Skip to main content

Dosimetry and Toxicology of Nanosized Particles and Fibres

  • Chapter
  • First Online:
Indoor and Outdoor Nanoparticles

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 48))

Abstract

Once inhaled, nanomaterials (particles and fibres) have a high probability of deposition in the lungs mainly by diffusion and to be transported throughout the body. The chemical composition and surface reactivity and dissolution rates are the driving forces for toxicity often starting with oxidative stress which can lead to inflammation, systemic effects or even lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.ara.com/products/mppd.htm

References

  1. Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H, ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8

    Article  Google Scholar 

  2. Kreyling WC, Semmler-Behnke M, Möller W (2006) Health implications of nanoparticles. J Nano Res 8:543–562

    Article  CAS  Google Scholar 

  3. Kreyling WG, Möller W, Semmler-Behnke M, Oberdörster G (2007) Particle dosimetry: deposition and clearance from the respiratory tract and translocation towards extra-pulmonary sites. In: Donaldson K, Borm P (eds) Particle toxicology. CRC/Taylor & Francis, Boca Raton

    Google Scholar 

  4. Möller W, Kreyling WG, Schmid O, Semmler-Behnke M, Schulz H (2009) Deposition, retention and clearance, and translocation of inhaled fine and nano-sized particles in the respiratory tract. In: Gehr P, Blank F, Mühlfeld C, Rothen-Rutishauser B (eds) Particle-lung interactions, 2nd edn. Informa Healthcare, New York

    Google Scholar 

  5. Kingma PS, Whitsett JA (2006) In defense of the lung: surfactant protein A and surfactant protein D. Curr Opin Pharmacol 6(3):277–283

    Article  CAS  Google Scholar 

  6. Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson KA (2007) The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv Colloid Interface Sci 134–135:167–174

    Article  Google Scholar 

  7. Treuel L, Docter D, Maskos M, Stauber RH (2015) Protein corona – from molecular adsorption to physiological complexity. Beilstein J Nanotechnol 6:857–873

    Article  CAS  Google Scholar 

  8. Cho WS, Duffin R, Thielbeer F, Bradley M, Megson IL, Macnee W, Poland CA, Tran CL, Donaldson K (2012) Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal-oxide nanoparticles. Toxicol Sci 126(2):469–477

    Article  CAS  Google Scholar 

  9. Oberdörster G (1996) Significance of particle parameters in the evaluation of exposure-dose-response relationships of inhaled particles. Inhal Toxicol 8(Suppl):73–89

    Google Scholar 

  10. Asgharian B, Hofmann W, Bergmann R (2001) Particle deposition in a multiple-path model of the human lung. Aerosol Sci Technol 34:332–339

    Article  CAS  Google Scholar 

  11. WHO (1997) Determination of airborne fibre number concentrations. A recommended method, by phase-contrast optical microscopy membrane filter method. World Health Organization, Geneva

    Google Scholar 

  12. Brown J, Gordon T, Price O, Asgharian B (2013) Thoracic and respirable particle definitions for human health risk assessment. Part Fibre Toxicol 10(1):12

    Article  Google Scholar 

  13. Morgan A (1995) Deposition of inhaled asbestos and man-made mineral fibres in the respiratory tract. Ann Occup Hyg 39(5):747–758

    CAS  Google Scholar 

  14. Balashazy I, Moustafa M, Hofmann W, Szoke R, El-Hussein A, Ahmed AR (2005) Simulation of fiber deposition in bronchial airways. Inhal Toxicol 17(13):717–727

    Article  CAS  Google Scholar 

  15. Jones AD (1993) Respirable industrial fibres: deposition, clearance and dissolution in animal models. Ann Occup Hyg 37(2):211–226

    Article  CAS  Google Scholar 

  16. Sturm R, Hofmann W (2009) A theoretical approach to the deposition and clearance of fibers with variable size in the human respiratory tract. J Hazard Mater 170(1):210–218

