Skip to main content

Cytogenomic Evaluation of Children with Congenital Anomalies: Critical Implications for Diagnostic Testing and Genetic Counseling

  • Chapter
  • First Online:
Prospect in Pediatric Diseases Medicine

Abstract

Identification of submicroscopic chromosomal aberrations, as a cause of structural malformations, is currently performed by MLPA (multiplex ligation-dependent probe amplification) or array CGH (array comparative genomic hybridization) techniques. The aim of this study was the evaluation of diagnostic usefulness of MLPA and array CGH in patients with congenital malformations or abnormalities (at least one major or minor birth defect, including dysmorphism) with or without intellectual disability or developmental delay and the optimization of genetic counseling in the context of the results obtained. The MLPA and array CGH were performed in 91 patients diagnosed with developmental disorders and major or minor congenital anomalies. A total of 49 MLPA tests toward common microdeletion syndromes, 42 MLPA tests for subtelomeric regions of chromosomes, two tests for common aberrations in autism, and five array CGH tests were performed. Eight (9 %) patients were diagnosed with microdeletion MLPA, four (4 %) patients with subtelomeric MLPA, one (1 %) patient with autism MLPA. Further three (3 %) individuals had rearrangements diagnosed by array CGH. Altogether, chromosomal microaberrations were found in 16 patients (17 %). All the MLPA-detected rearrangements were found to be pathogenic, but none detected with array CGH could unequivocally be interpreted as pathogenic. In patients with congenital anomalies, the application of MLPA and array CGH techniques is efficient in detecting syndromic and unique microrearrangements. Consistent pre-MLPA test phenotyping leads to better post-test genetic counseling. Incomplete penetrance and unknown inheritance of detected variants are major issues in clinical interpretation of array CGH data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boggula VR, Shukla A, Danda S, Hariharan SV, Nampoothiri S, Kumar R, Phadke SR (2014) Clinical utility of multiplex ligation-dependent probe amplification technique in identification of aetiology of unexplained mental retardation: a study in 203 Indian patients. Indian J Med Res 139:66–75

    PubMed  PubMed Central  Google Scholar 

  • Campos CM, Zanardo EA, Dutra RL, Kulikowski LD, Kim CA (2015) Investigation of copy number variation in children with conotruncal heart defects. Arq Bras Cardiol 104:24–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crotwell PL, Hoyme HE (2012) Advances in whole-genome genetic testing: from chromosomes to microarrays. Curr Probl Pediatr Adolesc Health Care 42:47–73

    Article  PubMed  Google Scholar 

  • Gagnon A, Wilson RD, Allen VM, Audibert F, Blight C, Brock JA, Désilets VA, Johnson JA, Langlois S, Murphy-Kaulbeck L, Wyatt P, Society of Obstetricians and Gynaecologists of Canada (2009) Evaluation of prenatally diagnosed structural congenital anomalies. J Obstet Gynaecol Can 31:875–882

    Article  PubMed  Google Scholar 

  • Geng J, Picker J, Zheng Z, Zhang X, Wang J, Hisama F, Brown DW, Mullen MP, Harris D, Stoler J, Seman A, Miller DT, Fu Q, Roberts AE, Shen Y (2014) Chromosome microarray testing for patients with congenital heart defects reveals novel disease causing loci and high diagnostic yield. BMC Genomics 15:1127

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong X, Wu X, Ma X, Wu D, Zhang T, He L, Qin S, Li X (2013) Microdeletion and microduplication analysis of chinese conotruncal defects patients with targeted array comparative genomic hybridization. PLoS One 8:e76314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jehee FS, Takamori JT, Medeiros PF, Pordeus AC, Latini FR, Bertola DR, Kim CA, Passos-Bueno MR (2011) Using a combination of MLPA kits to detect chromosomal imbalances in patients with multiple congenital anomalies and mental retardation is a valuable choice for developing countries. Eur J Med Genet 54:e425–e432

    Article  PubMed  Google Scholar 

  • Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258:818–821

    Article  CAS  PubMed  Google Scholar 

  • Kirchhoff M, Bisgaard AM, Bryndorf T, Gerdes T (2007) MLPA analysis for a panel of syndromes with mental retardation reveals imbalances in 5.8 % of patients with mental retardation and dysmorphic features, including duplications of the Sotos syndrome and Williams-Beuren syndrome regions. Eur J Med Genet 50:33–42

    Article  PubMed  Google Scholar 

  • Latos-Bieleńska A, Materna-Kiryluk A, Krawczyński MR, Mejnartowicz JP, Krawczyński M, Gajewska E, Limon J, Balcar-Boroń A, Walczak M, Stańczyk J, Szymański W, Respondek-Liberska M, Szwałkiewicz-Warowicka E (1998) Epidemiological analysis of congenital defects in children aged 0-2 years based on Polish registry of congenital malformations. J Appl Genet 39A:73

    Google Scholar 

  • Latos-Bieleńska A, Materna-Kiryluk A, PRCM Working Group (2005) Polish registry of congenital malformations – aims and organization of the registry monitoring 300 000 births a year. J Appl Genet 46:341–348

    PubMed  Google Scholar 

  • Lewandowicz-Uszyńska A, Zwonarz K, Chmielarska J (2013) The 22q11 microdeletion syndrome in children. Cent Eur J Immunol 38(2):271–275

