Skip to main content

Oil Spill Monitoring in the Italian Waters: COSMO-SkyMed Role and Contribution

  • Chapter
  • First Online:
Oil Pollution in the Mediterranean Sea: Part II

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 84))

Abstract

The Mediterranean Sea, rich in biodiversity and with a large number of endemic species, provides sustenance for millions of people living along its coasts. Due to its position it also represents the natural route between major oil production areas and oil consumers. Its preservation passes also through satellite technologies which are ever and ever playing an increasing role in environmental monitoring. Italy, recognizing its contribution, has decided to invest in this sector with the satellite Mission COSMO-SkyMed. Its frequent revisiting time, day and night and all weather acquisition capability, makes it an essential part together with aerial and naval component of the National Contingency Plan (United Nations Conference on Trade and Development, Review in Maritime Transport. Available at http://unctad.org/en/PublicationsLibrary/rmt2015_en.pdf) to contrast marine oil pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. United Nations Conference on Trade and Development, Review in Maritime Transport. Available at http://unctad.org/en/PublicationsLibrary/rmt2015_en.pdf

  2. Study of Maritime Traffic Flows in the Mediterranean Sea: EU project “Euromed co-operation on Maritime Safety and Prevention of Pollution from Ships – SAFEMED”. Available at http://safemedproject.rempec.org/documents/safemed-l-documents/2.3-maritime-traffic-flows-study/view

  3. Piano operativo di pronto intervento per la difesa del mare e delle zone costiere dagli inquinamenti accidentali da idrocarburi e da altre sostanze nocive. Available at http://www.minambiente.it/notizie/ecco-il-piano-difendere-dal-petrolio-il-mare-e-le-coste

  4. Contratto tra Ministero dell’Ambiente e della Tutela del Territorio e del Mare e CASTALIA Consorzio Stabile S.C.p.A Repertorio 212 23/06/2015., CIG:6090681CF3, CUP: F49D15000000001

    Google Scholar 

  5. Liberati R, Tabbita R, Gestione del servizio di protezione dell’ambiente marino e di lotta all’inquinamento del mare. Available at http://www.corteconti.it/

  6. Covello F, Battazza F, Coletta A, Lopinto E, Florentino C, Pietranera L, Valentini G, Zoffoli S (2010) CSK an existing opportunity for observing the Earth. J Geodyn 49:171–180

    Article  Google Scholar 

  7. Gambardella A, Giacinto G, Migliaccio M, Montali A (2010) One-class classification for oil spill detection. Pattern Anal Appl J 13(3):349–366. doi:10.1007/s10044-009-0164-z

    Article  Google Scholar 

  8. Migliaccio M, Nunziata F, Buono A (2015) A review on SAR polarimetry for sea oil slick observation. Int J Remote Sens 36(11–12):3243–3273

    Article  Google Scholar 

  9. Long DG, Mendel JM (1991) Identifiability in wind estimation from scatterometer measurements. IEEE Trans Geosci Remote Sens 29(2):268–276

    Article  Google Scholar 

  10. Nunziata F, Sobieski P, Migliaccio M (2009) The two-scale BPM scattering model for sea biogenic slicks contrast. IEEE Trans Geosci Remote Sens 47(7):1949–1956

    Article  Google Scholar 

  11. Migliaccio M, Ferrara G, Gambardella A, Nunziata F, Sorrentino A (2007) A physically consistent speckle model for marine SLC SAR images. IEEE J Ocean Eng 32(4):839–847

    Article  Google Scholar 

  12. Migliaccio M, Ferrara G, Gambardella A, Nunziata F (2007) A new stochastic model for oil spill observation by means of single-look SAR data. Environ Res Eng Manag 39(1):24–29

    Google Scholar 

  13. Migliaccio M, Tranfaglia M, Ermakov SA (2005) A physical approach for the observation of oil spills in SAR images. IEEE J Ocean Eng 30(3):496–507

    Article  Google Scholar 

  14. Montuori A, Nunziata F, Migliaccio M, Sobieski P (2016) X-band two-scale sea surface scattering model to predict the contrast due to an oil slick. IEEE J Sel Top Appl Earth Obs Remote Sens 9(11):4970–4978

    Article  Google Scholar 

  15. Migliaccio M, Nunziata F, Gambardella A (2007/2009) On the co-polarized phase difference for oil spill observation. Int J Remote Sens 30(6):1587–1602

    Article  Google Scholar 

  16. Velotto D, Migliaccio M, Nunziata F, Lehner S (2011) Dual-polarized TerraSAR-X data for oil-spill observation. IEEE Trans Geosci Remote Sens 49(12):4751–4762

    Article  Google Scholar 

  17. Migliaccio M, Gambardella A, Tranfaglia M (2007) SAR polarimetry to observe oil spills. IEEE Trans Geosci Remote Sens 45(2):506–511

    Article  Google Scholar 

  18. Migliaccio M, Gambardella A, Nunziata F, Shimada M, Isoguchi O (2009) The PALSAR polarimetric mode for sea oil slick observation. IEEE Trans Geosci Remote Sens 47(12):4032–4041

