Skip to main content

Daytime Atmospheric Chemistry of C 4C 7 Saturated and Unsaturated Carbonyl Compounds

  • Chapter
  • First Online:
Environment, Energy and Climate Change I

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 32))

  • 2205 Accesses

Abstract

This chapter aims to review the daytime atmospheric chemistry of some carbonyl compounds, crucial intermediates in the autocatalytic production of the main atmospheric oxidant, the hydroxyl radical (OH•). Carbonyl compounds are very important trace gases for the physico-chemistry of the troposphere mainly because they are directly emitted into the atmosphere or formed in situ in the photooxidation of almost all organic compounds. Particularly aldehydes (RCHO, R=alkyl chain) and ketones (RC(O)R′) are important key species in many atmospheric processes, because they undergo a wide variety of reactions, both chemical and photolytic. This chapter presents a synthesis of the studies on the chemistry of C 4C 7 saturated and unsaturated aldehydes and ketones in the troposphere. A comprehensive revision of the gas-phase rate coefficients for the reactions of these carbonyls with the major diurnal oxidants, photolysis frequencies and chemical mechanisms is also presented. The impact of these species on urban air pollution is also discussed. These kinetic and photochemical data can be included in the chemical modules of atmospheric models which are used by policymakers in formulating and deciding strategies for the improvement of air quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CL:

Chemiluminescence

DF:

Discharge flow tube

FID:

Flame ionisation detection

FP:

Flash photolysis

FT:

Flow tube

FTIR:

Fourier transform infrared

GC:

Gas chromatography

LIF:

Laser-induced fluorescence

MCM:

Master chemical mechanism

MIR:

Maximum incremental reactivity

MS:

Mass spectrometry

n.m.:

Not measured

OVOC:

Oxygenated volatile organic compound

PAN:

Peroxyacetyl nitrate

PANs:

Peroxyacyl nitrates

PLP:

Pulsed laser photolysis

POCP:

Photochemical ozone creation potential

ppmv:

Parts per million based on volume

RF:

Resonance fluorescence

ROG:

Reactive organic gas

RR:

Relative rate

SAR:

Structure activity relationship

SOA:

Secondary organic aerosol

UV:

Ultraviolet

VOC:

Volatile organic compound

References

  1. Atkinson R, Arey J (2003) Atmospheric degradation of volatile organic compounds. Chem Rev 103:4605–4638

    Google Scholar 

  2. Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson RF, Hynes RG, Jenkin ME, Rossi MJ, Troe J (2004) Evaluated kinetic and photochemical data for atmospheric chemistry: volume I – gas phase reactions of Ox, HOx, NOx and SOx species. Atmos Chem Phys 4:1461–1738

    CAS  Google Scholar 

  3. Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson RF, Hynes RG, Jenkin ME, Rossi MJ, Troe J, Subcommittee IUPAC (2006) Evaluated kinetic and photochemical data for atmospheric chemistry: volume II – gas phase reactions of organic species. Atmos Chem Phys 6:3625–4055

    CAS  Google Scholar 

  4. Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson RF, Hynes RG, Jenkin ME, Rossi MJ, Troe J (2007) Evaluated kinetic and photochemical data for atmospheric chemistry: volume III – gas phase reactions of inorganic halogens. Atmos Chem Phys 7:981–1191

    CAS  Google Scholar 

  5. Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson RF, Hynes RG, Jenkin ME, Rossi MJ, Troe J, Wallington TJ (2008) Evaluated kinetic and photochemical data for atmospheric chemistry: volume IV – gas phase reactions of organic halogen species. Atmos Chem Phys 8:4141–4496

    CAS  Google Scholar 

  6. Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23–88

    CAS  Google Scholar 

  7. König G, Brunda M, Puxbaum H, Hewitt CN, Duckham SC, Rudolph J (1995) Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected mid-European agricultural and natural plant species. Atmos Environ 29:861–874

    Google Scholar 

  8. Yokouchi Y, Muka H, Nakajima K, Ambe Y (1990) Semi-volatile aldehydes as predominant organic gases in remote areas. Atmos Environ 24A:439–442

    CAS  Google Scholar 

  9. Grosjean E, Grosjean D, Fraser MP, Cass R (1996) Air quality model evaluation data for organics. 2. C1−C14carbonyls in Los Angeles air. Environ Sci Tech 30:2687–2703

    CAS  Google Scholar 

  10. Kawamura K, Steinberg S, Kaplan IR (2000) Homologous series of C1–C10 monocarboxylic acids and C1–C6 carbonyls in Los Angeles air and motor vehicle exhausts: North America. Atmos Environ 34:4175–4191

