Skip to main content

Disrupting Effects of Single and Combined Emerging Pollutants on Thyroid Gland Function

  • Chapter
  • First Online:
Emerging Organic Contaminants and Human Health

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 20))

  • 3616 Accesses

Abstract

Inadequate thyroid hormone (TH) production in mothers during the first months of pregnancy can produce irreversible neurological effects in the offspring. Even though the main cause of insufficient synthesis of TH is the lack of iodine in the diet, TH insufficiency can also be caused by the presence of some naturally occurring and synthetic chemicals disrupting the thyroid gland function. The identification of emerging pollutants that may interfere with mammalian thyroid gland function is still in progress. The goal of this chapter is to review the potential of the zebrafish eleutheroembryos, a vertebrate model used in toxicology and by pharmaceutical companies in drug discovery, as a predictive model for screening emerging pollutants and drugs having a direct effect on the mammalian thyroid gland function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

API:

Average pixel intensity

BP2:

Benzophenone 2

CA:

Concentration-addition

CNS:

Central nervous system

DIT:

Diiodotyrosine

EGL:

External granule layer

ETU:

Ethylene thiourea

IA:

Independent-action

ID:

Iodine deficiency

IT4C:

Intrafollicular T4 content

MIT:

Monoiodotyrosine

MMI:

Methimazole

MoA:

Mode of action

NIS:

Sodium-iodide symporter

NOEC:

No observed effect concentration

PTUracil:

6-Propyl-2-thiouracil

T3:

3,5,3′-Triiodothyronine

T4:

Thyroxine

TG:

Thyroglobulin

TGFD:

Thyroid gland function disruptor

TH:

Thyroid hormones

TIQDT:

Thyroxine immunofluorescence quantitative disruption test

TPO:

Thyroperoxidase

TSH:

Thyroid-stimulating hormone (thyrotropin)

References

  1. Berbel P, Bernal J (2010) Hypthyroxinemia: a subclinical condition affecting neurodevelopment. Exp Rev Endocrinol Metab 5:563–575

    Article  Google Scholar 

  2. Zoeller RT, Tyl RW, Tan SW (2007) Current and potential rodent screens and tests for thyroid toxicants. Crit Rev Toxicol 37:55–95

    Article  CAS  Google Scholar 

  3. Nicholson JL, Altman J (1972) The effects of early hypo- and hyperthyroidism on the development of the rat cerebellar cortex. II. Synaptogenesis in the molecular layer. Brain Res 44:25–36

    Article  CAS  Google Scholar 

  4. Xiao Q, Nikodem VM (1998) Apoptosis in the developing cerebellum of the thyroid hormone deficient rat. Front Biosci 3:A52–A57

    CAS  Google Scholar 

  5. Brown V (2003) Disrupting a delicate balance: environmental effects on the thyroid. Environ Health Perspect 111:A642–A649

    Article  Google Scholar 

  6. de Escobar G, Obregon M, del Rey F (2000) Is neuropsychological development related to maternal hypothyroidism or to maternal hypothyroxinemia? J Clin Endocrinol Metab 85:3975–3987

    Article  Google Scholar 

  7. Kopp P, Pesce L, Solis-S JC (2008) Pendred syndrome and iodide transport in the thyroid. Trends Endocrinol Metab 19:260–268

    Article  CAS  Google Scholar 

  8. Bizhanova A, Kopp P (2009) The sodium-iodide symporter NIS and pendrin in iodide homeostasis of the thyroid. Endocrinology 150:1084–1090

    Article  CAS  Google Scholar 

  9. Dedieu A, Gaillard JC, Pourcher T, Darrouzet E, Armengaud J (2011) Revisiting iodination sites in thyroglobulin with an organ-oriented shotgun strategy. J Biol Chem 286:259–269

    Article  CAS  Google Scholar 

  10. Alvino CG, Acquaviva AM, Memoli Catanzano AM, Tassi V (1995) Evidence that thyroglobulin has an associated protein kinase activity correlated with the presence of an adenosine triphosphate binding site. Endocrinology 136:3179–3185

    Article  CAS  Google Scholar 

  11. Eastman CJ, Zimmermann MB (2009) The iodine deficiency disorders. Thyroidmanager.org. http://www.thyroidmanager.org/Chapter20/20-frame.htm

