Water 9(79):1–17

    Google Scholar 

  59. Torlak E, Kormut E, Uncu AT, Sener Y (2017) Biofilm formation by Staphylococcus aureus isolates from a dental clinic in Konya, Turkey. J Infect Public Health 10(6):809–813

    Article  Google Scholar 

  60. Torres AG (2004) Current aspects of Shigella pathogenesis. Rev Latinoam Microbiol 46(3–4):89–97

    Google Scholar 

  61. Machnicka A (2014) Escherichia coli in sewage sludge – detection method. Chem Didact Ecol Metrol 19(1–2):79–85

    Article  CAS  Google Scholar 

  62. WHO (World Health Organization) (2011) Guideline for drinking water quality. Recommendations, vol 3, 4th edn. World Health Organization, Geneva

    Google Scholar 

  63. Kaper JB, Nataro JP, Mobley HLT (2004) Pathogenic Escherchia coli. Nat Rev Microbiol 2:123–140

    Article  CAS  Google Scholar 

  64. Leclerc H, Schwartzbrod L, Dei-Cas E (2002) Microbial agents associated with waterborne diseases. Crit Rev Microbiol 28(4):371–409

    Article  CAS  Google Scholar 

  65. Bitton G (2011) Wastewater microbiology. 4th edn. Wiley, New York

    Google Scholar 

  66. WHO (World Health Organization) (2017) Water sanitation hygiene. World Water Day

    Google Scholar 

  67. FAO (2000) Water quality management and pollution control in the near east: an overview. Regional workshop on water quality management and pollution control in the near East. Cairo, Egypt

    Google Scholar 

  68. Allam MN, Allam GI (2007) Water resources in Egypt: future challenges and opportunities. Int Water Resour Assoc Water Int 32(2):205–218

    Google Scholar 

  69. Matta R, Tlili S, Barbati S (2011) Removal of carbamazepine from urban wastewater by sulfate radical oxidation. Environ Chem Lett 9:347–353

    Article  CAS  Google Scholar 

  70. Katsoyiannis IA, Canonica S, von Gunten U (2011) Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2. Water Res 45:3811–3822

    Article  CAS  Google Scholar 

  71. Wang Y et al (2015) Chem Eng J 266:12–20

    Article  CAS  Google Scholar 

  72. Ibekwe AM, Gonzalez-Rubio A, Suarez DL (2018) Impact of treated wastewater for irrigation on soil microbial communities. Sci Total Environ 622–623:1603–1610

    Article  Google Scholar 

  73. Elfanssi S, Ouazzani N, Mandi L (2018) Soil properties and agro-physiological responses of alfalfa (Medicago sativa L.) irrigated by treated domestic wastewater. Agric Water Manag 202:231–240

    Article  Google Scholar 

  74. Gatta G, Libutti A, Beneduce L, Gagliardi A, Tarantino E (2016) Reuse of treated municipal wastewater for globe artichoke irrigation: assessment of effects on morpho-quantitative parameters and microbial safety of yield. Sci Hortic 213:55–65

    Article  Google Scholar 

  75. Fiorentino A, Gentili A, Isidori M, Monaco P, Nardelli A, Parrella A, Temussi F (2003) Environmental effects caused by olive mill wastewaters: toxicity comparison of low-molecular weight phenol components. J Agric Food Chem 51:1005–1009

    Article  CAS  Google Scholar 

  76. Morillo JA, Antizar-Ladislao B, Monteoliva-Sánchez M, Ramos-Cormenzana A, Russell NJ (2009) Bioremediation and biovalorisation of olive-mill wastes. Appl Microbiol Biotechnol 82:25–39

    Article  CAS  Google Scholar 

  77. Mantzavinos D, Kalogerakis N (2005) Treatment of olive mill effluents: part I. Organic matter degradation by chemical and biological processes – an overview. Environ Int 31(2):289–295

    Article  CAS  Google Scholar 

  78. Wang A, Ren N, Wang X, Lee D (2008) Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria. J Hazard Mater 154:1060–1065

    Article  CAS  Google Scholar 

  79. Tondee T, Sirianuntapiboon S, Ohmomo S (2008) Decolorization of molasses wastewater by yeast strain, Issatchenkia orientalis no. SF9-246. Bioresour Technol 99:5511–5519

    Article  CAS  Google Scholar 

  80. Satyawali Y, Balakrishnan M (2008) Wastewater treatment in molasses-based alcohol distilleries for COD and color removal: a review. J Environ Manage 86:481–497