    CAS  Google Scholar 

  11. Lary DJ, Shallcross DE (2000) Central role of carbonyl compounds in atmospheric chemistry. J Geophys Res 105:19771–19778

    CAS  Google Scholar 

  12. Mellouki A, Le Bras G, Sidebottom H (2003) Kinetics and mechanisms of the oxidation of oxygenated organic compounds in the gas phase. Chem Rev 103:5077–5096

    CAS  Google Scholar 

  13. Calvert JG, Mellouki A, Orlando JJ, Pilling MJ, Wallington TJ (2011) The mechanisms of atmospheric oxidation of the oxygenates. Oxford University Press, New York

    Google Scholar 

  14. Lee EKC, Lewis RS (1980) Photochemistry of simple aldehydes and ketones in the gas phase. In: Pitts Jr. JN, Hammond GS, Gollnick K (eds) Advances in photochemistry, vol 12. Wiley, New York, pp 1–96

    Google Scholar 

  15. Sato K, Klotz B, Taketsugu T, Takayanagi T (2004) Kinetic measurements for the reactions of ozone with crotonaldehyde and its methyl derivatives and calculations of transition-state theory. Phys Chem Chem Phys 6:3969–3976

    CAS  Google Scholar 

  16. Grosjean D, Grosjean E (1998) Rate constants for the gas-phase reaction of ozone with unsaturated oxygenates. Int J Chem Kinet 30:21–29

    CAS  Google Scholar 

  17. Atkinson R, Aschmann SM, Winer AM, Pitts JN Jr (1981) Rate constants for the gas-phase reactions of O3 with a series of carbonyls at 296 K. Int J Chem Kinet 13:1133–1142

    CAS  Google Scholar 

  18. Grosjean E, Grosjean D, Seinfeld JH (1996) Gas-phase reaction of ozone with trans-2-hexenal, trans-2-hexenyl acetate, ethylvinyl ketone, and 6-methyl-5-hepten-2-oneInt. J Chem Kinet 28:373–382

    CAS  Google Scholar 

  19. Atkinson R, Arey J, Aschamann SM, Corchnoy SB, Shu Y (1995) Rate constants for the gas-phase reactions of cis-3-Hexen-1-ol, cis-3-Hexenylacetate, trans-2-Hexenal, and Linalool with OH and NO3 radicals and O3 at 296 ± 2 K, and OH radical formation yields from the O3 reactions. Int J Chem Kinet 27:941–955

    CAS  Google Scholar 

  20. Albaladejo J, Ballesteros B, Jiménez E, Martin P, Martínez E (2002) A PLP-LIF kinetic study of the atmospheric reactivity of a series of C4–C7 saturated and unsaturated aliphatic aldehydes with OH. Atmos Environ 36:3231–3239

    Google Scholar 

  21. D’Anna B, Andresen Ø, Gefen Z, Nielsen CJ (2001) Kinetic study of OH and NO3 radical reactions with 14 aliphatic aldehydes. Phys Chem Chem Phys 3:3057–3063

    Google Scholar 

  22. Pagagni C, Arey J, Atkinson R (2000) Rate constants for the gas phase reactions of a series of C3–C6 aldehydes with OH and NO3 radicals. Int J Chem Kinet 32:79–84

    Google Scholar 

  23. Semmes DH, Ravishankara AR, Gump-Perkins CA, Wine PH (1985) Kinetics of the reactions of hydroxyl radical with aliphatic aldehydes. Int J Chem Kinet 17:303–313

    CAS  Google Scholar 

  24. Audley GJ, Baulch DL, Campbell IM, Breitenbach LP (1981) Gas-phase reactions of hydroxyl radicals with aldehydes in flowing H2O2 + NO2 + CO mixtures. J Chem Soc Faraday Trans 77:2541–2549

    CAS  Google Scholar 

  25. Kerr JA, Sheppard DW (1981) Kinetics of the reactions of hydroxyl radicals with aldehydes studied under atmospheric conditions. Environ Sci Tech 15:960–963

    CAS  Google Scholar 

  26. Magneron I, Thévenet R, Mellouki A, Moortgat GK (2002) A study of the photolysis and OH-initiated oxidation of acrolein and trans-crotonaldehyde. J Phys Chem A 106:2526–2537