    Article  CAS  Google Scholar 

  17. Poland C, Byrne F, Cho W, Prina-Mello A, Murphy F, Davies G (2011) Length-dependent pathogenic effects of nickel nanowires in the lungs and the peritoneal cavity. Nanotoxicology 6:899

    Article  Google Scholar 

  18. Hamilton RF, Wu N, Porter D, Buford M, Wolfarth M, Holian A (2009) Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part Fibre Toxicol 6:35

    Article  Google Scholar 

  19. Lehnert BE, Valdez YE, Tietjen GL (1989) Alveolar macrophage-particle relationships during lung clearance. Am J Respir Cell Mol Biol 1(2):145–154

    Article  CAS  Google Scholar 

  20. Ellender M, Hodgson A, Wood KL, Moody JC (1992) Effect of bronchopulmonary lavage on lung retention and clearance of particulate material in hamsters. Environ Health Perspect 97:209–213

    Article  CAS  Google Scholar 

  21. Morrow PE (1988) Possible mechanisms to explain dust overloading of the lungs. Fundam Appl Toxicol 10(3):369–384

    Article  CAS  Google Scholar 

  22. Morrow PE (1992) Dust overloading of the lungs: update and appraisal. Toxicol Appl Pharmacol 113(1):1–12

    Article  CAS  Google Scholar 

  23. Geiser M, Rothen-Rutishauser B, Kapp N, Schurch S, Kreyling W, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P (2005) Ultrafine particles cross cellular membranes by nonphagocyticmechanisms in lungs and in cultured cells. Environ Health Perspect 113:1555–1560

    Article  Google Scholar 

  24. Semmler M, Seitz J, Erbe F, Mayer P, Heyder J, Oberdörster G, Kreyling WG (2004) Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. Inhal Toxicol 16(6–7):453–459

    Article  CAS  Google Scholar 

  25. Semmler-Behnke M, Takenaka S, Fertsch S, Wenk A, Seitz J, Mayer P, Oberdörster G, Kreyling WG (2007) Efficient elimination of inhaled nanoparticles from the alveolar region: evidence for interstitial uptake and subsequent reentrainment onto airways epithelium. Environ Health Perspect 115(5):728–733

    Article  CAS  Google Scholar 

  26. Kreyling WG, Semmler-Behnke M, Seitz J, Scymczak W, Wenk A, Mayer P, Takenaka S, Oberdorster G (2009) Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal Toxicol 21:55–60

    Article  CAS  Google Scholar 

  27. Nikula KJ, Avila KJ, Griffith WC, Mauderly JL (1997) Sites of particle retention and lung tissue responses to chronically inhaled diesel exhaust and coal dust in rats and cynomolgus monkeys. Environ Health Perspect 105(Suppl 5):1231–1234

    Article  CAS  Google Scholar 

  28. Kreyling WG, Scheuch G (2000) Clearance of particles deposited in the lungs. In: Gehr P, Heyder J (eds) Particle-lung interactions. Marcel Dekker, New York/Basel, pp 323–376

    Chapter  Google Scholar 

  29. Kreyling WG, Semmler-Behnke M, Takenaka S, Moller W (2013) Differences in the biokinetics of inhaled nano- versus micrometer-sized particles. Acc Chem Res 46:714–722

    Article  CAS  Google Scholar 

  30. Stanton MF, Laynard M, Tegeris A, Miller E, May M, Kent E (1977) Carcinogenicity of fibrous glass: pleural response in the rat in relation to fiber dimension. J Natl Cancer Inst 58(3):587–603

    CAS  Google Scholar 

  31. Stanton M, Layard M, Tegeris A, Miller E, May M, Morgan E (1981) Relation of particle dimension to carcinogenicity in amphibole asbestoses and other fibrous minerals. J Natl Cancer Inst 67:965–975

    CAS  Google Scholar 

  32. Schinwald A, Chernova T, Donaldson K (2012) Use of silver nanowires to determine thresholds for fibre length-dependent pulmonary inflammation and inhibition of macrophage migration in vitro. Part Fibre Toxicol 9(1):47