  12. WHO/UNICEF/ICCIDD (1991) Global prevalence of iodine deficiency disorders. Micronutrient Deficiency Information System Working Paper No. 1. Geneva, WHO

    Google Scholar 

  13. Gaitan E (1990) Goitrogens in food and water. Annu Rev Nutr 10:21–39

    Article  CAS  Google Scholar 

  14. Brucker-Davis F (1993) Effects of environmental synthetic chemicals on thyroid function. Thyroid 8:827–856

    Article  Google Scholar 

  15. Gaitan E, Cooksey RC, Legan J, Cruse JM, Lindsay RH, Hill J (1993) Antithyroid and goitrogenic effects of coal-water extracts from iodine-sufficient goiter areas. Thyroid 3:49–53

    Article  CAS  Google Scholar 

  16. Cunha GCP (2005) Evaluation of mechanisms inducing thyroid toxicity and the ability of the enhanced OECD Test Guideline 407 to detect these changes. Arch Toxicol 79:390–405

    Article  CAS  Google Scholar 

  17. Mastorakos G, Karoutsou EI, Mizamtsidi M, Creatsas G (2007) The menace of endocrine disruptors on thyroid hormone physiology and their impact on intrauterine development. Endocrine 31:219–237

    Article  CAS  Google Scholar 

  18. De Groef B, Decallonne BR, Van der Geyten S, Darras VM, Bouillon R (2006) Perchlorate versus other environmental sodium/iodide symporter inhibitors: potential thyroid-related health effects. Eur J Endocrinol 155:17–25

    Article  Google Scholar 

  19. Giuliani C, Noguchi Y, Harii N, Napolitano G, Tatone D, Bucci I et al (2008) The flavonoid quercetin regulates growth and gene expression in rat FRTL-5 thyroid cells. Endocrinology 149:84–92

    Article  CAS  Google Scholar 

  20. Doerge DR, Sheehan DM (2002) Goitrogenic and estrogenic activity of soy isoflavones. Environ Health Perspect 110:349–353

    Article  CAS  Google Scholar 

  21. Steinmaus C, Miller M, Howd R (2007) Impact of smoking and thiocyanate on perchlorate and thyroid hormone associations in the 2001–2002 national health and nutrition examination survey. Environ Health Perspect 115:1333–1338

    Article  CAS  Google Scholar 

  22. Vanderver GB (2007) Cigarette smoking and iodine as hypothyroxinemic stressors in US women of childbearing age: a NHANES III analysis. Thyroid 17:741–746

    Article  Google Scholar 

  23. Zimmermann MB (2009) Iodine deficiency. Endocr Rev 30:376–408

    Article  CAS  Google Scholar 

  24. Laurberg P, Nøhr SB, Pedersen KM, Fuglsang E (2004) Iodine nutrition in breast-fed infants is impaired by maternal smoking. J Clin Endocrinol Metab 89:181–187

    Article  CAS  Google Scholar 

  25. Gasparoni A, Autelli M, Ravagni-Probizer MF, Bartoli A, Regazzi-Bonora M, Chirico G, Rondini G (1998) Effect of passive smoking on thyroid function in infants. Eur J Endocrinol 138:379–382

    Article  CAS  Google Scholar 

  26. Sarne D (2010) Effects of the environment, chemicals and drugs on thyroid function. Thyroidmanager.org. http://www.thyroidmanager.org/Chapter5/5a-frame.htm

  27. Crofton K (2008) Thyroid disrupting chemicals: mechanisms and mixtures. Int J Androl 31:209–223

    Article  CAS  Google Scholar 

  28. Flippin JL, Hedge JM, DeVito MJ, LeBlanc GA, Crofton KM (2009) Predictive modeling of a mixture of thyroid hormone disrupting chemicals that affect production and clearance of thyroxine. Int J Toxicol 28:368–381

    Article  CAS  Google Scholar 

  29. Crofton KM, Craft ES, Hedge JM, Gennings C, Simmons JE, Carchman RA, Carter WH Jr, DeVito MJ (2005) Thyroid-hormone-disrupting chemicals: evidence for dose-dependent additivity or synergism. Environ Health Perspect 113:1549–1554