    CAS  Google Scholar 

  27. Ullerstam M, Ljungström E, Langer S (2001) Reactions of acrolein, crotonaldehyde and pivalaldehyde with Cl atoms: structure-activity relationship and comparison with OH and NO3 reactions. Phys Chem Chem Phys 3:986–992

    CAS  Google Scholar 

  28. Atkinson R, Aschmann SM, Pitts JN Jr (1983) Kinetics of the gas-phase reactions of OH radicals with a series of alpha, beta-unsaturated carbonyls at 299 ± 2 K. Int J Chem Kinet 15:75–81

    CAS  Google Scholar 

  29. Thévenet R, Mellouki A, Le Bras G (2000) Kinetics of OH and Cl reactions with a series of aldehydes. Int J Chem Kinet 32:676–685

    Google Scholar 

  30. Jiménez E, Lanza B, Antiñolo M, Albaladejo J (2009) Influence of temperature on the chemical removal of 3-methylbutanal, trans-2-methyl-2-butenal, and 3-methyl-2-butenal by OH radicals in the troposphere. Atmos Environ 43:4043–4049

    Google Scholar 

  31. Glasius M, Galogirou A, Jensen NR, Hjorth J, Nielsen CJ (1997) Kinetic study of gas-phase reactions of pinonaldehyde and structurally related compounds. Int J Chem Kinet 29:527–533

    CAS  Google Scholar 

  32. Davies ME, Gilles MK, Ravishankara AR, Burkholder JB (2007) Rate coefficients for the reaction of OH with (E)-2-pentenal, (E)-2-hexenal, and (E)-2-heptenal. Phys Chem Chem Phys 9:2240–2248

    Google Scholar 

  33. Tuazon EC, Aschmann SM, Nishino N, Arey J, Atkinson R (2005) Kinetic and products of the OH radical-initiated reaction of 3-methyl-2-butenal. Phys Chem Chem Phys 7:2298–2304

    CAS  Google Scholar 

  34. Jiménez E, Lanza B, Martínez E, Albaladejo J (2007) Daytime tropospheric loss of hexanal and trans-2-hexenal/ OH kinetics and UV photolysis. Atmos Chem Phys 7:1565–1574

    Google Scholar 

  35. Gao T, Andino JM, Rivera CC, Francisco Márquez M (2009) Rate constants of the gas-phase reactions of OH radicals with trans-2-hexenal, trans-2-octenal and trans-2-nonenal. Int J Chem Kinet 41:483–489

    CAS  Google Scholar 

  36. Smith IWM, Ravishankara AR (2002) Role of hydrogen-bonded intermediates in the bimolecular reactions of the hydroxyl radical. J Phys Chem A 106:4798–4807

    CAS  Google Scholar 

  37. Singh S, Hernandez S, Ibarra Y, Hasson AS (2009) Kinetics and mechanism of the reactions of n-butanal and n-pentanal with chlorine atoms. Int J Chem Kinet 41:133–141

    CAS  Google Scholar 

  38. Wu H, Mu Y (2007) Rate constants and products for the reaction of Cl atom with n-Butyraldehyde. Int J Chem Kinet 39:168–174

    CAS  Google Scholar 

  39. Cuevas CA, Notario A, Martínez E, Albaladejo J (2006) Temperature-dependence study of the gas-phase reactions of atmospheric Cl atoms with a series of aliphatic aldehydes. Atmos Environ 40:3845–3854

    CAS  Google Scholar 

  40. Wang W, Ezell MJ, Ezell AA, Soskin G, Finlayson-Pitts BJ (2002) Rate constants for the reactions of chlorine atoms with a series of unsaturated aldehydes and ketones at 298 K: structure and reactivity. Phys Chem Chem Phys 4:1824–1831

    CAS  Google Scholar 

  41. Iwasaki E, Nakayama T, Matsumi Y, Takahashi K, Wallington TJ, Hurley MD, Kaiser EW (2008) Kinetics and mechanism of the reaction of chlorine atoms with n-Pentanal. J Phys Chem A 112:1741–1746

    CAS  Google Scholar 

  42. Rodríguez D, Rodríguez A, Notario A, Aranda A, Diaz de Mera Y, Martínez E (2005) Kinetic study of the gas-phase reaction of atomic chlorine with a series of aldehydes. Atmos Chem Phys 4:3433–3440

    Google Scholar 

  43. Calvert JG, Derwent RG, Orlando JJ, Tyndall GS, Wallington TJ (2008) Mechanisms of atmospheric oxidation of the alkanes. Oxford University press, New York