    Article  CAS  Google Scholar 

  81. Pena M, Coca M, González G, Rioja R, García MT (2003) Chemical oxidation of wastewater from molasses fermentation with ozone. Chemosphere 51:893–900

    Article  CAS  Google Scholar 

  82. Mahgoub S, Tsioptsias C, Samaras P (2016) Biodegradation and decolorization of melanoidin solutions by manganese peroxidase yeasts. Water Sci Technol 73(10):2436–2445

    Article  CAS  Google Scholar 

  83. Sandefur HN, Asgharpour M, Mariott J, Gottberg E, Vaden J, Matlock M, Hestekin J (2016) Recovery of nutrients from swine wastewater using ultrafiltration: applications for microalgae cultivation in photobioreactors. Ecol Eng 94:75–81

    Article  Google Scholar 

  84. Montingelli ME, Tedesco S, Olabi AG (2015) Biogas production from algal biomass. Renew Sustain Energy Rev 43:961–972

    Article  CAS  Google Scholar 

  85. Morand P, Merceron M, Pandalai S (2004) Coastal eutrophication and excessive growth of macroalgae. Recent Res Dev Environ Biol 1:395–449

    Google Scholar 

  86. Morand P, Briand X (1996) Excessive growth of macroalgae: a symptom of environmental disturbance. Bot Mar 39:491–516

    Article  CAS  Google Scholar 

  87. Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416

    Article  CAS  Google Scholar 

  88. Bruhn A, Dahl J, Nielsen HB, Nikolaisen L, Rasmussen MB, Markager S et al (2011) Bioenergy potential of Ulva Lactuca: biomass yield, methane production and combustion. Bioresour Technol 102:2595–2604

    Article  CAS  Google Scholar 

  89. Marinho-Soriano E, Fonseca PC, Carneiro MAA, Moreira WSC (2006) Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour Technol 97:2402–2406

    Article  CAS  Google Scholar 

  90. European Parliament News (2015) European Committee backs switchover to advanced biofuels. Press release – environment − 24-02-2015. http://www.europarl.europa.eu/news/en/news-room/content/20150223IPR24714/html/Environment-Committee-backs-switchover-to-advanced-biofuels

  91. Jard G, Marfaing H, Carrere H, Delgenes JP, Steyer JP, Dumas C (2013) French Brittany macroalgae screening: composition and methane potential for potential alternative sources of energy and products. Bioresour Technol 144:492–498

    Article  CAS  Google Scholar 

  92. Jacob A, Xia A, Murphy JD (2015) A perspective on gaseous biofuel production from micro-algal generated from CO2 emissions from a coal-fired power plant. Appl Energy 148:396–402

    Article  CAS  Google Scholar 

  93. Benami M, Gillor O, Gross A (2016) Potential microbial hazards from graywater reuse and associated matrices: a review. Water Res 106:183–195

    Article  CAS  Google Scholar 

  94. Sheikh B (2008) Socioeconomic aspects of wastewater treatment and water reuse. In: Baz IA, Otterpohl R, Wendland C (eds) Efficient management of wastewater. Springer, Berlin

    Google Scholar 

  95. Hussain I, Raschid L, Hanjra MA, Marikar F, van der Hoek W (2001) A framework for analyzing socioeconomic, health and environmental impacts of wastewater use in agriculture in developing countries: Working Paper 26. International Water Management Institute, Colombo, Sri Lanka

    Google Scholar 

  96. Elmeddahi Y, Mahmoudi H, Issaadi A, Goosen MFA (2015) Analysis of treated wastewater and feasibility for reuse in irrigation: a case study from Chlef, Algeria. Desalin Water Treat 57(12):5222–5231. https://doi.org/10.1080/19443994.2015.1021999

    Article  CAS  Google Scholar 

  97. Jaramillo MF, Restrepo I (2017) Wastewater reuse in agriculture: a review about its limitations and benefits. Sustainability 9:1734. https://doi.org/10.3390/su9101734

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir A. Mahgoub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahgoub, S.A. (2018). Microbial Hazards in Treated Wastewater: Challenges and Opportunities for Their Reusing in Egypt. In: Negm, A. (eds) Unconventional Water Resources and Agriculture in Egypt. The Handbook of Environmental Chemistry, vol 75. Springer, Cham. https://doi.org/10.1007/698_2018_314

Download citation

Publish with us

Policies and ethics