Skip to main content

Metabolic Scaling Applied to Native Woody Savanna Species in the Pantanal of Nhecolândia

  • Chapter
  • First Online:
Dynamics of the Pantanal Wetland in South America

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 37))

Abstract

Scaling invariance in living systems emerges from complex interactions of organisms with the physical world. According to the Metabolic Scaling Theory (MST), the way that energy and materials are distributed generally follows an invariant power law scaling with the body mass, independent on the species and the environment. Such generalization has been defined universal or ubiquitous, which is however not broadly accepted. For native woody savanna species in the Nhecolândia landscape, the scaling between trunk diameter and the whole plant body mass as d ~ m 3/8 follows MST prediction. Nevertheless, empirical data and model suggest biomass allocation beyond 50% to branches for trunk diameters above 18 cm, whereas root–trunk ratio does not vary significantly with plant size. The elevated water table explains such biomass allocation by limiting vertical root growth while enhancing branch growth to cope with evapotranspiration. Therefore, empirical deviations from MST scaling exponents of biomass partitioning for these plants can be understood as ecohydrological adaptations to conspicuous physical constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://instagram.com/anthillart.

References

  1. Glazier DS (2013) Log-transformation is useful for examining proportional relationships in allometric scaling. J Theor Biol 334:200–203

    Article  Google Scholar 

  2. West GB, Enquist BJ, Brown JH (2009) A general quantitative theory of forest structure and dynamics. Proc Natl Acad Sci 106(17):7040–7045

    Article  CAS  Google Scholar 

  3. Brown JH, Gupta VK, Li B-L, Milne BT, Restrepo C, West GB (2002) The fractal nature of nature: power laws, ecological complexity and biodiversity. Philos Trans R Soc Lond B Biol Sci 357(1421):619–626

    Article  Google Scholar 

  4. Turcotte DL (1997) Fractals and chaos in geology and geophysics. Cambridge University Press, New York

    Book  Google Scholar 

  5. Malamud BD, Turcotte DL (1999) Self-affine time series: measures of weak and strong persistence. J Stat Plan Inference 80(1–2):173–196

    Article  Google Scholar 

  6. Kolmogorov AN (1941) Dissipation of energy in locally isotropic turbulence. Dokl Akad Nauk SSSR 32:16–18

    Google Scholar 

  7. West GB, Brown JH, Enquist BJ (1999) The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284(5420):1677–1679

    Article  CAS  Google Scholar 

  8. Enquist BJ, Niklas KJ (2001) Invariant scaling relations across tree-dominated communities. Nature 410(6829):655–660

    Article  CAS  Google Scholar 

  9. Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochem Cycles 18(4), GB4009

    Article  Google Scholar 

  10. Lima IBT, Ramos FM, Bambace LAW, Rosa RR (2008) Methane emissions from large dams as renewable energy resources: a developing nation perspective. Mitig Adapt Strat Gl 13(2):193–206

    Article  Google Scholar 

  11. West GB (1999) The origin of universal scaling laws in biology. Physica A 263(1–4):104–113

    Article  Google Scholar 

  12. Whitfield J (2004) Ecology’s big hot idea. PLoS Biol 2:e440

    Article  Google Scholar 

  13. Coomes DA, Allen RB (2009) Testing the metabolic scaling theory of tree growth. J Ecol 97(6):1369–1373

    Article  Google Scholar 

  14. Coomes DA, Lines ER, Allen RB (2011) Moving on from metabolic scaling theory: hierarchical models of tree growth and asymmetric competition for light. J Ecol 99(3):748–756

    Article  Google Scholar 

  15. Enquist BJ, West GB, Brown JH (2009) Extensions and evaluations of a general quantitative theory of forest structure and dynamics. Proc Natl Acad Sci 10:2009

    Google Scholar 

  16. Price CA, Weitz JS, Savage VM, Stegen J, Clarke A, Coomes DA et al (2012) Testing the metabolic theory of ecology. Ecol Lett 15(12):1465–1474

    Article  Google Scholar 

  17. Salis SM, Assis MA, Mattos PP, Pião ACS (2006) Estimating the aboveground biomass and wood volume of savanna woodlands in Brazil’s Pantanal wetlands based on allometric correlations. For Ecol Manage 228(1–3):61–88

    Article  Google Scholar 

  18. Salis SM, Assis MA, Crispim SMA, Casagrande JC (2006) Distribuição e abundância de espécies arbóreas em cerradões no Pantanal, estado do mato grosso do sul Brasil. Braz J Bot 29:339–352

    Article  Google Scholar 

  19. Salis SM, Lehn CR, Mattos PP, Bergier I, Crispim SMA (2014) Root behavior of savanna species in Brazil’s Pantanal wetland. Glob Ecol Conserv 2:378–384

    Article  Google Scholar 

  20. Niklas KJ, Spatz H-C (2004) Growth and hydraulic (not mechanical) constraints govern the scaling of tree height and mass. Proc Natl Acad Sci U S A 101(44):15661–15663

    Article  CAS  Google Scholar 

  21. Pott A, Silva JSV (2015) Terrestrial and aquatic vegetation diversity of the Pantanal wetland. Hdb Env Chem. doi:10.1007/698_2014_352

    Google Scholar 

  22. Grace J, José JS, Meir P, Miranda HS, Montes RA (2006) Productivity and carbon fluxes of tropical savannas. J Biogeogr 33(3):387–400

    Article  Google Scholar 

  23. D’Odorico P, Laio F, Porporato A, Ridolfi L, Rinaldo A, Rodriguez-Iturbe I (2010) Ecohydrology of terrestrial ecosystems. BioScience 60(11):898–907

    Article  Google Scholar 

  24. Tredennick AT, Bentley LP, Hanan NP (2013) Allometric convergence in savanna trees and implications for the use of plant scaling models in variable ecosystems. PLoS One 8(3):e58241

    Article  CAS  Google Scholar 

  25. Kempes CP, West GB, Crowell K, Girvan M (2011) Predicting maximum tree heights and other traits from allometric scaling and resource limitations. PLoS One 6(6):e20551

    Article  CAS  Google Scholar 

  26. Ramos FM, Rosa RR, Neto CR, Bolzan MJA, Abren Sá LD (2001) Nonextensive thermostatistics description of intermittency in turbulence and financial markets. Nonlinear Anal Theory, Methods Appl 47(5):3521–3530

    Article  Google Scholar 

  27. Watanabe MDB, Ortega E (2014) Dynamic energy accounting of water and carbon ecosystem services: a model to simulate the impacts of land-use change. Ecol Model 271:113–131

    Article  CAS  Google Scholar 

  28. Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293(5538):2248–51

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Zachary Brym (Utah State University) for kindly reviewing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Salis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bergier, I., Salis, S.M., Mattos, P.P. (2015). Metabolic Scaling Applied to Native Woody Savanna Species in the Pantanal of Nhecolândia. In: Bergier, I., Assine, M. (eds) Dynamics of the Pantanal Wetland in South America. The Handbook of Environmental Chemistry, vol 37. Springer, Cham. https://doi.org/10.1007/698_2015_354

Download citation

Publish with us

Policies and ethics