    Google Scholar 

  44. Finlayson-Pitts BJ, Pitts Jr. JN (2000) Chemistry of the upper and lower atmosphere. Academic Press, New York

    Google Scholar 

  45. Wayne RP (2000) Chemistry of atmospheres, 3rd edn. Oxford University Press, New York

    Google Scholar 

  46. Groß CBM, Dillon TJ, Crowley JN (2014) Pressure dependent OH yields in the reactions of CH3CO and HOCH2CO with O2. Phys Chem Chem Phys 16:10990–10998

    Google Scholar 

  47. Groß CBM, Dillon TJ, Schuster G, Lelieveld J, Crowley JN (2014) Direct kinetic study of OH and O3 formation in the reaction of CH3C(O)O2 with HO2. J Phys Chem A 118:974–985

    Google Scholar 

  48. Orlando JJ, Tyndall GS (2002) Mechanisms for the reactions of OH with two unsaturated aldehydes: crotonaldehyde and acrolein. J Phys Chem A106:12252–12259

    Google Scholar 

  49. Tadić J, Juranić I, Moortgat GK (2001) Pressure dependence of the photooxidation of selected carbonyl compounds in air: n-butanal and n-pentanal. J Photochem Photobiol A Chem 143:169–179

    Google Scholar 

  50. Tadić J, Juranić I, Moortgat GK (2001) Photooxidation of n-hexanal in air. Molecules 6:287–299

    Google Scholar 

  51. Madronich S, Flocke S (1999) The role of solar radiation in atmospheric chemistry. In: Handbook of environmental chemistry/ Springer-Verlag, Heidelberg

    Google Scholar 

  52. Calvert JG, Atkinson R, Kerr JA, Madronich S, Moortgat GK, Wallington TJ, Yarwood G (2000) The mechanisms of atmospheric oxidation of the alkenes. Oxford University Press, New York

    Google Scholar 

  53. Lanza B, Jiménez E, Ballesteros B, Albaladejo J (2008) Absorption cross section determination of biogenic C5-aldehydes in the actinic region. Chem Phys Lett 454:184–189

    CAS  Google Scholar 

  54. Keller-Rudek H, Moortgat GK, Sander R, Sörensen R (2013) The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest. Earth SystSci Data 5:365–373

    Google Scholar 

  55. Noelle A, Hartmann GK, Fahr A, Lary D, Lee Y-P, Limao-Vieira et al (2013) UV/Vis + spectra data base. http://www.science-softcon.de/

  56. Zhu L, Cronin T, Narang A (1999) Wavelength-dependent photolysis of i-pentanal and t-pentanal from 280 to 330 nm. J Phys Chem A 103:7248–7253

    CAS  Google Scholar 

  57. O’Connor MP, Wenger JC, Mellouki A, Wirtz K, Muñoz A (2006) The atmospheric photolysis of E-2-hexenal, Z-3-hexenal and E, E-2,4-hexadienal. Phys Chem Chem Phys 8:5236–5246

    Google Scholar 

  58. Moortgat GK (2001) Important photochemical processes in the atmosphere. Pure Appl Chem 73:487–490

    CAS  Google Scholar 

  59. Moortgat GK, Wirtz K, Hjorth J, Ljungstroem E, Ruppert L, Hayman G, Mellouki W (2002) Evaluation of radical sources in atmospheric chemistry through chamber and laboratory studies: RADICAL (Final SCA Project Report)

    Google Scholar 

  60. Tadić J, Juranić I, Moortgat GK (2002) Photooxidation of n-heptanal in air: Norrish type I and II processes and quantum yield total pressure dependency. J Chem Soc Perkin Trans 2:135–140

    Google Scholar 

  61. Cronin TJ, Zhu L (1998) Dye laser photolysis of n-pentanal from 280 to 330 nm. J Phys Chem A 102:10274–10279

    CAS  Google Scholar 

  62. Treacy J, El Hag M, O’Farrell D, Sidebottom H (1992) Reactions of ozone with unsaturated organic compounds. Ber Bunsenges Phys Chem 96:422–4227

    CAS  Google Scholar 

  63. Grosjean D, Grosjean E, Williams EL II (1993) Rate constants for the gas-phase reactions of ozone with unsaturated alcohols, esters, and carbonyls. Int J Chem Kinet 25:783–794

    CAS  Google Scholar 

  64. Neeb, P.; Kolloff, A.; Koch, S.; Moortgat, G. K. (1998) Rate constants for the reactions of methyl vinyl ketone, methacrolein, methacrylic acid, and acrylic acid with ozone. Int. J. Chem. Kinet.30:769–776