    Article  CAS  Google Scholar 

  33. Donaldson K, Murphy FA, Duffin R, Poland CA (2010a) Asbestos, carbon nanotubes and the pleural mesothelium: a review and the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7(1):5

    Article  Google Scholar 

  34. Donaldson K, Murphy F, Duffin R, Poland C (2010b) Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7(5):5

    Article  Google Scholar 

  35. Hamilton RF Jr, Wu Z, Mitra S, Shaw PK, Holian A (2013) Effect of MWCNT size, carboxylation, and purification on in vitro and in vivo toxicity, inflammation and lung pathology. Part Fibre Toxicol 10(1):57

    Article  Google Scholar 

  36. Ellinger-Ziegelbauer H, Pauluhn J (2009) Pulmonary toxicity of multi-walled carbon nanotubes (Baytubes) relative to alpha-quartz following a single 6h inhalation exposure of rats and a 3 months post-exposure period. Toxicology 266(1–3):16–29

    Article  CAS  Google Scholar 

  37. Pauluhn J (2010) Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol Sci 113(1):226–242

    Article  CAS  Google Scholar 

  38. Ma-Hock L, Strauss V, Treumann S, Kuttler K, Wohlleben W, Hofmann T, Groters S, Wiench K, van Ravenzwaay B, Landsiedel R (2013) Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black. Part Fibre Toxicol 10(1):23

    Article  CAS  Google Scholar 

  39. Mercer RR, Scabilloni JF, Hubbs AF, Wang L, Battelli LA, McKinney W, Castranova V, Porter DW (2013) Extrapulmonary transport of MWCNT following inhalation exposure. Part Fibre Toxicol 10(1):38

    Article  CAS  Google Scholar 

  40. Mercer RR, Hubbs AF, Scabilloni JF, Wang L, Battelli LA, Schwegler-Berry D, Castranova V, Porter DW (2010) Distribution and persistence of pleural penetrations by multi-walled carbon nanotubes. Part Fibre Toxicol 7:28

    Article  Google Scholar 

  41. Ryman-Rasmussen JP, Cesta MF, Brody AR, Shipley-Phillips JK, Everitt JI, Tewksbury EW, Moss OR, Wong BA, Dodd DE, Andersen ME, Bonner JC (2009) Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol 4(11):747–751

    Article  CAS  Google Scholar 

  42. Murphy FA, Poland CA, Duffin R, Donaldson K (2013) Length-dependent pleural inflammation and parietal pleural responses after deposition of carbon nanotubes in the pulmonary airspaces of mice. Nanotoxicology 7:1157–1167

    Article  CAS  Google Scholar 

  43. Mitchev K, Dumortier P, De VP (2002) ‘Black Spots’ and hyaline pleural plaques on the parietal pleura of 150 urban necropsy cases. Am J Surg Pathol 26(9):1198–1206

    Article  Google Scholar 

  44. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, Macnee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3(7):423–428

    Article  CAS  Google Scholar 

  45. Murphy F, Poland C, Duffin R, Al-Jamal K, Ali-Boucetta H, Nunes A (2011) Length-dependent retention of carbon nanotubes in the pleural space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura. Am J Pathol 178:2587–2600

    Article  CAS  Google Scholar 

  46. Murphy FA, Schinwald A, Poland CA, Donaldson K (2012) The mechanism of pleural inflammation by long carbon nanotubes: interaction of long fibres with macrophages stimulates them to amplify pro-inflammatory responses in mesothelial cells. Part Fibre Toxicol 9:8

    Article  CAS  Google Scholar 

  47. Schinwald A, Murphy F, Prina-Mello A, Poland C, Byrne F, Movia D (2012) The threshold length for fiber-induced acute pleural inflammation: shedding light on the early events in asbestos-induced mesothelioma. Toxicol Sci 128:461–470