    Article  CAS  Google Scholar 

  30. Parng C, Seng WL, Semino C, McGrath P (2002) Zebrafish: a preclinical model for drug screening. Assay Drug Dev Technol 1:41–48

    Article  CAS  Google Scholar 

  31. Ton C, Lin Y, Willett C (2006) Zebrafish as a model for developmental neurotoxicity testing. Birth Defects Res A Clin Mol Teratol 76:553–567

    Article  CAS  Google Scholar 

  32. Love DR, Pichler FB, Dodd A, Copp BR, Greenwood DR (2004) Technology for high-throughput screens: the present and future using zebrafish. Curr Opin Biotechnol 15:564–571

    Article  CAS  Google Scholar 

  33. McGrath P, Li CQ (2008) Zebrafish: a predictive model for assessing drug-induced toxicity. Drug Discov Today 13:394–401

    Article  CAS  Google Scholar 

  34. Goldsmith P (2004) Zebrafish as a pharmacological tool: the how, why and when. Curr Opin Pharmacol 4:504–512

    Article  CAS  Google Scholar 

  35. Zon LI, Peterson RT (2005) In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 4:35–44

    Article  CAS  Google Scholar 

  36. Berghmans S, Butler P, Goldsmith P, Waldron G, Gardner I, Golder Z et al (2008) Zebrafish based assays for the assessment of cardiac, visual and gut function-potential safety screens for early drug discovery. J Pharmacol Toxicol Methods 58:59–68

    Article  CAS  Google Scholar 

  37. Strähle U, Schloz S, Geisler R, Greiner P, Hollert H, Rastegar S et al (2011) Zebrafish embryos as an alternative to animal experiments – a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol. doi:10.1016/j.reprotox.2011.06.121

  38. Porazzi P, Calebiro D, Benato F, Tiso N, Persani L (2009) Thyroid gland development and function in the zebrafish model. Mol Cell Endocrinol 312:14–23

    Article  CAS  Google Scholar 

  39. Alt B, Reibe S, Feitosa N, Elsalani O, Wendl T, Rohr KB (2006) Analysis of origin and growth of the thyroid gland in zebrafish. Dev Dyn 235:1872–1883

    Article  Google Scholar 

  40. Alt B, Elsalani O, Schrumpf P, Haufs N, Lawson N, Schwabe G et al (2006) Arteries define the position of the thyroid gland during its developmental relocalisation. Development 133:3797–3804

    Article  CAS  Google Scholar 

  41. Opitz R, Maquet E, Zoenen M, Dadhich R, Costagliola S (2011) TSH receptor function is required for normal thyroid differentiation in zebrafish. Mol Endocrinol 25:1579–1599

    Google Scholar 

  42. Dohan O, De la Vieja A, Carrasco N (2000) Molecular study of the sodium-iodide symporter (NIS): a new field in thyroidology. Trends Endocrinol Metab 11:99–105

    Article  CAS  Google Scholar 

  43. Raldúa D, Andrè M, Babin PJ (2008) Clofibrate and gemfibrozil induce an embryonic malabsorption syndrome in zebrafish. Toxicol Appl Pharmacol 228:301–314

    Article  Google Scholar 

  44. Walpita CN, Van der Geyten S, Rurangwa E, Darras VM (2007) The effect of 3,5,3’-triiodothyronine supplementation on zebrafish (Danio rerio) embryonic development and expression of iodothyronine deiodinases and thyroid hormone receptors. Gen Comp Endocrinol 152:206–214

    Article  CAS  Google Scholar 

  45. Wendl T, Lun K, Mione M, Favor J, Brand M, Wilson SW et al (2002) Pax2.1 is required for development of thyroid follicles in zebrafish. Development 129:3751–3760

    CAS  Google Scholar 

  46. Raldúa D, Babin PJ (2009) Simple, rapid zebrafish larva bioassay for assessing the potential of chemical pollutants and drugs to disrupt thyroid gland function. Environ Sci Technol 43:6844–6850

    Article  Google Scholar 

  47. Thienpont B, Tingaud-Sequeira A, Prats E, Barata C, Babin PJ, Raldúa D (2011) Zebrafish eleutheroembryos provide a suitable vertebrate model for screening chemicals that impair thyroid hormone synthesis. Environ Sci Technol 45:7525–7532