    Google Scholar 

  65. Greene CR, Atkinson R (1994) Rate constants for the gas-phase reactions of O3 with a series of cycloalkenes and α,β-unsaturated ketones at 296 ± 2 K. Int J Chem Kinet 26:37–44

    Google Scholar 

  66. Zhou S, Barnes I, Zhu T, Bejan I, Albu M, Benter T (2008) Atmospheric chemistry of acetylacetone. Environ Sci Tech 42:7905–7910

    CAS  Google Scholar 

  67. Grosjean E, Grosjean D (1999) The reaction of unsaturated aliphatic oxygenates with ozone. J Atmos Chem 32:205–232

    CAS  Google Scholar 

  68. Wang K, Maofa Ge M, Weigang Wang W (2010) Kinetics of the gas-phase reactions of 5-hexen-2-one with OH and NO3 radicals and O3. Chem Phys Lett 490:29–33

    CAS  Google Scholar 

  69. Winer AM, Lloyd AC, Darnall KR, Atkinson R, Pitts JN Jr (1976) Relative rate constants for the reaction of the hydroxyl radical with selected ketones, chloroethenes and monoterpene hydrocarbons. J Phys Chem 80:1635–1639

    CAS  Google Scholar 

  70. Cox RA, Derwent RG, Williams MR (1980) Atmospheric photooxidation reactions. Rates reactivity, and mechanisms for reaction of organic compounds with hydroxyl radicals. Environ Sci Tech 14:57–61

    CAS  Google Scholar 

  71. Cox RA, Patrick KF, Chant SA (1981) Mechanism of atmospheric photooxidation of organic compounds. Reactions of alkoxy radicals in oxidation of n-butane and simple ketones. Environ Sci Tech 15:587–592

    CAS  Google Scholar 

  72. Edney EO, Kleindienst TE, Corse EW (1986) Room temperature rate constants for the reaction of OH with selected chlorinated and oxygenated hydrocarbons. Int J Chem Kinet 18:1355–1371

    CAS  Google Scholar 

  73. Wallington TJ, Kurylo MJ (1987) Flash photolysis resonance fluorescence investigation of the gas-phase reactions of OH radicals with a series of aliphatic ketones over the temperature range 240–440 K. J Phys Chem 91:5050–5054

    CAS  Google Scholar 

  74. Le Calvé S, Hitier D, Le Bras G, Mellouki A (1998) Kinetic studies of OH reactions with a series of ketones. J Phys Chem A 102:4579–4584

    Google Scholar 

  75. Jiménez E, Ballesteros B, Martínez E, Albaladejo J (2005) Tropospheric reaction of OH with selected linear ketones: kinetic studies between 228 and 405 K. Environ Sci Tech 39:814–820

    Google Scholar 

  76. Carr SA, Baeza-Romeo MT, Blitz MA, Price BJS, Seakins PW (2008) Ketone photolysis in the presence of oxygen: a useful source of OH for flash photolysis kinetics experiments. Int J Chem Kinet 40:504–514

    Google Scholar 

  77. Kleindienst TE, Harris GW, Pitts JN Jr (1982) Rates and temperature dependence of the reaction of OH with isoprene, its oxidation products, and selected terpenes. Environ Sci Technol 16:844–846

    CAS  Google Scholar 

  78. Gierczak T, Burkholder JB, Talukdar RK, Mellouki A, Barone SB, Ravishankara AR (1997) Atmospheric fate of methyl vinyl ketone and methacrolein. J Photochem Photobiol A110:1–10

    Google Scholar 

  79. Aschmann SM, Atkinson R (1998) Kinetics of the gas-phase reactions of the OH radical with selected glycol ethers, glycols, and alcohols. Int J Chem Kinet 30:533–540

    CAS  Google Scholar 

  80. Chuong B, Stevens PS (2003) Kinetics of the OH + methyl vinyl ketone and OH + methacrolein reactions at low pressure. J Phys Chem A 107:2185–2191

    CAS  Google Scholar 

  81. Chuong B, Stevens PS (2004) Measurements of the kinetics of the OH-initiated oxidation of methyl vinyl ketone and methacrolein. Int J Chem Kinet 36:12–25

    CAS  Google Scholar 

  82. Holloway AL, Treacy J, Sidebottom H, Mellouki A, Daële V, Le Bras G, Barnes I (2005) Rate coefficients for the reactions of OH radicals with the keto/enol tautomers of 2,4-pentanedione and 3-methyl-2,4-pentanedione, allyl alcohol and methyl vinyl ketone using the enols and methyl nitrite as photolytic sources of OH. J Photochem Photobiol A Chem 176:183–190