    Article  CAS  Google Scholar 

  48. Tsilibary EC, Wissig SL (1977) Absorption from the peritoneal cavity: SEM study of the mesothelium covering the peritoneal surface of the muscular portion of the diaphragm. Am J Anat 149(1):127–133

    Article  CAS  Google Scholar 

  49. Rittinghausen S, Hackbarth A, Creutzenberg O, Ernst H, Heinrich U, Leonhardt A, Schaudien D (2014) The carcinogenic effect of various multi-walled carbon nanotubes (MWCNTs) after intraperitoneal injection in rats. Part Fibre Toxicol 11(1):59

    Article  Google Scholar 

  50. Hesterberg TW, Hart GA, Chevalier J, Miiller WC, Hamilton RD, Bauer J, Thevenaz P (1998) The importance of fiber biopersistence and lung dose in determining the chronic inhalation effects of X607, RCF1, and chrysotile asbestos in rats. Toxicol Appl Pharmacol 153(1):68–82

    Article  CAS  Google Scholar 

  51. Kagan VE, Konduru NV, Feng W, Allen BL, Conroy J, Volkov Y, Vlasova II, Belikova NA, Yanamala N, Kapralov A, Tyurina YY, Shi J, Kisin ER, Murray AR, Franks J, Stolz D, Gou P, Klein-Seetharaman J, Fadeel B, Star A, Shvedova AA (2010) Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol 5:354–359

    Article  CAS  Google Scholar 

  52. Osmond-McLeod MJ, Poland CA, Murphy F, Waddington L, Morris H, Hawkins SC, Clark S, Aitken R, McCall MJ, Donaldson K (2011) Durability and inflammogenic impact of carbon nanotubes compared with asbestos fibres. Part Fibre Toxicol 8

    Google Scholar 

  53. Donaldson K, Stone V, Borm PJ, Jimenez LA, Gilmour PS, Schins RP, Knaapen AM, Rahman I, Faux SP, Brown DM, MacNee W (2003) Oxidative stress and calcium signaling in the adverse effects of environmental particles (PM10). Free Radic Biol Med 34(11):1369–1382

    Article  CAS  Google Scholar 

  54. Donaldson K, Borm PJ, Castranova V, Gulumian M (2009) The limits of testing particle-mediated oxidative stress in vitro in predicting diverse pathologies; relevance for testing of nanoparticles. Part Fibre Toxicol 6:13

    Article  Google Scholar 

  55. Oberdörster G (2001) Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 74(1):1–8

    Google Scholar 

  56. Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, Oberd­rster G, Ziesenis AJ (2002) Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. Toxicol Environ Health A 65(20):1513–1530

    Google Scholar 

  57. Johnston CF, Finkelstein JN, Mercer P, Corson N, Gelein R, Oberdörster G (2000) Pulmonary effects induced by ultrafine PTEF particles. Toxicol Appl Pharmacol 168:208–215

    Article  CAS  Google Scholar 

  58. Oberdörster G, Gelein RM, Ferin J, Weiss B (1995) Association of particulate air pollution and acute mortality: involvement of ultrafine particles. Inhal Toxicol 7:111–124

    Article  Google Scholar 

  59. Utell MJ, Frampton MW (2000) Who is susceptible to particulate matter and why? Inhal Toxicol 12(Suppl 1):37–40

    Article  CAS  Google Scholar 

  60. Maynard AD, Baron PA, Foley M, Shedova AA, Kisin ER, Castranova V (2004) Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health A 67:87–107

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flemming R. Cassee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cassee, F.R., Kreyling, W., Aitken, R., Poland, C. (2015). Dosimetry and Toxicology of Nanosized Particles and Fibres. In: Viana, M. (eds) Indoor and Outdoor Nanoparticles. The Handbook of Environmental Chemistry, vol 48. Springer, Cham. https://doi.org/10.1007/698_2015_415

Download citation

Publish with us

Policies and ethics