Skip to main content

Indoor Particles, Combustion Products and Fibres

  • Chapter
Indoor Air Pollution

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 64))

Abstract

Pollutants in the indoor environment are a complex mixture of gases, vapours and particles in either liquid or solid phase, suspended in the air, settled or adsorbed on or attached to indoor surfaces. The pollutants originate from a multiplicity of indoor and outdoor sources. The pollutant mixture is dynamic, involved in numerous physical and chemical processes and changing its characteristics with time. Its composition and concentration depend on the strengths of indoor sources, pollutants’ concentration outside and the properties of heating ventilation and air conditioning systems. The spatial distribution of pollutant concentration within the indoor environment is often inhomogeneous.

Particulate matter in the indoor environment includes particles, which are airborne as well as those which are settled on indoor surfaces, dust. The particles vary in chemical properties, which depend on the origin of the particles and differ for particles in different size ranges. The particles can, for example, be combustion or nucleation products, dust or bioaerosols and can act as carriers of adsorbed chemicals, bio-contaminants or condensed gases. Particles are a key component of emissions from all the combustion sources. In particular, a significant indoor combustion product, environmental tobacco smoke (ETS) is a mixture of particle and gaseous products of smoke exhaled to the air by smokers and mixed with the smoke resulting from smouldering of a cigarette between the puffs.

This chapter is focused on particulate matter, its origin, characteristics and behaviour in the indoor environment. In addition, several important classes of indoor pollutants are discussed, those which are entirely or partially composed of particulate matter. These include ETS and combustion products from other sources, such as wood smoke or vehicle emissions, and also fibres, in particular, asbestos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wallace L (2000) Aerosol Sci Technol 32:15

    Article  CAS  Google Scholar 

  2. He C, Morawska L, Taplin L (2007) Environmen Sci Technol 41:6039–6045

    Google Scholar 

  3. Wolkoff P, Schneider T, Kildeso J, Degerth R, Jaroszewski M, Schunk H (1998) Sci Total Environ 215(1–2):135–156

    Article  CAS  Google Scholar 

  4. Morawska L, Zhang J (2002) Chemosphere 49:1045

    Article  CAS  Google Scholar 

  5. Zhang J, Morawska L (2002) Chemosphere 49:1059

    Article  CAS  Google Scholar 

  6. Morawska L, Salthammer T (2003) In: Morawska L, Salthammer T (eds) Indoor environment, airborne particles and settled dust. Wiley-VCH, Weinheim

    Google Scholar 

  7. Ă–zkaynak H, Xue J, Weker R, Butler D, Koutrakis P, Spengler J (1994) The Particle TEAM (PTEAM) study: analysis of the data-final report, vol 3. Harvard School of Public Health, Boston

    Google Scholar 

  8. Knibbs LD, He CR, Duchaine C, Morawska L (2012) Environment Sci Technol 46(1):534–542

    Article  CAS  Google Scholar 

  9. Morawska L, Mengersen K, Holmes NS, Tayphasavanh F, Darasavong K, Wang H (2011) Environ Sci Technol 45:882–889

    Article  CAS  Google Scholar 

  10. Willeke K, Baron PA (eds) (1993) In: Aerosol measurement principles, techniques and application. Van Nostrand Reinhold, New York

    Google Scholar 

  11. Hinds WC (1982) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley, New York

    Google Scholar 

  12. Whitby KT (1987) Atmos Environ 12:135

    Article  Google Scholar 

  13. Schmidt-Ott A (1988) Appl Phys Lett 52:954

    Article  CAS  Google Scholar 

  14. Peitgen HO, Richter PH (1986) The beauty of fractals. Springer-Verlag, Berlin

    Book  Google Scholar 

  15. Wolfram S (2002) A new kind of science. Wolfram Media Inc., Champaign

    Google Scholar 

  16. Wallace L (2006) Aerosol Sci Technol 40:348

    Article  CAS  Google Scholar 

  17. Abt E, Suh HH, Allen G, Koutrakis P (2000) Environ Health Perspect 108:35

    Article  CAS  Google Scholar 

  18. Li C-S, Jenq F-T, Lin W-H (1992) J Aerosol Sci 23:s547

    Article  CAS  Google Scholar 

  19. Li C-S, Lin W-H, Jenq F-T (1993) Atmos Environ 27B:413

    Article  CAS  Google Scholar 

  20. Kleeman MJ, Schauer JJ, Cass GR (1999) Environmen Sci Technol 33:356

    Google Scholar 

  21. Morawska L, Thomas S, Bofinger ND, Wainwright D, Neale D (1998) Atmos Environ 32:2461

    Article  Google Scholar 

  22. Morawska L, Thomas S (2000) Modality of ambient particle distributions as a basis for developing air quality regulations. In: Clean air and environment conference, Sydney, Australia, 26–30 November 2000