    CAS  Google Scholar 

  83. Atkinson R, Aschmann SM, Carter WPL, Pitts Jr. JN (1982) Rate constants for the gas-phase reaction of OH radicals with a series of ketones at 299 ± 2 K. Int Chem Kinet 14:839–847

    Google Scholar 

  84. Atkinson R, Aschmann SM (1988) Comment on “Flash photolysis resonance – fluorescence investigation of the gas-phase reactions of OH radicals with a series of aliphatic ketones over the temperature range 240–440 K. J Phys Chem 92:4008

    CAS  Google Scholar 

  85. Atkinson R, Tuazon EC, Aschmann SM (2000) Atmospheric chemistry of 2-pentanone and 2-heptanone. Environ Sci Tech 34:623–631

    CAS  Google Scholar 

  86. Blanco MB, Barnes I, Wiesen P (2012) Kinetic investigation of the OH radical and Cl atom initiated degradation of unsaturated ketones at atmospheric pressure and 298 K. J Phys Chem A 116:6033–6040

    CAS  Google Scholar 

  87. Blanco MB, Teruel MA (2011) Atmospheric photodegradation of ethyl vinyl ketone and vinyl propionate initiated by OH radicals. Chem Phys Lett 502:159–162

    CAS  Google Scholar 

  88. Jiménez E, Lanza B, Antiñolo M, Albaladejo J (2009) Photooxidation of leaf-wound oxygenated compounds, 1-penten-3-ol, (Z)-3-hexen-1-ol, and 1-penten-3-one, initiated by OH radicals and sunlight. Environ Sci Tech 43:1831–1837

    Google Scholar 

  89. Dagaut P, Wallington TJ, Liu R, Kurylo MJ (1988) A kinetic investigation of the gas-phase reactions of OH radicals with cyclic ketones and diones: mechanistic insights. J Phys Chem 92:4375–4377

    CAS  Google Scholar 

  90. Wallington TJ, Andino JM, Ball JC, Japar SM (1990) Fourier transform infrared studies of the reaction of Cl atoms with PAN, PPN, CH3OOH, HCOOH, CH3COCH3 and CH3COC2H5 at 295 ± 2 K. J Atmos Chem 10:301–313

    CAS  Google Scholar 

  91. Notario A, Mellouki A, Le Bras G (2000) Rate constants for the gas-phase reactions of chlorine atoms with a series of ketones. Int J Chem Kinet 32:62–66

    CAS  Google Scholar 

  92. Albaladejo J, Notario A, Cuevas CA, Jiménez E, Cabañas B, Martínez E (2003) Gas-phase chemistry of atmospheric Cl atoms: a PLP-RF kinetic study with a series of ketones. Atmos Environ 37:455–463

    CAS  Google Scholar 

  93. Cuevas CA, Notario A, Martínez E, Albaladejo J (2004) A kinetic study of the reaction of Cl with a series of linear and ramified ketones as a function of temperature. Phys Chem Chem Phys 6:2230–2236

    CAS  Google Scholar 

  94. Taketani F, Matsumi Y, Wallington TJ, Hurley MD (2006) Kinetics of the gas phase reactions of chlorine atoms with a series of ketones. Chem Phys Lett 431:257–260

    CAS  Google Scholar 

  95. Kaiser EW, Wallington TJ (2007) Rate constants for the reaction of Cl with a series of C4 to C6 ketones using the relative rate method. J Phys Chem A 111:10667–10670

    CAS  Google Scholar 

  96. Takahashi K, Iwasaki E, Matsumi Y, Wallington TJ (2007) Pulsed laser photolysis vacuum UV laser-induced fluorescence kinetic study of the gas-phase reactions of Cl(2P3/2) atoms with C3−C6 ketones. J Phys Chem A 111:1271–1276

    CAS  Google Scholar 

  97. Zhao Z, Huskey DT, Nicovich JM, Wine PH (2008) Temperature-dependent kinetics study of the gas-phase reactions of atomic chlorine with acetone, 2-butanone, and 3-pentanone. Int J Chem Kinetic 40:259–267

    CAS  Google Scholar 

  98. Kaiser EW, Wallington TJ, Hurley MD (2009) Products and Mechanism of the reaction of Cl with butanone in N2/O2 diluent at 297−526 K. J Phys Chem A 113:2424–2437