    CAS  Google Scholar 

  48. Pitsiavas V, Semerdely P, Li M, Boyages SC (1997) Amiodarone induces a different pattern of ultrastructural change in the thyroid to iodine excess alone in both BB/W rat and the Wistar rat. Eur J Endocrinol 137:89–98

    Article  CAS  Google Scholar 

  49. Martino E, Bartalena L, Bogazzi F, Braverman LE (2001) The effects of amiodarone on the thyroid. Endocr Rev 22:240–254

    Article  CAS  Google Scholar 

  50. Cunha GC, van Ravenzwaay B (2005) Evaluation of mechanisms inducing thyroid toxicity and the ability of the enhanced OECD Test Guideline 407 to detect these changes. Arch Toxicol 79:390–405

    Article  CAS  Google Scholar 

  51. MacKenzie DS, Jones RA, Miller TC (2009) Thyrotropin in teleost fish. Gen Comp Endocrinol 161:83–89

    Article  CAS  Google Scholar 

  52. Charles JM, Cunny HC, Wilson RD, Bus JS (1996) Comparative studies on 2,4- dichlorophenoxyacetic acid, amine and ester in rats. Fundam Appl Toxicol 33:161–165

    Article  CAS  Google Scholar 

  53. Santini F, Vitti P, Mammoli C, Rosellini V, Pelosini C, Marsili A et al (2003) In vitro assay of thyroid disruptors affecting TSH-stimulated adenylate cyclase activity. J Endocrinol Invest 26:950–955

    CAS  Google Scholar 

  54. Rossi M, Dimida A, Dell’anno MT, Trincavelli ML, Agretti P, Giorgi F et al (2007) The thyroid disruptor 1,1,1-trichloro-2,2-bis(p-chloropheyl)ethane appears to be an uncompetitive inverse agonist for the thyrotropin receptor. J Pharmacol Exp Ther 320:465–474

    Article  CAS  Google Scholar 

  55. Pandey AK, George KC, Mohamed MP (1995) Effect of DDT on the thyroid gland of the mullet Liza parsia (Hamilton-Buchanan). J Mar Biol Assoc India 37:287–290

    Google Scholar 

  56. Bleau H, Daniel C, Chevalier G, van Tra H, Hontela A (1996) Effects of acute exposure to mercuric chloride and methylmercury on plasma cortisol, T3, T4, glucose, and liver glycogen in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 34:221–235

    Article  CAS  Google Scholar 

  57. Kirubagaran R, Joy KP (1994) Effects of short-term exposure to methylmercury chloride and its withdrawal on serum levels of thyroid hormones in the catfish Clarias batrachus (L). Bull Environ Contam Toxicol 63:166–170

    Google Scholar 

  58. Nishida M, Muraoka K, Nishikawa K, Takagi T, Kawada J (1989) Differential effects of methylmercuric chloride and mercuric chloride on the histochemistry of rat thyroid peroxidase and thyroid peroxidase activity of isolated pig thyroid cells. J Histochem Cytochem 37:723–727

    Article  CAS  Google Scholar 

  59. Stoker TE, Guidici DL, Cooper RL (2002) The effects of atrazine metabolites on puberty and thyroid function in male Wistar rat. Toxicol Sci 67:198–206

    Article  CAS  Google Scholar 

  60. Flatt T, Moroz LL, Tatar M, Heyland A (2006) Comparing thyroid and insect hormone signalling. Integr Comp Biol 46:777–794

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Spanish Ministry of Science and Innovation (CTM2011-30471-C02-01 and PA1002979) and the Generalitat de Catalunya (2010 BE1 00623) to D.R. and C.B. B.T. was supported by a fellowship of the Spanish Government (AP2006-01324). This work was supported by a Conseil Régional d’Aquitaine grant (200881301031/TOD project) to P.J.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demetrio Raldúa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg 2011

About this chapter

Cite this chapter

Raldúa, D., Babin, P.J., Barata, C., Thienpont, B. (2011). Disrupting Effects of Single and Combined Emerging Pollutants on Thyroid Gland Function. In: Barceló, D. (eds) Emerging Organic Contaminants and Human Health. The Handbook of Environmental Chemistry(), vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2011_123

Download citation

Publish with us

Policies and ethics