    Google Scholar 

  23. Chao C, Tung T, Burnett J (1998) Indoor Built Environment 7:110

    Article  CAS  Google Scholar 

  24. Matthias-Maser S, Jaenicke RT (1995) Atmos Res 39:279

    Article  Google Scholar 

  25. Wallace L (1996) J Air Waste Manage Assoc 46:98

    Article  CAS  Google Scholar 

  26. Mosley RB, Greenwell DJ, Sparks LE, Guo Z, Tucker WG, Fortmann RC, Whitfield C (2001) Aerosol Sci Technol 34:127

    Article  CAS  Google Scholar 

  27. Long CM, Suh HH, Catalano PJ, Koutrakis P (2001) Environment Sci Technol 35:2089

    Article  CAS  Google Scholar 

  28. He C, Morawska L, Gilbert D (2005) Atmos Environ 39(21):3891–3899

    Article  CAS  Google Scholar 

  29. Thatcher TL, Layton DW (1995) Atmos Environ 29:1487

    Article  CAS  Google Scholar 

  30. Yamamoto T, Ensor D, Sparks L (1994) Build Environ 29:291

    Article  Google Scholar 

  31. Biggs K, Bennie I, Michell D (1986) Build Environ 21:89

    Article  Google Scholar 

  32. Jamriska M, Morawska L, Ensor D (2003) Indoor Air 13:96–105

    Article  CAS  Google Scholar 

  33. He C, Morawska L, Tran Q, McGarry P (2011) The effect of indoor and outdoor particle sources on indoor air quality of a new multilevel office building in the vicinity of a busway. In: The 12th international conference on indoor air quality and climate, Austin, USA, 5–10 June 2011

    Google Scholar 

  34. Weschler CJ, Shields HC (1999) Atmos Environ 33:2301

    Article  CAS  Google Scholar 

  35. Weschler C (2003) In: Morawska L, Salthammer T (eds) Indoor environment, airborne particles and settled dust. Wiley-VCH, Weinheim

    Google Scholar 

  36. Morawska L, He C, Johnson G, Guo H, Uhde E, Ayoko G (2009) Environ Sci Technol 43:9103–9109

    Article  CAS  Google Scholar 

  37. Wang H, He C, Morawska L, McGarry P, Johnson G (2012) Environ Sci Technol 46:704–712

    Article  CAS  Google Scholar 

  38. Koutrakis P, Briggs SK, Leaderer BP (1992) Environment Sci Technol 26:521

    Article  CAS  Google Scholar 

  39. Wilson WE, Mage DT, Grant LD (2000) J Air Waste Manage Assoc 50:1167

    Article  CAS  Google Scholar 

  40. USEPA (1997) Exposure factors handbook. National Center for Environmental Assessment, Washington, DC

    Google Scholar 

  41. VDI (2001) Measurement of indoor air polution. Sampling of house dust. VDI 4300, Part 8, Beuth, Berlin

    Google Scholar 

  42. Quee Hee S, Peace B, Clark CS, Boyle JR, Boule JR, Bornschein RL, Hammond PB (1985) Environ Res 38:77

    Article  Google Scholar 

  43. Seifert B (1998) Die Untersuchung von Hausstaub im Hinblick auf Expositionsabschätzungen. Bundesgesundheitsblatt 41:383–391

    Article  Google Scholar 

  44. Morawska L, Salthammer T (2003) Indoor environment: airborne particles and settled dust. Wiley-VCH, Weinheim

    Book  Google Scholar 

  45. Molhave L, Schneider T, Kjaergaard SK, Larsen L, Norn S, Jorgensen O (2000) Atmos Environ 34:4767

    Article  CAS  Google Scholar 

  46. Chew GL, Douwes J, Doekes G, Higgins KM, van Strien R, Spithoven J, Brunekreef B (2001) Indoor Air 11:171

    Article  CAS  Google Scholar 

  47. Bischof W, Koch A, Gehring U, Fahlbusch B, Wichmann HE, Heinrich J (2002) Indoor Air 12:2

    Article  CAS  Google Scholar 

  48. Vejrup K, Wolkoff P (2002) Sci Total Environ 300:51

    Article  CAS  Google Scholar 

  49. ILO (1990) Safety in the use of mineral and synthetic fibres. International Labour Organisation, Geneva

    Google Scholar 

  50. Bake D (2003) In: Morawska L, Salthammer T (eds) Indoor environment, airborne particles and settled dust. Wiley-VCH, Weinheim

    Google Scholar 

  51. Li W, Hopke PK (1993) Aerosol Sci Technol 19:305

    Article  CAS  Google Scholar 

  52. Nazaroff W, Klepeis N (2003) In: Morawska L, Salthammer T (eds) Indoor environment, airborne particles and settled dust. Wiley-VCH, Weinheim