    CAS  Google Scholar 

  99. Canosa-Mass CE, Hutton-Squire HR, King MD, Stewart DJ, Thompson KC, Wayne RP (1999) J Atmos Chem 34:163–170

    Google Scholar 

  100. Finlayson-Pitts BJ, Keoshian CJ, Buehler B, Ezell AA (1999) Kinetics of reaction of chlorine atoms with some biogenic organics. Int J Chem Kinet 31:491–499

    CAS  Google Scholar 

  101. Canosa-Mas CE, Cotter ESN, Duffy J, Thompson KC, Wayne RP (2001) The reactions of atomic chlorine with acrolein, methacrolein and methyl vinyl ketone. Phys Chem Chem Phys 3:3075–3084

    CAS  Google Scholar 

  102. Orlando JJ, Tyndall GS, Apel EC, Riemer DD, Paulson SE (2003) Rate coefficients and mechanisms of the reaction of Cl-atoms with a series of unsaturated hydrocarbons under atmospheric conditions. Int J Chem Kinet 35:334–353

    CAS  Google Scholar 

  103. Aranda A, Díaz de Mera Y, Rodríguez YA, Morales L, Martínez E (2004) Kinetic study of the gas-phase reactions of Cl radicals with 3-pentanone and 3-hexanone. J Phys Chem A 108:7027–7031

    CAS  Google Scholar 

  104. Kaiser EW, Wallington TJ, Hurley MD (2010) Products and mechanism of the reaction of chlorine atoms with 3-pentanone in 700–950 Torr of N2/O2 diluent at 297–515 K. J Phys Chem A 114:343–354

    CAS  Google Scholar 

  105. Teruel MA, Achad M, Blanco MB (2009) Kinetic study of the reactions of Cl atoms with unsaturated carbonyl compounds at atmospheric pressure and structure activity relations (SARs). Chem Phys Lett 479:25–29

    CAS  Google Scholar 

  106. Aschmann SM, Atkinson R (1995) Rate constants for the gas-phase reactions of alkanes with Cl atoms at 296 ± 2 K. Int J Chem Kinet 27:613–622

    CAS  Google Scholar 

  107. Ezell MJ, Wang W, Ezell AA, Soskin G, Finlayson-Pitts BJ (2002) Kinetics of reactions of chlorine atoms with a series of alkenes at 1 atm and 298 K. Phys Chem Chem Phys 4:5813–5820

    CAS  Google Scholar 

  108. Johnson D, Marston G (2008) The gas-phase ozonolysis of unsaturated volatile organic compounds in the troposphere. Chem Soc Rev 37:699–716

    CAS  Google Scholar 

  109. Welz O, Savee JD, Osborn DL, Vasu SS, Percival CJ, Shallcross DE, Taatjes CJ (2012) Direct Kinetic measurements of Criegee intermediate (CH2OO) formed by reaction of CH2I with O2. Science 335:204–207

    CAS  Google Scholar 

  110. Krol M, van Leeuwen PJ, Lelieveld J (1998) Global OH trend inferred from methylchloroform measurements. J Geophys Res Atmos 103:10697–10711

    CAS  Google Scholar 

  111. Singh HB, Thakur AN, Chen YE, Kanakidou M (1996) Tetrachloroethylene as an indicator of low CI atom concentrations in the troposphere. Geophys Res Lett 23:1529–1532

    CAS  Google Scholar 

  112. Spicer CW, Chapman EG, Finlayson-Pitts BJ, Plastridge RA, Hubbe JM, Fast JD, Berkowitz CM (1998) Unexpectedly high concentrations of molecular chlorine in coastal air. Nature 394:353–356

    CAS  Google Scholar 

  113. Carter WPL, Atkinson R (1987) Computer modelling study of incremental hydrocarbon reactivity. Environ Sci Technol 21:670–679

    CAS  Google Scholar 

  114. Carter WPL (1994) Development of ozone reactivity scales for volatile organic compounds. J Air Waste Manag Assoc 44:881–899

    CAS  Google Scholar 

  115. Derwent RG, Jenkin ME, Saunders SM (1996) Photochemical ozone creation potentials for a large number of reactive hydrocarbons under European conditions. Atmos Environ 30:181–199

    CAS  Google Scholar 

  116. Derwent RG, Jenkin ME, Saunders SM, Pilling MJ (1998) Photochemical ozone creation potentials for organic compounds in Northwest Europe calculated with a master chemical mechanism. Atmos Environ 32:2429–2441