    Article  Google Scholar 

  19. Demin BT, Ermakov SA, Pelinovskii EN, Talipova TG, Sheremet’eva AI (1985) Study of the elastic properties of surface-active sea films. Atmos Oceanic Phys 21(4):410–416. ISSN: 00023515

    Google Scholar 

  20. Espedal HA, Whal T (1999) Satellite SAR oil spill detection using wind history information. Int J Remote Sens 20(1):49–65

    Article  Google Scholar 

  21. Wright J (1966) Backscattering from capillary waves with application to sea clutter. IEEE Trans Antennas Propag 14(6):749–754. doi:10.1109/TAP.1966.1138799

    Article  Google Scholar 

  22. Hersbach H, Stoffelen A, de Haan S (2007) An improved C-band scatterometer ocean geophysical model function: CMOD5. J Geophys Res 112(C3):C03006. 10.1029/2006JC003743

  23. Gerling TW (1986) Structure of the surface wind field from the Seasat SAR. J Geophys Res 91(C2):2308–2320. doi:10.1029/JC091iC02p02308

    Article  Google Scholar 

  24. Portabella M, Stoffelen A, Johannessen JA (2002) Toward an optimal inversion method for synthetic aperture radar wind retrieval. J Geophys Res 107(C8):3086. doi:10.1029/2001JC000925

    Article  Google Scholar 

  25. Mouche AA, Collard F, Chapron B, Dagestad KF, Guitton G, Johannessen JA, Kerbaol V, Hansen MW (2012) On the use of doppler shift for sea surface wind retrieval from SAR. IEEE Trans Geosci Remote Sens 50(7):2901–2909

    Article  Google Scholar 

  26. Beal RC, Tilley DG, Monaldo FM (1983) Large-and small-scale spatial evolution of digitally processed ocean wave spectra from SEASAT synthetic aperture radar. J Geophys Res 88(C3):1761–1778. doi:10.1029/JC088iC03p01761

    Article  Google Scholar 

  27. Hui L, Qing X, Quanan Z (2008) An overview on SAR measurements of sea surface wind. Prog Nat Sci 18:913–919

    Article  Google Scholar 

  28. Grieco G, Lin W, Migliaccio M, Nirchio F, Portabella M (2016) Dependency of the Sentinel-1 azimuth wavelength cut-off on significant wave height and wind speed. Int J Remote Sens 37(21):5086–5104

    Article  Google Scholar 

  29. Li X, Lehner S (2014) Algorithm for sea surface wind retrieval from TerraSAR-X and TanDEM-X data. IEEE Trans Geosci Remote Sens 52(5):2928–2939. doi:10.1109/TGRS.2013.2267780

    Article  Google Scholar 

  30. Nirchio F, Venafra S (2013) XMOD2 - an improved geophysical model function to retrieve sea surface wind fields from COSMO-Skymed X-band data. Eur J Remote Sens 46:583–595. doi:10.5721/EuJRS20134634

    Article  Google Scholar 

  31. Grieco G, Nirchio F, Migliaccio M (2015) Application of state-of-the-art SAR X-band geophysical model functions (GMFs) for sea surface wind (SSW) speed retrieval to a dataset of the Italian satellite mission COSMO-SkyMed. Int J Remote Sens 36(9):2296–2312

    Article  Google Scholar 

  32. Nirchio F et al. (2010) Contribution of COSMO/SkyMed data into PRIMI: a pilot project on marine oil pollution. Results after one year of operations. In: IEEE international geoscience and remote sensing symposium, IGARSS, 2010, At Honolulu, Hawaii, USA

    Google Scholar 

  33. http://unmig.mise.gov.it/unmig/strutturemarine/elenco.asp

  34. Carpenter A (2016) European Maritime Safety Agency activities in the Mediterranean Sea. In: Carpenter A, Kostianoy AG (ed) Oil pollution in the Mediterranean Sea: Part I – The international context. Handbook of Environmental Chemistry. Springer International Publishing Switzerland. doi:10.1007/698_2016_18

    Google Scholar 

Download references

Acknowledgement

Our special thanks are due to the Italian Ministry of the Environment (Dipartimento Protezione Natura) for the excellent cooperation and authorization to describe the off-shore platforms monitoring service and to the Italian Coast Guard for the aerial assets description, that are part of the monitoring service described.

We would particularly like to thank the ASI COSMO-SkyMed Mission Manager for his cooperation and authorization to publish the COSMO-SkyMed imagery.

We would also like to thank Ms. Maria Angelucci, Mr. Carlo Morucci, and Mr. Giuliano Paterino for their suggestions and accurate revision of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Nirchio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Nirchio, F., Grieco, G., Migliaccio, M., Nicolosi, P.D.M. (2016). Oil Spill Monitoring in the Italian Waters: COSMO-SkyMed Role and Contribution. In: Carpenter, A., Kostianoy, A. (eds) Oil Pollution in the Mediterranean Sea: Part II. The Handbook of Environmental Chemistry, vol 84. Springer, Cham. https://doi.org/10.1007/698_2016_115

Download citation

Publish with us

Policies and ethics