    Article  Google Scholar 

  • Manning M, Hudgins L, Professional Practice and Guidelines Committee (2010) American College of Medical Genetics Practice guidelines: array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities. Genet Med 12:742–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, Church DM, Crolla JA, Eichler EE, Epstein CJ, Faucett WA, Feuk L, Friedman JM, Hamosh A, Jackson L, Kaminsky EB, Kok K, Krantz ID, Kuhn RM, Lee C, Ostell JM, Rosenberg C, Scherer SW, Spinner NB, Stavropoulos DJ, Tepperberg JH, Thorland EC, Vermeesch JR, Waggoner DJ, Watson MS, Martin CL, Ledbetter DH (2010) Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 86:749–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monfort S, Orellana C, Oltra S, Roselló M, Guitart M, Martínez F (2006) Evaluation of MLPA for the detection of cryptic subtelomeric rearrangements. J Lab Clin Med 147:295–300

    Article  CAS  PubMed  Google Scholar 

  • Moreira DP, Griesi-Oliveira K, Bossolani-Martins AL, Lourenço NC, Takahashi VN, da Rocha KM, Moreira ES, Vadasz E, Meira JG, Bertola D, O’Halloran E, Magalhães TR, Fett-Conte AC, Passos-Bueno MR (2014) Investigation of 15q11-q13, 16p11.2 and 22q13 CNVs in autism spectrum disorder Brazilian individuals with and without epilepsy. PLoS One 9:e107705

    Article  PubMed  PubMed Central  Google Scholar 

  • Nowakowska B, Stankiewicz P, Obersztyn E, Ou Z, Li J, Chinault AC, Smyk M, Borg K, Mazurczak T, Cheung SW, Bocian E (2008) Application of metaphase HR-CGH and targeted Chromosomal Microarray Analyses to genomic characterization of 116 patients with mental retardation and dysmorphic features. Am J Med Genet 146A:2361–2369

    Article  CAS  PubMed  Google Scholar 

  • Palomares M, Delicado A, Lapunzina P, Arjona D, Amiñoso C, Arcas J, Martinez Bermejo A, Fernández L, López Pajares I (2006) MLPA vs multiprobe FISH: comparison of two methods for the screening of subtelomeric rearrangements in 50 patients with idiopathic mental retardation. Clin Genet 69:228–233

    Article  CAS  PubMed  Google Scholar 

  • Riegel M (2014) Human molecular cytogenetics: from cells to nucleotides. Genet Mol Biol 37(1 Suppl):194–209

    Article  PubMed  Google Scholar 

  • Rooms L, Reyniers E, Wuyts W, Storm K, van Luijk R, Scheers S, Wauters J, van den Ende J, Biervliet M, Eyskens F, van Goethem G, Laridon A, Ceulemans B, Courtens W, Kooy RF (2006) Multiplex ligation-dependent probe amplification to detect subtelomeric rearrangements in routine diagnostics. Clin Genet 69:58–64

    Article  CAS  PubMed  Google Scholar 

  • Sagoo GS, Butterworth AS, Sanderson S, Shaw-Smith C, Higgins JP, Burton H (2009) Array CGH in patients with learning disability (mental retardation) and congenital anomalies: updated systematic review and meta-analysis of 19 studies and 13,926 subjects. Genet Med 11:139–146

    Article  CAS  PubMed  Google Scholar 

  • Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 30:e57

    Article  PubMed  PubMed Central  Google Scholar 

  • Stankiewicz P, Beaudet AL (2007) Use of array CGH in the evaluation of dysmorphology, malformations, developmental delay, and idiopathic mental retardation. Curr Opin Genet Dev 17:182–192

    Article  CAS  PubMed  Google Scholar 

  • Stegmann AP, Jonker LM, Engelen JJ (2008) Prospective screening of patients with unexplained mental retardation using subtelomeric MLPA strongly increases the detection rate of cryptic unbalanced chromosomal rearrangements. Eur J Med Genet 51:93–105

    Article  CAS  PubMed  Google Scholar 

  • Szczałuba K (2014) Diagnostics of the genetic causes of autism spectrum disorders – a clinical geneticist’s view. Psychiatr Pol 48:677–678 (Article in Polish)

    PubMed  Google Scholar 

  • Szymańska K, Szczałuba K, Lugowska A, Obersztyn E, Radkowski M, Nowakowska BA, Kuśmierska K, Tryfon J, Demkow U (2014) The analysis of genetic aberrations in children with inherited neurometabolic and neurodevelopmental disorders. Biomed Res Int 2014:424796

    PubMed  PubMed Central  Google Scholar 

  • Weiss LA, Shen Y, Korn DE, Arking JM, Miller DT, Fossdal R, Saemundsen E, Stefansson H, Ferreira MA, Green T, Platt OS, Ruderfer DM, Walsh CA, Altshuler D, Chakravarti A, Tanzi RE, Stefansson K, Santangelo SL, Gusella JF, Sklar P, Wu BL, Daly MJ, Autism Consortium (2008) Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med 358:667–675

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of Interest

The authors declare no conflicts of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Szczałuba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Szczałuba, K. et al. (2016). Cytogenomic Evaluation of Children with Congenital Anomalies: Critical Implications for Diagnostic Testing and Genetic Counseling. In: Pokorski, M. (eds) Prospect in Pediatric Diseases Medicine. Advances in Experimental Medicine and Biology(), vol 912. Springer, Cham. https://doi.org/10.1007/5584_2016_234

Download citation

Publish with us

Policies and ethics