    CAS  Google Scholar 

  117. Derwent RG, Jenkin ME, Passant NR, Pilling MJ (2007) Photochemical ozone creation potentials (POCPs) for different emission sources of organic compounds under European conditions estimated with a Master Chemical Mechanism. Atmos Environ 41:2570–2579

    CAS  Google Scholar 

  118. Jenkin ME (1998) Photochemical ozone and PAN creation potentials: rationalisation and methods of estimation. AEA Technology plc, Report AEAT-4182/20150/003, AEA Technology plc. National Environmental Technology Centre, Culham

    Google Scholar 

  119. Ervens B, Kreidenweis SM (2007) SOA Formation by biogenic and carbonyl compounds: data evaluation and application. Environ Sci Technol 41:3904–3910

    CAS  Google Scholar 

  120. Carlton AG, Wiedinmyer C, Kroll JH (2009) A review of secondary organic aerosol (SOA) formation from isoprene. Atmos Chem Phys 9:4987–5005

    CAS  Google Scholar 

  121. Zhao DF, Kaminski M, Schlag P, Fuchs H, Acir I-H, Bohn B, Häseler R, Kiendler-Scharr A, Rohrer F, Tillmann R, Wang MJ, Wegener R, Wildt J, Wahner A, Mentel TF (2014) Secondary Organic Aerosol (SOA) formation from hydroxyl radical oxidation and ozonolysis of monoterpenes. Atmos Chem Phys Discuss 14:12591–12634

    Google Scholar 

  122. Kourtchev IS, Fuller J, Giorio C, Healy RM, Wilson E, O’Connor I, Wenger JC, McLeod M, Aalto J, Ruuskanen TM, Maenhaut W, Jones R, Venables DS, Sodeau JR, Kulmala M, Kalberer M (2014) Molecular composition of biogenic secondary organic aerosols using ultrahigh-resolution mass spectrometry: comparing laboratory and field studies. Atmos Chem Phys 14:2155–2167

    Google Scholar 

  123. Volkamer R, Jimenez JL, San Martini F, Dzepina K, Zhang Q, Salcedo D, Molina LT, Worsnop DR, Molina MJ (2006) Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected. Geophys Res Lett 33, L17811

    Google Scholar 

  124. Hu Q-H, Xie Z-Q, Wang X-M, Kang H, He Q-F, Zhang P (2013) Secondary organic aerosols over oceans via oxidation of isoprene and monoterpenes from Arctic to Antarctic. Nat Sci Reports 3:2280

    CAS  Google Scholar 

  125. Chan AWH, Chan MN, Surratt JD, Chhabra PS, Loza CL, Crounse JD, Yee LD, Flagan RC, Wennberg PO, Seinfeld JH (2010) Role of aldehyde chemistry and NO x concentrations in secondary organic aerosol formation. Atmos Chem Phys 10:7169–7188

    CAS  Google Scholar 

  126. Barsanti KC, Pankow JF (2004) Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions – part 1: aldehydes and ketones. Atmos Environ 38:4371–4382

    CAS  Google Scholar 

  127. Jang M, Kamens RM (2001) Atmospheric Secondary aerosol formation by heterogeneous reactions of aldehydes in the presence of a sulfuric acid aerosol catalyst. Environ Sci Technol 35:4758–4766

    Google Scholar 

  128. Kwok ESC, Atkinson R (1995) Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure-reactivity relationship: an update. Atmos Environ 29:1685–1695

    CAS  Google Scholar 

  129. Pfrang C, King MD, Canosa-Mas CE, Mark Flugge M, Wayne RP (2007) Gas-phase rate coefficients for the reactions of NO3, OH and O3with α, β-unsaturated esters and ketones: structure reactivity relations (SARs). Atmos Environ 41:1792

    CAS  Google Scholar 

  130. Kerdouci J, Picquet Varrault B, Doussin J-F (2010) prediction of rate constants for gas-phase reactions of nitrate radical with organic compounds: a new structure-activity relationship. Chem Phys Chem 11:3909–3920

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Jiménez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jiménez, E., Barnes, I. (2014). Daytime Atmospheric Chemistry of C 4C 7 Saturated and Unsaturated Carbonyl Compounds. In: Jiménez, E., Cabañas, B., Lefebvre, G. (eds) Environment, Energy and Climate Change I. The Handbook of Environmental Chemistry, vol 32. Springer, Cham. https://doi.org/10.1007/698_2014_286

Download citation

Publish with us

Policies and ethics