    Google Scholar 

  53. Cass GR (1998) Trends Anal Chem 17:356

    Article  CAS  Google Scholar 

  54. Morawska L, Jamriska M, Boginger ND (1997) Sci Total Environ 196:43

    Article  CAS  Google Scholar 

  55. First MW (1985) In: Gammage RB, Kaye SV (eds) Indoor air and human health. Lewis Publishers Inc, Michigan

    Google Scholar 

  56. Leaderer BP, Hammond SK (1991) Environment Sci Technol 25:770

    Article  CAS  Google Scholar 

  57. Rando RJ, Menon PK, Poovey HG, Lehrer SB (1992) Am Ind Hyg Assoc J 32:3845

    Google Scholar 

  58. Odgen M, Heaven D, Foster T, Maiolo K, Cahs S, Richardson J, Martin P, Simmons P, Conrad F, Nelson P (1996) Environ Technol 17:239

    Article  Google Scholar 

  59. Eatough DJ, Benner CK, Tang H, Landon V, Richards G, Caka FM, Crawford J, Lewis EA, Haasen LD, Eatough NL (1989) Environ Int 15:19

    Article  CAS  Google Scholar 

  60. Eatough DJ, Hansen LD, Lewis EA (1988) Indoor and ambient air quality. Sepler Ltd., London, p 131

    Google Scholar 

  61. Tang H, Richards G, Benner C (1990) Environ Sci Technol 24:848

    Article  CAS  Google Scholar 

  62. Zhang J, Smith KR (1996) J Expo Anal Environ Epidemiol 6:147

    Google Scholar 

  63. Smith KR (1986) Environ Manag 1986:10

    Google Scholar 

  64. Saksena S, Prasad R, Pal RC, Joshi V (1992) Atmos Environ 26A:2125

    Article  CAS  Google Scholar 

  65. Smith KR (1993) Annu Rev Energy Environ 18:529

    Article  Google Scholar 

  66. Zhang J, Smith KR (1999) Environ Sci Technol 33:2311

    Article  CAS  Google Scholar 

  67. WHO (1999) World health organization health guidelines for vegetation fire events. World Health Organization, Geneva

    Google Scholar 

  68. Raiyani CV, Shah SH, Desai NM, Kenkaiah K, Patel JS, Parikh DJ, Kashyap SK (1993) Atmos Environ 27A:1643

    Article  CAS  Google Scholar 

  69. Hueglin C, Gaegauf C, Kunzel S, Burtscher H (1997) Environment Sci Technol 31:3439

    Article  CAS  Google Scholar 

  70. Burnet PG, Edmisten NG, Tiegs PE, Houck JE, Yoder RA (1986) Air Pollution Contr Assoc 1986:1012

    Article  Google Scholar 

  71. Limbeck A, Puxbaum H (1999) Atmos Environ 33:1847

    Article  CAS  Google Scholar 

  72. Mumford JL, Harris DB, Williams K, Chuang JC, Cooke M (1987) Environ Sci Technol 21:308

    Article  CAS  Google Scholar 

  73. Li CK, Kamens RM (1993) Atmos Environ 27A:523

    Article  CAS  Google Scholar 

  74. Hawthorne SB, Miller D, Langenfeld JJ, Keieger MS (1992) Environ Sci Technol 26:2251

    Article  CAS  Google Scholar 

  75. Naeher LP, Brauer M, Lipsett M, Zelikoff JT, Simpson CD, Koenig JQ, Smith KR (2007) Woodsmoke health effects: a review. Inhal Toxicol 19(1):67–106

    Article  CAS  Google Scholar 

  76. Morawska L, Bofinger N, Kosic L, Nwankowala A (1998) Environment Sci Technol 32:2033

    Article  CAS  Google Scholar 

  77. Ristovski Z, Morawska L, Thomas S, Hitchins J, Greenaway C, Gilbert D (2000) J Aerosol Sci 31:403

    Article  CAS  Google Scholar 

  78. Kittelson DB (1998) J Aerosol Sci 29:525

    Article  Google Scholar 

  79. Zinbo M, Korniski TJ, Weir JE (1995) Ind Eng Chem Res 34:619

    Article  CAS  Google Scholar 

  80. Kittelson DB, Watts WF, Johnson JH (2002) Diesel aerosol sampling methodology CRC E-43 Final Report (NTIS Accession no. PB 2003–1024181)

    Google Scholar 

  81. Brodowicz P, Carrey P, Cook R, Somers J (1993) In: Al. E (ed) EPA Technical Support Branch, Emission Planning and Strategies Division, Office of Mobile Sources, Ann Arbor

    Google Scholar 

  82. Simoneit BRT (1985) Int J Anal Chem 22:203

    Article  CAS  Google Scholar 

  83. Demirbas A (2009) Appl Energy 86:S108–S117

    Article  CAS  Google Scholar 

  84. Kumar P, Robins A, ApSimon H (2010) Atmos Sci Lett 11(4):327–331

    Article  Google Scholar 

  85. Gangwar J, Gupta T, Gupta S, Agarwal AK (2011) Inhal Toxicol 23(8):449–458

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia Morawska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morawska, L., He, C. (2014). Indoor Particles, Combustion Products and Fibres. In: Pluschke, P., Schleibinger, H. (eds) Indoor Air Pollution. The Handbook of Environmental Chemistry, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2014_262

Download citation

Publish with us

Policies and ethics